
FingerIO: Using Active Sonar for
Fine-Grained Finger Tracking

Rajalakshmi Nandakumar1, Vikram Iyer1, Desney Tan2, Shyamnath Gollakota1

DUB Group, University of Washington1 Microsoft Research2

{rajaln, vsiyer, gshyam}@cs.washington.edu desney@microsoft.com

ABSTRACT
We present fingerIO, a novel fine-grained finger tracking so-
lution for around-device interaction. FingerIO does not re-
quire instrumenting the finger with sensors and works even in
the presence of occlusions between the finger and the device.
We achieve this by transforming the device into an active
sonar system that transmits inaudible sound signals and tracks
the echoes of the finger at its microphones. To achieve sub-
centimeter level tracking accuracies, we present an innovative
approach that use a modulation technique commonly used in
wireless communication called Orthogonal Frequency Divi-
sion Multiplexing (OFDM). Our evaluation shows that fin-
gerIO can achieve 2-D finger tracking with an average ac-
curacy of 8 mm using the in-built microphones and speaker
of a Samsung Galaxy S4. It also tracks subtle finger motion
around the device, even when the phone is inside a pocket.
Finally, we prototype a smart watch form-factor fingerIO de-
vice and show that it can extend the interaction space to a
0.5×0.25 m2 region on either side of the device and work
even when it is fully occluded from the finger.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User interfaces—Input devices and strategies

Author Keywords
Around device interaction; Finger tracking; Active sonar;
Mobile sensing

INTRODUCTION
In this paper, we explore the following question: Can we track
the user’s finger around the device and can we do this even
when they are occluded from each other? A positive answer
would allow the user to interact in more expressive ways, uti-
lize the screen fully without hand blockage and also enable
new interaction scenarios. For instance, the user can use her
finger as a pen to provide input over a much larger surface
area than the smartphone. She can also perform subtle fin-
ger motion around the device that can be tracked even when
the phone is in a pocket. Such a capability would also bene-
fit smaller devices such as smart watches that could track the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI’16, May 7–12, 2016, San Jose, CA, USA.
Copyright c© 2016 ACM ISBN 978-1-4503-3362-7/16/05$15.00.
http://dx.doi.org/10.1145/2858036.2858580

user’s finger, even when fully occluded from it or when the
watch is on a different plane from the interaction surface. Ex-
isting solutions for finger tracking, however, either instrument
the finger with sensors [21, 40, 10, 12] or use cameras/in-
frared sensors at the device [9, 22, 23]. The former approach
is burdensome while the latter does not work with occlusions.

We present fingerIO, a fine-grained finger tracking system
that does not require instrumenting the finger with sensors
and works even with occlusions between the finger and the
device. FingerIO tracks finger motion in the region around
existing smartphones, and achieves an average 2-D tracking
accuracy of 8 mm. It also tracks subtle finger motion around
the device, even when the phone is in the pocket. Using finge-
rIO, we also prototype a smart watch-form factor device that
can track the finger, while extending the interaction space to
a 0.5×0.25 m2 region on either side of the device. Further,
the watch can continue tracking the finger even when they are
fully occluded from each other.

Our key insight is to transform mobile devices (e.g., smart-
phones) into active sonar systems. At a high level, we
transmit inaudible 18-20 kHz sound waves from the device’s
speaker. These signals get reflected from the finger and can be
recorded as an echo at the device’s microphones. Finger mo-
tion results in changes to the arrival time of the echo at multi-
ple microphones. By tracking the time at which these echoes
begin, fingerIO continuously tracks the finger location. The
echo from the finger however is noisy and hence estimating
the exact time when the echo is received, in the presence of all
other reflections, is challenging. To appreciate the challenge,
microphones on today’s mobile devices have a sampling rates
of 48 kHz [27]. Given the speed of sound in air, an error of
just 3-4 samples in estimating the start of the echo results in
a 2.1-2.8 cm error in the estimated distance from each micro-
phone. Since the finger location is determined by computing
the distance from multiple microphones, the finger tracking
error would be much higher. In addition, speakers and micro-
phones on mobile devices typically run independently and do
not sample at the exact same time. This results in an addi-
tional sampling offset, further increasing the tracking error.

FingerIO addresses the above technical challenges by bor-
rowing insights from wireless communication. In wireless
systems, the transmitter and the receiver are not synchro-
nized and do not sample at the same time. Wireless receivers
however are designed to estimate the sampling offset for ev-
ery transmission so as to decode the transmitted informa-
tion. Modern wireless system uses a modulation technique
called Orthogonal Frequency Divison Multiplexing (OFDM)

a b dc

Figure 1: Applications of fingerIO. a) Transform any surface into a writing interface; b) provide a new interface for smartwatch form factor
devices; c) enable gesture interaction with a phone in a pocket; d) work even when the watch is occluded.

to achieve this goal. Inspired by this, fingerIO achieves ac-
curate finger tracking using OFDM. At a high level, we cre-
ate 18-20 kHz OFDM symbols by computing the FFT of N
random bits and generating N samples. We then compute a
cyclic suffix of S samples, as shown in the Fig. 2, which we
transmit from the speaker. The key property of OFDM with
cyclic suffixes is that, a sample error in identifying the be-
ginning of the symbol, translates linearly into phase changes
in the frequency domain; these changes can be extracted at
the microphones using an FFT. For instance, an error of E
samples translates into the phase linearly increasing from 0
to 2Eπ at the output of the FFT. Further, fractional sampling
errors that occur because of sampling drifts between the mi-
crophone and the speaker also result in a similar phase change
at the output of the FFT. Using this, fingerIO corrects for the
sampling errors and achieves fine-grained finger tracking.

While active sonar has been proposed before to perform
coarse-level gesture recognition [15, 11], we are not aware of
prior attempts to use it to achieve fine-grained finger tracking
on existing devices. Hence, our contributions are:
1. We introduce a novel approach to fine-grained finger track-

ing for around device interaction that does not require in-
strumenting the finger with sensors and works even in the
presence of occlusions between the finger and the device.

2. We propose and develop an active sonar solution to finger
tracking. To achieve this goal with high accuracies, we
introduce algorithms that use the properties of OFDM to
track the changes in echoes caused due to finger motion.

3. We implement our design on a Samsung Galaxy S4 us-
ing its in-built speaker and microphones and demonstrate
finger tracking around the phone, with no additional hard-
ware. We also built a prototype of our design in a smart
watch form factor device using off-the-shelf hardware.

4. We conduct experimental evaluations that show that finge-
rIO can achieve average 2-D finger tracking accuracies of
8 mm and 1.2 cm at 169 frames/s for the smartphone and
smart watch prototypes. Further, it accurately tracks subtle
finger motion even when the phone in a pocket as well as
with the smart watch fully occluded from the finger.

