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Abstract

We introduce a new framework of supervised ma-
chine learning called CorrActive Learning, short
for Corrective Active Learning. Similar to ac-
tive learning, this setting involves learning through
human interaction. However, unlike active learn-
ing which aims to acquire labels for unlabeled ex-
amples, corrActive learning addresses the problem
where the set of training data provided to the su-
pervised learner is noisy with respect to its labels.
In this scenario, the objective is to accomplish the
following two related goals simultaneously, using
minimal assistance from the user : (a) clean up the
noisy labeled data and (b) improve the performance
of the supervised learner.

As a solution, we present a simple algorithm that
learns initially from the noisy labeled data, and pro-
ceeds to correct the labeling errors in the data itera-
tively by presenting to the user only those examples
that are most likely to be mislabeled, and simulta-
neously learning from the corrected examples.

Our preliminary experiments involving a human
suggest that the new corrActive learner signifi-
cantly improves the performance of a supervised
classifier learned on noisy data. In addition, our
synthetic experiments show that the corrActive
learner is able to learn much faster than a learner
that chooses examples using random sampling,
when the labeling error rate is low to moderate (<
25%). At all error rates, the corrActive learner is
able to identify the mislabeled examples much bet-
ter than the random sampler.

1 Introduction

Supervised learning is one of the most successful machine
learning approaches used widely in problems such as infor-
mation extraction, pattern classification and data mining. In
this scenario, the user provides the system with a training set
of several examples X = {x1, -+ , 2, }, where each x; is ex-
plicitly labeled with its true-category y; € ). Using these
as the input, the system then learns a function f : X — Y
that maps any new example ¢ X, drawn from the same
distribution as the training set X’ to its correct label y.

A supervised learner depends on good quality labeled data
to learn the classification function. However, employing do-
main experts to annotate data with labels is in general not
only time consuming but also financially expensive, besides
being potentially non-scalable if a large number of annotated
examples are needed.

In the recent past, researchers are moving towards procur-
ing annotations from a number of non-experts as a cheaper
and scalable method for labeled data acquisition. Broadly,
there are two different ways to obtain non-expert annotation:
(a) by framing annotation tasks as fun online games, and en-
ticing users to annotate for free [von Ahn et al., 2006] and (b)
by posting the task online and seeking non-expert annotations
using a pay-per-example setting as pioneered by the Amazon
Mechanical Turk system'.

Both methods help reduce costs significantly, but the
downside is that the acquired label data is typically noisy.
This may result in a degradation of the supervised learner per-
formance compared to one trained on expert-annotated data.
Despite this fact, we believe noisy label acquisition is here
to stay, due to its attractive cost benefits. Hence, it is very
important to solve the problem of classifier degradation in a
noisy training scenario. As a solution, we propose a new cor-
rActive learning setting that corrects the labeling noise and
thereby improves classifier performance using minimal user
assistance.

The rest of the paper is organized as follows. In section 2,
we present the past work done on modeling noisy data and
also work done in the related area of active learning. Section
3 describes the simple model we used in this work. We de-
scribe both the experiments performed with humans as well
as synthetic experiments in section 4. We wrap up the discus-
sion in section 6 with a few pointers towards future work.

2 Comparison with Past Work

In this section, we first present past research that addresses
the problem of noisy data. Then we present past work done
in the field of active learning, and compare and contrast that
work from ours.

!See www.mturk.com.



2.1 Learning from Noisy Data

The problem of learning from noisy data is not new. Re-
searchers addressed this problem even in the early days of
Machine Learning when the focus was on learning symbolic
rules for classification. For example, [Schlimmer and Jr.,
1986] described a program called STAGGER that incremen-
tally creates new concepts, and adds weights to thse concepts
given noisy instances. [Angluin and Laird, 1988] presented
a polynomial time algorithm that identifies concepts in the
form of k-CNF formulas when the labeling error rate is less
than half.

Another noisy data setting that reseachers addressed in the
past is one where multiple non-expert annotations per exam-
ple are available. For instance, [Dawid and Skene, 1979] in-
troduce an EM algorithm to simultaneously estimate anno-
tator biases and latent label classes. However, [Albert and
Dodd, 2004] review several related models and argue that
they have various shortcomings and stress on the importance
of having a gold standard labeled data. In response to this
observation, [Snow et al., 2008] used a statistical classifier to
predict the true label for each example, given multiple annota-
tions. This approach assumes the availability of a small pool
of gold-standard expert-annotated data, on which the classi-
fier trains.