RELATED WORK
Prior work falls in three key domains.

Near Device Interaction. Prior work in this domain can
be broadly categorized as either requiring instrumenting the

N point FFT o�set by E Samples

OFDM Symbol Cyclic Su!x

S samples N samples

Figure 2: OFDM signal structure. The first S samples of the
OFDM samples are appended to the end to create the cyclic suffix.
Taking an N point FFT of the signal beginning at offset E will in-
clude part of the cyclic suffix resulting in a phase difference.

 0

π

2π

3π

4π

N/2 N-1

P
h
a
s
e

OFDM Subcarrier

E=0

E=1

E=2

Figure 3: OFDM phase change due to sample error. The cyclic
suffix introduces a phase change of 2Eπ across the OFDM subcar-
riers when the beginning of the OFDM symbol is estimated incor-
rectly by E samples. This phase can be used to correct the sample
error and improve the accuracy of the system.

human body or vision based systems. iRing [28] uses an
infrared sensor to recognize rotation, bending and external
force on the finger. LightRing [21] designs a ring-form fac-
tor device that consists of a infrared proximity sensor and a
1-axis gyroscope to measure the finger flexion and rotation
respectively. Magic finger [40] designs a finger-worn device
that uses an optical mouse sensor and a micro RGB cam-
era to sense touch as well as the texture of the surface be-
ing touched. Fingerpad [10] is a nail-mounted device that
uses the tip of the index finger as a touchpad using magnetic
tracking. uTrack [12] proposes to instrument the back of the
fingers with magnetometers and the back of the thumb with a
magnet to enable a 3D input system using magnetic sensing.

Systems such as Digits [22] and SideSight [9] do not require
instrumenting the finger with sensors but use vision/infrared
sensors and hence do not work with occlusions. Specifically,
Digits [22] uses a wrist-worn 3D infrared camera to recover
the full pose of the user hand. SideSight [9] instruments the
sides of a mobile device (e.g., smartphone) with an array of
infrared proximity sensors which detect the presence and po-
sition of the fingers in line-of-sight of the sensors. Hover-

flow [23] uses an array of IR sensors placed along the edges of
the phone to detect hand gestures. [35] uses the built-in cam-
era of a phone to detect in-air gestures and tracking of hand
parts in the camera’s view. [41] attaches an omni-directional
mirror to the phone’s camera to increase its field of view. In
contrast to these systems, fingerIO leverage the microphones
and speakers that are common on most mobile devices to de-
sign an active sonar system that can track finger motion in the
vicinity of the device. Further, fingerIO uses acoustic signals
and hence can operate even when the finger is occluded.

Finally, PocketTouch [34] detects finger-strokes through fab-
ric using a custom capacitive sensing hardware. In contrast,
fingerIO can track subtle finger motion through pockets with
existing smartphones, without the need to touch the device.

Active Acoustic Localization. Device localization systems
such as Cricket [29], Doplink [6], Spartacus [37], and Shake
and Walk [17] localize and determine the direction of a de-
vice movement using acoustic transmissions. AAmouse [42]
uses Doppler shifts to track the phone position using an-
chor devices in the room. Whiteboard technologies such as
Mimio [4] use an active stylus with ultrasound and infrared
and localize using an anchor device placed at the corner of the
board. In contrast, fingerIO is a device-free localization so-
lution that tracks an uninstrumented finger using existing de-
vices; this is achieved using the properties of OFDM. While
OFDM has been used in wireless communication and device
localization systems [19, 20] due to its resilience to multipath,
we are unaware of prior work that uses it for finger tracking.

SoundWave [15] leverage Doppler shifts from acoustic trans-
missions to recognize gestures such as moving the hand
towards or away from the device. Airlink [11] and Sur-
facelink [13] use Doppler shifts and surface-mounted piezo-
electric sensors respectively to detect hand waving gestures
from one device towards the other. These design focus on pre-
defined set of hand and arm gestures and are not designed for
finger tracking. Finally, ApneaApp [27] tracks the periodic
breathing movements in a sleep environment using FMCW
reflections of the inaudible transmissions from the phone.

Chirp microsystems [3] designs on-chip ultrasonic rangefind-
ers operating at 217 kHz with a bandwidth of 12 kHz using
an array of seven transducers to perform angle-of-arrival tech-
niques and get an angular resolution of 15 degrees [31]. The
key motivation was to reduce the power consumption of cam-
eras and instead use an ultrasonic design. Our approach dif-
fers from this in three key ways. First, we use existing devices
with one to two microphones and do not need any custom
chips. Second, we leverage OFDM and show that using just
2 kHz of bandwidth we can achieve centimeter level localiza-
tion. Third, while the performance of these on-chip designs
has not been evaluated for finger tracking, we apply our de-
sign in various finger tracking applications and show that it
can enable a number of interesting interaction scenarios.

Passive Acoustic Localization. [38, 24] use the audible
sounds made when clicking on a keyboard to snoop on the
keys typed by the users. [33] localizes taps on solid aluminum
and glass surfaces by using a piezoelectric shock sensor to

sense the sound propagation through the material. Toffee [39]
uses vibro-acoustic piezo sensors to find the direction of the
audible sound and vibration waves that propagate as the user
taps on a table. It achieves a mean angular resolution of 4.3
and 18.3 degrees using four sensors at the corners of a laptop
and smartphone respectively. More recently, [8] uses contact
microphones attached to the surface to distinguish between
various impact events such as touch, knock and swipe. In
contrast to this work, fingerIO uses an active sonar approach
that transmits inaudible signals and achieves centimeter level
finger tracking both on surfaces as well as in the air.

RF-based Gesture Systems. WiSee [32], AllSee [18] and
SideSwipe [43] uses Wi-Fi, TV and cellular transmissions re-
spectively to recognize coarse hand, arm and leg gestures.
WiTrack [5] uses custom radar transmissions to detect point-
ing gestures. WiDraw [36] tracks the arm motion in the
vicinity of a Wi-Fi device using transmissions from 20-30
other Wi-Fi devices in the network. Google has reported that
project Soli is exploring the use of 60 GHz radar to recognize
subtle finger gestures [14]. None of these approaches have
been demonstrated on smartphones and require custom sen-
sor hardware. We also believe that the active sonar approach
introduced in this paper is more attractive for two reasons: RF
signals propagate at the speed of light and so to get a centime-
ter resolution requires processing GigaHertz of bandwidth. In
contrast, the speed of sound is significant lower and hence
with 48 kHz, fingerIO could achieve centimeter level accu-
racies. Further, our approach uses microphones and speak-
ers that are already available on existing mobile devices and
hence the bar for adoption is much lower.

FingerIO
FingerIO achieves centimeter level finger tracking by trans-
forming the mobile device into an active sonar system. At a
high level, we transmit an inaudible sound signal in the fre-
quency range of 18-20 KHz from the device’s speaker. These
signal are reflected by all the objects in the environment and
can be recorded by the microphone as echoes. When the user
moves her finger, the time of arrival for the corresponding
echo changes. By comparing the echo profile from one in-
stance to the other, we can extract the echoes that correspond
to the moving finger. As described earlier, since these echoes
are noisy, the challenge is in accurately identifying the begin-
ning of the echo so that we can achieve finger tracking with
high accuracies. FingerIO leverages a modulation technique
called OFDM to achieve this goal.

In the rest of this section, we first explain the properties of
OFDM. Next, we describe how we generate OFDM transmis-
sions using speakers in the 18-20 kHz range. We then show
how fingerIO uses OFDM to measure the distance of a mov-
ing finger from a single microphone. Finally, we discuss how
to use two microphones to achieve 2D tracking.

Understanding OFDM
Orthogonal frequency division multiplexing (OFDM) is a
common modulation technique used in modern wireless com-
munication systems including Wi-Fi and LTE. In this section,
we focus on the properties of OFDM that are relevant to our

OFDM

SYMBOL
CS

OFDM

SYMBOL
CS

284 samples

5.92 ms

OFDM

SYMBOL
CS

OFDM

SYMBOL
CS

t

Figure 4: FingerIO transmissions at the speaker. The 84 samples
for the OFDM symbol and the cyclic suffix are followed by 200 sam-
ples of silence. This silence duration is sufficient to receive echoes
from all objects within 1 m from the device. Given a 48 kHz sam-
ple rate the above transmissions, the above transmissions achieves a
frame rate of 169 Hz.

design. See [7, 16, 30] for more extensive discussion about
OFDM. OFDM splits up the bandwidth into orthogonal sub-
carriers and transmits data independently on each of the sub-
carriers. For example, in Wi-Fi, the 20 MHz bandwidth is di-
vided into 64 subcarriers each with a width of 312.5 kHz. The
data is then transmitted on each of these 64-subcarriers. To
achieve this, OFDM uses Fourier transforms. Say we divide
the bandwidth intoN subcarriers and transmit the data bit Xn

on the nth subcarrier. OFDM generates the time-domain sam-
ples that are sent at the transmitter by performing an inverse
Fast Fourier transform (IFFT) over these data bits, i.e.,

xk =

N−1∑
n=0

Xne
i2πkn/N k = 0 to N − 1

This createsN time-domain samples, xk, that are then sent by
the transmitter. An ideal receiver would receive these time-
domain samples and performs a Fast Fourier transform (FFT)
to recover the data bits, i.e.,

Xn =

N−1∑
k=0

xke
−i2πkn/N n = 0 to N − 1

In practice since the receiver is not perfectly synchronized, it
does not know the exact beginning of this symbol. To help ad-
dress this problem, the transmitter sends a cyclic suffix which
is a repetition of the first S time-domain samples as shown in
Fig. 2. To see why this helps, say the receiver has an error of
E samples in estimating the beginning of the OFDM symbol.
Given this error, it would perform an FFT over the N time-
domain samples that are offset by E, as shown in the figure.
Since we use a cyclic suffix, these new time-domain samples
can be written as x(k+E)modN . Now when the receiver per-
forms an FFT over these samples, we get,

XE
n =

N−1∑
k=0

x(k+E)modNe
−i2πkn/N

= Xne
i2πEn/N

We see that the new frequency-domain data is the same as the
original data but with an additional phase that depends on the
error in estimating the beginning of the symbol (E). It also
linearly increases with the subcarrier number n as shown in
the Fig. 3. For example, an error of one sample results in the
phase linearly increasing from 0 to 2π across the subcarriers.
More generally, an error of E samples, results in the phase
increasing from 0 to 2Eπ across the N OFDM subcarriers.

To summarize, if the receiver knows the data bits, Xn, that
are been transmitted, it can compute the error E in estimat-
ing the beginning of the OFDM symbol. Further, the above
analysis holds even when there is a fractional time offset be-
tween the transmitter and the receiver, allowing us to estimate
it. We leverage this OFDM property in our design to achieve
centimeter-level finger tracking accuracies.

FingerIO transmissions at the speaker
FingerIO generates OFDM signals in the inaudible frequency
range of 18-20 KHz which is then played by the device’s
speaker. There are however two key subtleties with creat-
ing an acoustic OFDM system: i) acoustic devices do not use
oscillators to generate and transmit a carrier frequency. This
is because the audio sampling rate of 48 kHz is sufficient to
cover the entire frequency range of typical speaker and micro-
phones. ii) The input to the speaker is a 16-bit real number
and cannot transmit the complex numbers generated by the
IFFT. So fingerIO generates a carrier-less real value OFDM
symbol. To do this, given a sampling rate of 48 kHz, we first
split the operational frequency of 0–24 kHz into 64 subcarri-
ers each spanning a width of 375 Hz. Since we want to oper-
ate only in the inaudible frequencies of 18–20 kHz, we set the
subcarriers outside this range to zero. For the rest, we set each
subcarrier to either +1 or -1. Then, we compute an IFFT that
gives us a complex time-domain signal with 64 samples, xk.
We convert these complex numbers into real values by com-
puting the real value of these complex numbers. Specifically,
we use the following transformation,

realk = |xk|cos(∠xk)

Here |.| and ∠ denote the amplitude and phase of the complex
number. These 64 real values form the real-valued OFDM
symbol that is transmitted by the speaker. We append the first
20 of these values to create a cyclic suffix that together is
played repeatedly from the speaker, as shown in Fig. 4.

At a sampling rate of 48 kHz, these 84 samples (including
the cyclic suffix) form a pulse that occupies 1.75 ms. We
separate these pulses by 200 samples which in turn translates
to a separation of 4.17 ms. We pick this duration to ensure
that all the echoes from a distance of 1 m can arrive before
the beginning of the next pulse. Given these parameters, we
transmit an OFDM pulse once every 5.92 ms and achieve a
frame rate of 169 Hz.

Measuring the distance from the microphone
The OFDM signal played by the speaker gets reflected off
different objects including the hand and is then recorded by
the microphone. To find the distance from the finger in the
presence of all these reflections, we perform three key steps:
(1) generate the echo profile of all the reflections at the mi-
crophone, (2) identify the echo corresponding to the moving
finger, (3) process the OFDM symbol that is echoed by the
finger to fine-tune its distance from the microphone.