In contrast, our work addresses the setting where there are
not necessarily multiple annotators per example, and there is
no prior gold-standard data. This is indeed a very likely sce-
nario in the modern Mechanical Turk era. Clearly, previous
approaches fail in this situation.

In our approach, we first learn a classifier from the noisy
training data, and then iteratively present only potentially
mislabeled examples to the user while also learning from the
user’s corrections. In this setting, we believe that the user
does not even need to be a domain expert in most cases. Since
our framework forces the user’s attention on only potentially
mislabeled examples, the user is less likely to make errors
due to oversight, hence a non-expert would also be able to
do a reasonable job. Even if a domain expert needs to be
employed in this setting, costs can still be kept at a bare min-
imum by an efficient algorithm that accurately identifies the
mislabeled examples.

We will also discuss past work on active learning in the
next subsection and contrast how our proposed approach dif-
fers from standard active learning.

2.2 Active Learning

Active learning for classification was introduced by [Lewis
and Gale, 1994]. In this setting, the learner has access to a set
of unlabeled examples in addition to the labeled training data.
The learner initially learns the classification function from the
labeled data and then iteratively requests label from the user
for an example sampled from the unlabeled pool. The goal of
active learning research is to sample these unlabeled exam-
ples in such a way that minimizes the number of requests and
maximizes the classifier performance. A representative pa-
per in this line of research is that of [Tong and Koller, 2002],
which presents both theoretical and experimental analysis of
active learning using SVMs. The work in active learning that
comes closest to ours is that of [Balcan et al., 2006], which
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. Input: Training Data X with noisy labels ), n, number
of examples to be presented to the user per iteration.

2. Train a base-classifier on X.

3. Set of examples presented to the user U = {}.

4. Compute M, an ordered set of potentially mislabeled
examples with confidence scores such that M (U =
-

5. while M # {} and U # X:

(a) present M,,, the top n examples from M to the
user for label correction.

o U=UJM,
(c) if labels are corrected:

i. update the labels ).
ii. retrain the classifier.
(d) Recompute M.

6. Output: Training data with updated labels ) and new
classifier trained on the updated labels.

Table 1: CorrActive Learning Algorithm.

addresses the issue of label noise in an active learning frame-
work.

Both active learning and the new corrActive learning
frameworks are based on interactive feedback from the user.
However, they are complementary in nature: while the former
focuses on acquiring new labeled data from the user, the lat-
ter focuses on correcting the existing noisy labeled data with
user’s assistance.

3 CorrActive Learning Algorithm

The corrActive learning setting is presented in algorithmic
form in Table 1. The algorithm iteratively presents poten-
tially mislabeled examples to the user and relearns the classi-
fier based on the updated labels.

The most important aspect of the corrActive learning al-
gorithm is step (4) in the table, which involves estimating
mislabeled examples. In this work, we use the cost of mis-
classification as an estimate of mislabeling score. For a bi-
nary classification problem, the misclassification cost for an
example x with label y is defined as 1 — P(y|z). For the con-
ditional probability P(y|x), we use the estimate given by the
logistic regression model.” To limit the number of examples
in the set M, we consider only the misclassified examples
(as seen by the current classifier on the current label set) as
candidates for mislabeled examples.

The intuition behind using this metric is the following:
if the classifier learns a reasonably good decision boundary,
then it may be safe to assume that it considers the mislabeled
examples as outliers and misclassifies them. This assumption
may hold well when the labeling noise is small. However,
there is a possibility of the classifier overfitting the noisy data,

The mislabeling score, presented here is based on a probabilistic
model, but it can be easily defined for a non-probabilistic model such
as an SVM as well



particularly in high noise situations. In such cases, the clas-
sifier may not be able to detect mislabeled examples accu-
rately. Indeed, our experimental results discussed in section
5 demonstrate this to be the case.