Step 1. Generating the echo profile. While processing the
recording at the microphone, we first identify the individual
echoes that occur due to all objects within a distance. To do
that, we perform correlation of the received signal with the

Figure 5: Echo profile at two time instances. Each peak indi-
cates the arrival of an echo and the X-axis shows the corresponding
distance computed based on the speed of sound. When the finger
moves from 34 cm to 35 cm with respect to the device’s microphone
we can see a shift in the peak due to the change in the arrival time of
the echo.

original OFDM symbol. The output of this correlation pro-
cess is an echo profile as shown in Fig. 5. Each of the peaks
in this profile corresponds to the beginning of an echo from
an object around the mobile device. This can be translated to
a distance at which the reflecting object is present from the
microphone and speaker. While OFDM has good autocorre-
lation properties, given noise, this step gives us the beginning
of each echo with an error of 2–3 samples. This translates to
an error in distance estimate of 1.4–2.1 cm.

Step 2. Identifying the echo corresponding to the finger.
When the finger moves, the time of arrival for the echo cor-
responding to the finger changes. Fig. 5 shows the echo from
the finger as it moves from a distance of 34 cm to 35 cm from
the microphone. We can see from the figure that the position
of the echo changes as the finger moves around the device.
We identify this change by performing a subtraction between
the echo profiles of consecutive OFDM pulses. To recognize
if a change has occurred at a specific distance value, we use a
threshold based approach. Specifically, if the changes across
all the distance values in the echo profile are smaller than a
threshold, we conclude that there has been no finger motion
in the vicinity of the device. Changes that are greater than the
threshold value are designated as those corresponding to mo-
tion. We set this threshold value to 15% of the amplitude of
the speaker signal as heard directly by the speaker. We pick
this relative threshold value to ensure that amplitude fluctu-
ations that occur because of non-linearities in microphones
and speakers do not lead to false positives.

The width of a human adult finger is around a centimeter.
This is close to the distance resolution (0.7 cm) provided by
an active sonar system where the sampling rate if 48 kHz.
Hence, when the finger moves, one would expect a change to
occur at only one-two samples corresponding to the old and
new locations of the finger. However, close examination of
Fig. 5 reveals that the changes occur not only at the finger’s
location but also near its vicinity. This is because a finger mo-
tion also causes a hand movement that traces a similar path
as the finger. For our design, however, this means that we
need to correctly identifying the changes caused by the fin-
ger motion in the presence of changes corresponding to other
small hand movements. We achieve this by picking the clos-

H
1

H
2

V
1

V
1

D
1

D
2

H
1

V
1

D
1

Figure 6: Design choices for the smart watch. Placing micro-
phones on opposite sides of a smart watch either limit the user from
drawing on the arm or on part of the surface below. Placing mi-
crophones along the diagonal could be a reasonable compromise as
would allow users to interact both on the arm and a surface.

est sample, where the change crosses the threshold value. The
reason why this works is that the finger is always closer to
the microphone compared to the rest of the hand. Further, as
the user draws using their finger, the maximum displacement
(and hence changes) occurs at the tip of the finger.

Step 3. Fine-tuning the distance from the microphone. Fi-
nally, once we identified the echo corresponding to the finger,
we use the properties of OFDM to accurately estimate the be-
ginning of this echo. Specifically as described earlier, when
we perform an FFT over the echo of an OFDM pulse, any er-
ror in estimating the beginning of the echo translates to a lin-
ear phase shift at the output of the FFT. Thus, at a high level,
we first compute a 64-point FFT starting at the approximate
location of the echo as estimated by the correlation in step 1.
We then use the linear phase shift at the output of the FFT to
accurately estimate the beginning of the echo, which in turn
gives us the distance from the microphone. We note that since
the microphones receive a real OFDM signal, we need to first
transform it into a complex signal before performing the FFT.
To do this, we use a technique called negative sideband sup-
pression [26] where we obtain a complex representation by
setting the negative frequency components of the signal to
zero. This overall process allows us to fine-tune the distance
estimate of the finger from the microphone.

2D finger tracking using two microphones
To perform 2D tracking, we compute the distances of the fin-
ger with respect to two microphones and combine them to
measure the 2D location. Note that the distance we are mea-
suring is actually the sum of the distance traveled by the sig-
nal from the speaker to the finger and the distance traveled
by the echo from the finger to the microphone. This means
that given the distance measurements computing on a single
microphone, the finger can lie on any point in a 2D space
where the sum of its distance from the microphone and the
speaker is equal to the measured distance. Said differently,
the finger can lie on an ellipse where the speaker and the mi-
crophone locations are the two focii of the ellipse and the
distance measured is twice the length of the major axis of
the ellipse. Given the measurements from two microphones,

Speaker

Microphones

40 mm

Figure 7: Our Smart watch form-factor prototype. The pro-
totype consists of two microphones (embedded in the case) and a
speaker mounted in a 3D printed case (shown transparent in figure)
with a Velcro strap.

fingerIO can find the intersection of the corresponding two el-
lipses to narrow down the possibilities for the finger location.

While in general, two ellipses can intersect in up to four
points, in our case there can only be two intersection points.
This is because, two ellipses that share a focal point (the
speaker) can intersect in a maximum of two points [25].
These two points lie on either side of the line joining the
two microphones. This means that the system is symmetri-
cal along the line joining the two microphones and the 2-D
location can lie on either side of the phone. The implication
for our design is that we cannot distinguish between when the
user is moving her finger on either side of the line connect-
ing the two microphones. For the smartphone use case, this
means that the user could draw on only one side of the phone
at any instance. It is acceptable since the user is likely to
interact in the region between the phone and themself. This
however raises interesting design choices for the smartwatch.
If we place the two microphone in positions H1 and H2 as
shown in Fig. 6 then the user can easily interact on either side
of the arm but cannot draw along her arm. Placing them in
the vertical positions V1 and V1 would allow us to interact on
the arm but on a truncated region between the hand and the
user. A reasonable compromise could be to place them along
the diagonal positions D1 and D2. Another solution is to use
three microphones and eliminate this symmetry. The imple-
mentation in this paper uses the horizontal locations, H1 and
H2 for the microphone positions.

Using two microphones, our design can track the motion on
any 2D plane. Motion along a different plane will be pro-
jected to the plane along which the microphones lie. In the
case of a smart watch, the user places the wrist on the interac-
tion surface (e.g., table). Note that the width of a user’s arm is
around a couple of centimeters and the plane along which the
smart watch lies can be approximated to be parallel to that
the interaction surface. Thus, the projections of the finger-
motion along the interaction surface are similar to that of the
actual motion. Note that using more than two microphones,
e.g., two microphones near the display and an additional one
along the strap, will avoid the need for the above approxima-
tions.

IMPLEMENTATION
We implement fingerIO prototypes on two platforms.

Off-the-shelf smartphones. We developed a third party An-
droid app and tested it on a Samsung Galaxy S4 smartphone.
The phone has one speaker at the bottom and two micro-
phones one at the top right and the other at the bottom right
spaced apart by 13.5 cm. The app generates the OFDM sym-
bols and uses the AudioTrack class that is an existing Android
API to play it on the phone’s speaker. The app is set to record
simultaneously from both microphones using the stereo mode
using Android’s built-in AudioRecord class.

Smart watch form-factor device. While Apple smart watch
has effective speakers and microphones that allow them to
make calls and use Siri [2], they are currently not as pro-
grammable as smart phones and further have only a single
microphone. While 1D tracking can be achieved with a single
microphone, since we also want to demonstrate 2D tracking,
we built a simple prototype consisting of two microphones
and a speaker mounted in a 3D printed case with a Velcro
strap, as shown in Fig. 7. The electret microphones (CMA-
4544PF-W, CUI Inc) are mounted on opposite sides of the
watch case spaced apart by 40 mm. The output from the mi-
crophones are connected to a Adafruit development board [1]
containing a preamplifier (MAX4466, Maxim) which is then
connected to the NI MyDAQ for data acquisition. The same
OFDM signal used for the smartphone experiments was sup-
plied to a class D amplifier (MAX98306, Maxim) that takes
input from the phone’s 3.5 mm headphone jack and drives
the speaker. The system was powered using the Keysight
E3631A DC power supply.

EVALUATION
We recruited ten participants (5 female and 5 male) between
the ages of 20–25; none of them were provided any mone-
tary benefits. The participants were asked to draw any pattern
they wanted using their finger and we evaluate fingerIO’s ac-
curacy in various scenarios for both the smartphone and smart
watch implementations. Since the participants could draw
any pattern, we use a second touch-based mobile device that
collects the ground truth data. Specifically, we place an An-
droid smartphone at different locations around our fingerIO-
enabled smartphone/smart watch and ask the participants to
draw freely using their finger on this device. We use the An-
droid OnTouch Event Listener to obtain the pixel locations
that the participants touch. We also extended the draw API
to simultaneously display the path traversed by the user’s fin-
ger. The OnTouch API only provides the locations as pixels
in the screen space. We convert this into a screen location (in
cm) by scaling the pixel value with the number of pixels per
centimeter. We then offset this screen location with the dis-
tance between the fingerIO-enabled smart watch/smartphone
and the smartphone used for ground truth data collection.

In this rest of this section, we first present 2D finger track-
ing accuracy for both the smartphone and the smart watch
prototype implementations in line-of-sight and occluded sce-
narios. We then evaluate fingerIO’s interaction surface (i.e.,
2D-range) for both the prototypes. Finally, we address unin-
tentional motion tracking with fingerIO.

FingerIO’s Finger Tracking Accuracy

Figure 8: Traces computed using fingerIO for smartphone setup. The figures show both the ground truth trace (black lines) as well as
fingerIO’s estimated trace (green lines) for four of our participants.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F

2D finger tracking error (in cm)

Figure 9: Finger tracking accuracies with smartphone. Cumu-
lative distribution functions (CDFs) for the 2D tracking errors for
each of the ten participants. The median tracking error across all the
participants is 8 mm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

2D finger tracking error (in cm)

Figure 10: Finger tracking accuracies with smart watch. CDFs
for the 2D tracking errors for each of the ten participants. The mean
tracking error was 1.2 cm.

We run experiments in one of the offices in our organization.
We place a smartphone running fingerIO on a table, length-
wise in front of the participants. A separate smartphone that
is used to collect the ground truth was placed 25 cm from the
fingerIO-enabled smartphone. The participants were given
a demonstration of the system and were allowed to practice
with it. Once the participants became familiar with the setup,
they were instructed to draw a pattern of their choice that con-
sisted a single continuous finger movement. The participants
were asked to repeat their patterns thrice. All the participants
placed their palm on the table while using their finger to draw.
We process all this data and compute the average tracking er-
ror from the ground truth data. To compute the finger track-
ing error, we measure the average least perpendicular distance

of each point along the trace computed by fingerIO with the
ground truth.

Fig. 9 shows the CDF of the tracking error for all ten par-
ticipants. The figure shows that the tracking error is simi-
lar across all participants. Further, the median error across
all participants was 0.8 cm. This demonstrates that fingerIO
achieves its goal of centimeter-level finger tracking in prac-
tice. Fig. 8 shows four of the most complex patterns picked by
the participants. The black line in these traces is the ground
truth trace of the participants and the green traces are the ones
computed by fingerIO, subsampled by a factor of five. The
figures show that the two traces are close to each other and
that fingerIOs algorithm can also deal with intricate motion
such as those shown in the traces.

We repeat the above set of experiments with our smart watch
prototype. In particular, we ask the participants to wear the
smart watch on their arm and place it on a table. The par-
ticipants drew patterns on the table at a distance of around
25 cm from the smart watch. As before, we compute the fin-
ger tracking error by measured the least perpendicular dis-
tance between the traces for fingerIO and the ground truth.

Fig. 10 shows the CDF of the tracking error for the smart
watch experiments. As with the smartphone, the tracking er-
ror is similar for most participants. The median error across
all participants was around 1.2 cm. We observe that the accu-
racy with the smart watch setup is lower than with the smart-
phone scenario. This is because we see higher noise levels at
the microphones we use in our smart watch prototype, even
in the absence of any finger motion. This is likely because of
insufficient isolation between the speaker and the microphone
in our hardware setup. Better isolation, could in principle im-
prove the accuracies further.

FingerIO’s Interaction Surface
We evaluate how fingerIO extends the interaction surface
around our prototype smart watch and smartphone.

FingerIO’s interaction surface with the smart watch proto-
type. The participants were asked to wear the watch on their
hand and place the hand on the table. We divide the area
in front of the hand into 5×5 cm grids as shown in Fig. 11.
Within each grid, the participants draw a straight line with a
length of 4 cm twice. In each trial, we compute the trajec-
tory of the finger with fingerIO. We compare this with the
ground truth collected from our experiments. To compute the
finger tracking error, we measure the average least perpen-
dicular distance of each point along the trace computed by

(0,0)

Figure 11: Interaction surface for smart watch. The surface
around the hand was divided into 5×5 cm grids and the average
finger tracking accuracy was computed for each grid. fingerIO en-
ables an 0.5 × 0.25 m2 interaction surface with an average finger
tracking accuracy of 1.2 cm.

(0,30)

Phone

Figure 12: Interaction surface with smartphone. The surface
around the device was divided into 10×10 cm grids and the average
tracking accuracy was computed for each grid.

fingerIO with the ground truth. We compute the average er-
ror in each grid by averaging across trials in that grid. The
figure shows that the interaction surface with the smart watch
is a 0.5×0.25 m2 region on one side of the arm. Since the
performance is symmetric across the line joining the two mi-
crophones, the actual interaction surface is double is region.
The average error is about 1.2 cm and is uniform across the
region. We note that beyond the grids shown in the figure, the
accuracies quickly drop off with distance. As observed be-
fore, because of insufficient isolation between the speaker and
the microphone in our hardware prototype, we see increased
noise even in the absence of any motion. This contributes to
slightly higher tracking errors than a smartphone scenario.