4 Experiments and Results
4.1 Data

We perform all our experiments on the binary classification
task of tagging legal docket entries as positives or negatives
for Claim Construction Orders (CCO). To elaborate, a legal
docket is a list of brief notes usually written by the court clerk,
stating what action was taken on a given day regarding a par-
ticular case. Each entry in the docket is usually a short, natu-
ral language text snippet. Claim Construction Order is an im-
portant action taken by the court in patent litigation lawsuits
where the judge issues an order that interprets the claims of
litigated patent(s). This is considered an important milestone
in a patent lawsuit that potentially tilts the balance of the case,
if the court’s interpretation of patent claims is in favor of one
of the litigating parties.

We collected a total of 7,042 docket entries across thou-
sands of cases all over the U.S. federal circuit courts that are
related to claim construction orders. All of them are hand-
tagged positive or negative by non-experts, so it is expected
that there are several mislabeled examples. Out of the 7,042
docket-entries, 1,207 were labeled as positive.

We present a few positive and negative examples for CCOs
in Table 2. It is clear from the table that it is not straight for-
ward to distinguish true CCOs from related events. There are
several actions surrounding claim construction orders such as
proposals, orders for reconsideration, services, etc. that can
confuse a classifier, as well as a distracted annotator.

In this work, we used a standard logistic regression with
Gaussian prior as the classifier. For preprocessing, we did
case-folding and removed stopwords, but did not do any
stemming. As features, we used unigrams, bigrams and
biterms®. We did not do any automatic feature selection, but
we discarded all features that occurred in less than 5 exam-
ples.

4.2 Real-life Experiments

In our first experiment, we ran the corrActive learner system
using a legal domain expert as our human supervisor. As de-
scribed in section 3, the system first trained on the initial set
of labels. Next in each user interaction, it presented four most
misclassified examples to the human for potential label cor-
rection. If the label(s) of any of the examples has been cor-
rected by the user, the system retrained itself and the cycle
repeats until either there are no more documents to be pre-
sented, or the classifier finds no more misclassified examples.

In all, the system ran for about 40 iterations and presented
about 160 documents to the user. The user corrected the la-
bels of about 100 of those examples. Figure 1 plots the 10-

3We call any unordered-pair of words that occur in the same doc-
ument, a biterm. We can afford to use biterms without exploding the
feature space because our documents are short snippets of text.
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Figure 1: Cross-validation F1 performance of the corrActive
learner.

fold cross-validation F1-performance* of the classifier on our
data as a function of number of iterations. It is clear from
the plot that the performance steadily improves as the user
corrects more and more labels.

We note that the results are only preliminary, since they are
performed by just one user, and only in one sitting. We need
to perform more extensive and repeated experiments to arrive
at strong conclusions. Nevertheless, we believe these results
suggest the utility of the corrActive learner system.

4.3 Synthetic experiments

The experiments above were done on a dataset where the ini-
tial performance of the classifier was already very high (about
85%). Also, the number of labeling errors corrected by the
user was very small (about 1.5% of the total data). It was
not clear if the performance of the corrActive learner would
receive a similar boost if there were more errors in the data.

To analyze the performance of the system in the presence
of higher labeling errors and lower initial classifier perfor-
mance, we performed synthetic experiments. We assume that
the labeled data corrected after the real active label correction
system is perfect’.

We then corrupt the labels of the data randomly with in-
creasing levels of noise. Since we know the true labels, we
were able to simulate the active label correction system by re-
placing the human with an autmoatic oracle that has the true
labels.

For the experiments reported below, we split the data ran-
domly in a 70-30 ratio into training and test sets respectively.
As abaseline, we used a setting where the learner samples ex-
amples randomly for label correction. This setting, helps us

4F1 is the harmonic mean of precision and recall, and is a stan-
dard evaluation measure in text classification. Please see [Lewis et
al., 2004] for more information.

SNote that this is not necessarily true — a perfect classification
does not necessarily mean perfect labeling. Nevertheless, it is a good
approximation in this case.