FingerIO’s interaction space with the smartphone. In contrast
to our smartwatch prototype, the output power of the smart-
phone speaker is set to the maximum value of 15 allowed
by the Android API. This is around 10 dB greater than that
in our smart watch implementation. Further, commercial de-
vices such as smartphones have better isolation between mi-
crophones and speakers. So next we evaluate the interaction
space for fingerIO using a off-the-shelf smartphone. To mea-
sure this, we place the smartphone on a table and divide the
area around the phone into 10×10 cm grids. Since we would
like to see what the maximum interaction surface area can be

Figure 13: Smart watch occluded behind a jacket. The figure
plots the CDF for the 2D tracking errors for five participants when
the smart watch was occluded behind a jacket. The median tracking
error across all the participants is 1.35 cm compared to 1.2 cm when
the smart watch was not occluded.

with good isolation and higher transmission power, we place
the phone screen down. This ensures that the transmissions
on the speaker that is on the back of the phone can reach much
further distances and imitates a better version of the smart
watch prototype. We perform the same experiments as in the
previous scenario and measure the tracking error in each grid
locations. Fig. 12 shows the smartphone and the finger track-
ing accuracy for the grids around it. The figure shows that,
fingerIO expands the interactive surface to about a 0.5m2 re-
gion around the smartphone. The average error within this
range is less than 1 cm and is fairly uniform; beyond this
distance however this error increases to 3 cm. Further, these
accuracies are similar on all four sides of the smartphone,
demonstrating that fingerIO can perform well for different
phone orientations from the user. The increased interaction
area demonstrates that with better isolation and higher power,
we can achieve a larger interaction space and better tracking
accuracies. We believe however, a tracking range of less than
a meter is sufficient for some interaction applications when
the user is interacting with their smartphones or watches.

FingerIO in Occluded Scenarios
We evaluate two specific occlusion scenarios.

Smart watch occluded behind a jacket. We ask the partici-
pants to wear a polyester jacket that fully covers the smart
watch. We use a similar setup as before to compute the track-
ing error. The participants were first asked to wear the smart
watch and place their hand on the table as shown in fig. 13(a).
We then asked the participants to draw any pattern with their
finger. We run these experiments with five of our ten par-
ticipants where each of them was asked to repeat the pattern
they drew 3 times. Fig. 13(b) shows the CDF of the tracking
errors between fingerIO and the ground truth across all five
participants. The median error across all the participants was
1.35 cm. This is slightly greater than the error in the absence
of the occlusion. This demonstrates that fingerIO operates
even in the presence of occlusions.

Smartphone in the pocket. Next, we run experiments with
a smartphone placed inside the pocket of a pair of jeans,

Figure 14: Smartphone in a pocket. The figure shows the CDF
for the 1D tracking errors for five participants when the smart phone
was inside the pocket. The median tracking error across all the par-
ticipants is 1 cm compared to 8 mm when the smartphone was not
occluded.

with the back of the smartphone facing outward as shown in
fig. 14(a). Five of the participants were instructed to perform
a finger swipe in the air in front of the pocket. The swipe
motion consists of the thumb moving over the index finger.
We configure the fingerIO algorithm to compute the distance
moved by the finger by processing the data from a single
microphone. The participants were allowed to perform the
above swipe finger motion from any angle to the smartphone.
We ask the participants to only move their fingers at a reso-
lution of the prominent lines on their finger. This provides
us with the ground truth data. On average, the participants
moved their index finger by around 5 cm. We compute the er-
ror as the difference in the distance estimated by fingerIO and
the ground truth motion. Fig. 14(b) shows the CDF of the er-
rors in this computed distance. The plots show an average er-
ror of 1 cm across all participants. In all cases, our algorithm
correctly identifies the direction of the finger motion, i.e., ei-
ther towards or away from the phone. This demonstrates the
feasibility of through-the-pocket finger motion tracking.

Addressing Unintended Motion with FingerIO
In a system like fingerIO, we need a mechanism to inform the
device the beginning and end times of when it should track
the finger. This would prevent random motion in the vicin-
ity of the device from being confused for finger motion for
the purpose of interaction. To do this, we introduce a double
swipe as a start and stop motion. A swipe is defined as a fin-
ger motion in a straight line for a length of at least 4 cm. A
double swipe requires the user to perform a swipe motion in
two opposite directions; we detect this by looking for distance
values linearly increasing for 4 cm and then decreases for at
least 4 cm. We consider a double swipe that is performed
within a range of 5 cm from our device to be our start/stop
motion. We pick the 5 cm range to ensure that similar finger
motion that occurs at a farther distance is not confused for the
start/stop motion.

Experiments: To evaluate how well this start/stop motion
works, we ask our ten participants to perform the double
swipe motion with both our smartphone and smart watch se-
tups within 5 cm from the devices. Each user performs the

finger motion twice for both the devices. For each of these
motions, if our algorithm fails to identify it as a start/stop mo-
tion, we consider it to be a false negative. To compute false
positives, we ask our participants to draw random patterns
other than the double swipe within 10 cm from the device for
a period of 30 seconds. Each user performed it twice and then
we look for the double swipe gesture over a total duration of
10 minutes across all the participants. The start/stop motion
detected by our algorithm during this duration, are considered
to be false positives.

False negatives: Our algorithm detected the double swipe
start/stop motion 19 out of the 20 times the participants per-
formed it with the smartphone. Similarly, we detected this
motion 18 out of 20 times when it was performed with the
smart watch. The undetected motions were because during a
double swipe gesture, the participants move their whole hand
along with the finger. While our algorithm tracks only the
motion at the closest distance, i.e., the finger, for the three
start/stop motions that were missed, the participants force-
fully moved their entire arm in a different direction than the
finger. Since our current implementation can only deal with
a single motion direction, it was confused for this. This is
however less likely to be the case if we use the active sonar
approach to track multiple concurrent motions. We also note
that the current false negative rate is still acceptable and could
likely become more reliable as the users get accustomed to
our system.

False positives: With the smart watch prototype, we did not
detect any start/stop motion during the 10 min duration, i.e.,
the number of false positives during this duration was zero.
This is because our algorithm requires a strict double swipe
pattern within a small range from the device. With the smart-
phone, however we detected two start/stop motions during the
10 min duration. Further analysis of the data showed that the
two false positives came from a single participant who drew a
wiggly pattern tracing 4 cm distance in both directions. This
triggered our algorithm to classify this as a start/stop motion.
Given that the rest of the participants did not have any false
positives, we believe that the double-swipe motion is suffi-
cient in most scenarios.

Addressing Random Motion in the Surroundings
The maximum operational range of fingerIO is less than a
meter. This is a key advantage, as it remains unaffected by
motion in the surroundings. In this section, we evaluate this
property by measuring the finger tracking accuracy of a par-
ticipant while another participant creates random motion in
the surroundings. We conduct experiments with one subject
drawing a straight line of distance 4 cm. A phone running fin-
gerIO is placed around 25 cm from the finger location. While
the subject performs finger motion, another interfering sub-
ject continuously waves their hand toward the first subject.
We repeat the experiments with two different distances for
the second subject. We compute the finger tracking accuracy
for each of these distance values.

Fig. 15 plots these accuracies as a function of distance of the
interfering subject from the phone. The plot shows that when
the interfering subject is within 50 cm from the phone, the

Figure 15: Addressing Random Motion in the Surrounding.
The figure shoes the 2D tracking errors when there was a second
interrupting user in the environment. The accuracy decreases when
there is a stronger motion within 50 cm of the device. However,
the accuracies remain consistently high when the interrupting user
is beyond one meter.

finger tracking accuracies significantly suffer. This is not a
fundamental limit of our sonar-based design. Rather this is
because our current algorithm is designed only to track a sin-
gle motion. In principle, one may design algorithms to track
independent motions concurrently from multiple distance val-
ues since the echoes arrive at different times for each of these
distances. The key observation however is that for distances
greater than a meter for the interfering subject, the finger
tracking accuracies are again high. This is because, at these
distances, the reflections caused due to the motion from the
interfering subject are significantly attenuated and hence are
weaker compared to the echoes from the finger motion that is
performed at a closer distance.

LIMITATIONS AND FUTURE DIRECTIONS
We discuss the limitations of our current design as well as
opportunities to improve it.

Tracking 3-D motion and non-cursive writing. Our current
implementation uses two microphones and cannot achieve 3-
D tracking of finger motion. This is however not a fundamen-
tal limitation of our approach and can be addressed by using
a third microphone. Specifically, three microphones can be
used to triangulate the position of the finger in the 3-D space
enabling 3-D finger tracking. A similar problem occurs with
non-cursive writing, where the user could slightly lift her fin-
ger from the 2D surface to move it across different points
on the surface. Using only two microphones, this would be
tracked as a continuous motion and our algorithm will project
this motion on the 2-D drawing plane as part of the input. We
note that this is a similar issue faced by camera-based systems
where the user draws with her finger in front of a camera. One
direction worth exploring is to incorporate a third microphone
on a different plane (which can be done on the smart watch
setup) and use it to identify this 3-D motion.

Tracking multiple concurrent motions. While this paper fo-
cuses on tracking a single finger, in principle, the algorithms
presented could track concurrent changes from multiple fin-
gers as long as they occur at different distances from the mi-

crophones. This can be used to detect pitch, zoom out and
zoom in gestures that require multiple fingers moving at the
same time. It can also be used to detect and separate the fin-
ger/body motion from other people near the device. We ex-
pect the algorithms for doing so to be similar to radar based
approaches such as Google Soli. Exploring how well this
works in practice is not in the scope of this paper.

FingerIO’s power consumption. A full-charged Samsung
Galaxy S4 running fingerIO lasts around four hours. As with
other always-on mobile gesture sensing techniques, there are
a number of power-accuracy tradeoffs that could be made.
For instance, we transmit OFDM pulses once every 5.92 ms
which translated to a frame rate of 169 frames/s. Since hu-
man motion is unlikely to change at this rate, we can operate
fingerIO with a much lower frame rate. Further, as shown in
Fig. 8, subsampling by a factor of five, still gives us values
that look similar to the ground truth. Optimizing this further
and reducing the power consumption, would be a worthwhile
future direction.

Finger tracking with a moving device. The finger tracking al-
gorithms developed in this paper work under the assumption
that the phone or the smart watch is static. To address mobil-
ity of the devices, we envision using the accelerometer/gyro,
already present in the devices we imagine operating on, to
compensate for the motion in our algorithms. Intuitively this
would be similar to imitating a synthetic aperture radar sys-
tem (SAR). We leave the development of such algorithms for
future work.

CONCLUSION
We introduce a novel active sonar design for fine-grained fin-
ger tracking that does not require instrumenting the finger
with sensors and works even in the presence of occlusions
between the finger and the device. We validate our design
on a Samsung Galaxy S4 using its in-built speaker and mi-
crophone and demonstrate finger tracking around the phone.
We also built a prototype in a smart watch form factor device
using off-the-shelf hardware.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback. We also
thank Bryce Kellogg and Vamsi Talla for helpful discussions
about the hardware design. This work was funded in part by
a Google Faculty Award and the National Science Foundation
under award CNS-1420654.

REFERENCES
1. Adafruit. https://www.adafruit.com/products/1063.
2. Apple Watch - Guided Tour: Phone Calls.

https://www.youtube.com/watch?v=_Zj5KisMVv8.
3. Chirp Microsystems.

http://www.chirpmicro.com/technology.html.
4. A MimioTeach Interaction Whiteboard.

http://www.mimio.com/en-NA/Products/
MimioTeach-Interactive-Whiteboard.aspx.

5. Adib, F., Kabelac, Z., Katabi, D., and Miller, R. C. 3D
Tracking via Body Radio Reflections. NSDI 2014, 317-329.

6. Aumi, M. T. I., Gupta, S., Goel, M., Larson, E., and Patel,
S. DopLink: Using the Doppler Effect for Multi-device
Interaction. UbiComp 2013, 583-586.

https://www.adafruit.com/products/1063
https://www.youtube.com/watch?v=_Zj5KisMVv8
http://www.chirpmicro.com/technology.html
http://www.mimio.com/en-NA/Products/MimioTeach-Interactive-Whiteboard.aspx
http://www.mimio.com/en-NA/Products/MimioTeach-Interactive-Whiteboard.aspx

7. Boleskei, H. Principles of MIMO-OFDM wireless systems.
2004.

8. Braun, A., Krepp, S., and Kuijper, A. Acoustic Tracking of
Hand Activities on Surfaces. WOAR 2015, 1-5.

9. Butler, A., Izadi, S., and Hodges, S. SideSight:
Multi-”Touch” Interaction Around Small Devices.
UIST 2008, 201-204.

10. Chan, L., Liang, R.-H., Tsai, M.-C., Cheng, K.-Y., Su,
C.-H., Chen, M. Y., Cheng, W.-H., and Chen, B.-Y.
FingerPad: Private and Subtle Interaction Using Fingertips.
UIST 2013, 255-260.

11. Chen, K.-Y., Ashbrook, D., Goel, M., Lee, S.-H., and Patel,
S. AirLink: Sharing Files Between Multiple Devices Using
In-air Gestures. UbiComp 2014, 565-569.

12. Chen, K.-Y., Lyons, K., White, S., and Patel, S. uTrack: 3D
Input Using Two Magnetic Sensors. UIST 2013, 237-244.

13. Goel, M., Lee, B., Islam Aumi, M. T., Patel, S., Borriello,
G., Hibino, S., and Begole, B. SurfaceLink: Using Inertial
and Acoustic Sensing to Enable Multi-device Interaction on
a Surface. CHI 2014, 1387-1396.

14. Google. Project Soli.
https://www.youtube.com/watch?v=_Zj5KisMVv8.

15. Gupta, S., Morris, D., Patel, S., and Tan, D. SoundWave:
Using the Doppler Effect to Sense Gestures. CHI 2012,
1911-1914.

16. Heiskala, J., and Terry, J. OFDM Wireless LANs: A
Theoretical and Practical Guide. Sams publishing, 2001.

17. Huang, W., Xiong, Y., Li, X.-Y., Lin, H., Mao, X., Yang, P.,
and Liu, Y. Shake and walk: Acoustic direction finding and
fine-grained indoor localization using smartphones.
INFOCOM 2014, 370-278.

18. Kellogg, B., Talla, V., and Gollakota, S. Bringing Gesture
Recognition to All Devices. NSDI 2014, 303-316.

19. Khyam, M., Alam, M., Lambert, A., Benson, C., and
Pickering, M. High precision multiple ultrasonic transducer
positioning using a robust optimization approach.
ISSPIT 2013, 192-197.

20. Khyam, M., Alam, M., and Pickering, M. OFDM based
low-complexity time of arrival estimation in active sonar.
OCEANS 2014, 1-5.

21. Kienzle, W., and Hinckley, K. LightRing: Always-available
2D Input on Any Surface. UIST 2014, 157-160.

22. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J.,
Oikonomidis, I., and Olivier, P. Digits: Freehand 3D
Interactions Anywhere Using a Wrist-worn Gloveless
Sensor. UIST 2012, 167-176.

23. Kratz, S., and Rohs, M. HoverFlow: Expanding the Design
Space of Around-device Interaction. MobileHCI 2009, 1-8.

24. Liu, J., Wang, Y., Kar, G., Chen, Y., Yang, J., and Gruteser,
M. Snooping Keystrokes with Mm-level Audio Ranging on
a Single Phone. MobiCom 2015, 142-154.

25. MacNeish. The Intersections of Two Conic Sections with a
Common Focus. The American Mathematical Monthly 28,
6/7, 260–262.

26. Nandakumar, R., Chinatalapudi, K., Padmanaban, V., and
Venkatesan, R. Dhwani : Secure Peer-to-Peer Acoustic
NFC. Sigcomm 2013 2013.

27. Nandakumar, R., Gollakota, S., and Watson, N. Contactless
Sleep Apnea Detection on Smartphones. Mobisys 2015,
45-57.

28. Ogata, M., Sugiura, Y., Osawa, H., and Imai, M. iRing:
Intelligent Ring Using Infrared Reflection. UIST 2012,
131-136.

29. Priyantha, N. B., Chakraborty, A., and Balakrishnan, H.
The Cricket Location-support System. Mobicom 2000,
32-43.

30. Proakis, J., and Salehi, M. Digital Communications.
McGraw-hill, 2007.

31. Przybyla, R., Tang, H.-Y., Guedes, A., Shelton, S., Horsley,
D., and Boser, B. 3D Ultrasonic Rangefinder on a Chip.
IEEE Journal of Solid-State Circuits 2015, 320-334.

32. Pu, Q., Gupta, S., Gollakota, S., and Patel, S. Whole-home
Gesture Recognition Using Wireless Signals.
Mobicom 2013, 27-38.

33. Reju, V., Khong, A., and Sulaiman, A. Localization of Taps
on Solid Surfaces for Human-Computer Touch Interfaces.
IEEE Trans. on Multimedia 2013, 1365-1376.

34. Saponas, T. S., Harrison, C., and Benko, H. PocketTouch:
Through-fabric Capacitive Touch Input. UIST 2011,
303-308.

35. Song, J., Sörös, G., Pece, F., Fanello, S. R., Izadi, S.,
Keskin, C., and Hilliges, O. In-air Gestures Around
Unmodified Mobile Devices. UIST 2014, 319-329.

36. Sun, L., Sen, S., Koutsonikolas, D., and Kim, K.-H.
WiDraw: Enabling Hands-free Drawing in the Air on
Commodity WiFi Devices. Mobicom 2015, 77-89.

37. Sun, Z., Purohit, A., Bose, R., and Zhang, P. Spartacus:
Spatially-aware Interaction for Mobile Devices Through
Energy-efficient Audio Sensing. MobiSys 2013, 263-276.

38. Wang, J., Zhao, K., Zhang, X., and Peng, C. Ubiquitous
Keyboard for Small Mobile Devices: Harnessing Multipath
Fading for Fine-grained Keystroke Localization.
MobiSys 2014, 14-27.

39. Xiao, R., Lew, G., Marsanico, J., Hariharan, D., Hudson, S.,
and Harrison, C. Toffee: Enabling Ad Hoc, Around-device
Interaction with Acoustic Time-of-arrival Correlation.
MobileHCI 2014, 67-76.

40. Yang, X.-D., Grossman, T., Wigdor, D., and Fitzmaurice,
G. Magic Finger: Always-available Input Through Finger
Instrumentation. UIST 2012, 147-156.

41. Yang, X.-D., Hasan, K., Bruce, N., and Irani, P.
Surround-see: Enabling Peripheral Vision on Smartphones
During Active Use. UIST 2013, 291-300.

42. Yun, S., Chen, Y.-C., and Qiu, L. Turning a Mobile Device
into a Mouse in the Air. Mobisys 2015, 15-29.

43. Zhao, C., Chen, K.-Y., Aumi, M. T. I., Patel, S., and
Reynolds, M. S. SideSwipe: Detecting In-air Gestures
Around Mobile Devices Using Actual GSM Signal.
UIST 2014, 527-534.

https://www.youtube.com/watch?v=_Zj5KisMVv8

	Introduction
	Related Work
	FingerIO
	Understanding OFDM
	FingerIO transmissions at the speaker
	Measuring the distance from the microphone
	2D finger tracking using two microphones

	Implementation
	Evaluation
	FingerIO's Finger Tracking Accuracy
	FingerIO's Interaction Surface
	FingerIO in Occluded Scenarios
	Addressing Unintended Motion with FingerIO
	Addressing Random Motion in the Surroundings

	Limitations and Future Directions
	Conclusion
	Acknowledgements
	REFERENCES