Positive Examples

. Order Construing Claims by Judge M. J. Lorenz: The disputed terms are interepreted as set forth in this order. (dkt clerk) (Entered:

12/02/2005)

. ORDER: the contested patent claim language in the 903 and *008 patents shall be construed consistently with the Memorandum

Opinion (D.I. 180) (signed by Judge Mary P. Thynge ) copies to: cnsl. (ntl) (Entered: 08/20/2002)

. MEMORANDUM AND ORDER RE: Patent Claim Construction. Signed by Judge Marvin J. Garbis on 8/16/05. (mcb, Deputy Clerk)

(Entered: 08/16/2005)

. The interpretation of Claim 1 of US Patent #5,282,613 is entered in accordance with dfts’ markman claim construction order. See

written Order. (cc: all counsel) (KM, ilcd) (Entered: 04/03/2003)

. The court accepts the magistrate judge’s recommendation that independent claim 11 is invalid pursuant to 35 U.S.C. 112, and declares

claim 11 invalid. Finally, the court rejects the magistrate judge’s use of the words “transmission data” on page four of the First Report as a
typographical error, and replaces it with “transmission data.” All other claim terms are to be given their ordinary and customary meaning.
(See Order for specifics) (Signed by Judge Sam A Lindsay on 9/10/07) (skt) Modified on 9/11/2007 (jyg). (Entered: 09/11/2007)

Negative Examples

. CERTIFICATE OF SERVICE Preliminary Proposed Construction of Claim Terms by Shaw Industries, Inc., .(Zidar, Bernard) (Entered:

04/11/2006)

. PROOF OF SERVICE of Order re: Claim of Interpretation filed 6/20/02 [158-1] to counsel Steven Paganetti for dfts Paboojian (rab)

(Entered: 07/10/2002)

. ORDER DENYING STIPULATED PROPOSAL FOR PROCEDURE TO RESOLVE DISPUTED CLAIM INTERPRETATIONS: This

matter is before the Court on Plaintiff and Defendants’ stipulated proposal for a procedure to resolve disputed claim interpretations
before trial. (Entered: 06/25/2007)

. ORDER denying defendants’ motions for reconsideration of : (1) claim construction order and finding of infringement of claim 8 of the

’725 patent’ (ys, ) (Entered: 01/02/2003)

. ORDER granting 100 Motion for Leave to File Excess Pages for Defendants’ Joint Answering Brief on Claim Construction. Signed by

Judge Leonard Davis on 1/15/08. (mjc ) (Entered: 01/15/2008)

Table 2: Representative examples for Claim Construction Orders.

in estimating the utility of using misclassification cost as the 2. CorrActive learner is always better than a random sam-
metric for sampling examples. In each interactive iteration, pler in detecting mislabeled examples as shown by the
we provided exactly 10 documents to the oracle for label cor- mislabel retrieval plots (row 2 in Figure 2).

rection. 3. Atlow error rates, the corrActive learner converges very

We measured the performance of the system on the follow-
ing metrics:

quickly. For example, at 20% error rate, when there are
approximately 5000 examples in the training set (and

o Classification F1: We report the F1 performance of the 1000 mislabeled examples), the corrActive learner dis-
classifier on the test set as a function of number of inter- plays only about 820 examples for labeling correction
active iterations. before converging and boosting its classification perfor-
Mislabel retrieval F1: This metric captures the over- mance by 9.7%. The precision of the corrActive learner
lap between the examples presented by corrActive leaner in retrieving mislabeling examples is high (~ 80%).
for label correction, and the truly mislabeled examples. This indicates the effectiveness of this technique com-

More specifically, imagining the task of the corrActive
learner as one of retrieving mislabeled examples, we
computed the recall, precision, and their harmonic mean
F1 of the mislabeled examples at the end of each inter-
active session. We call this metric Mislabel retrieval F1.
Higher mislabel retrieval F1 is more desirable, because it
implies higher overlap between retrieved and truly mis-
labeled examples.

5 Results and Discussion

The experimental results, presented in Figure 2, show the fol-
lowing trends.

1. CorrActive learner improves the performance of the base
classifier by correcting labeling errors and thereby re-
ducing the noise in the data (row 1 in Figure 2).

pared to the overhead of manually inspecting the exam-
ples for potential labeling errors.

. The mislabel retrieval effectiveness of the corrActive

learner drops as the labeling noise is higher. This is due
to overfitting as discussed in section 3.

. At the initial stages of user interaction, corrActive

learner is not as good as the random sampler. However,
after a few iterations, the corrActive learner accelerates
its learning rate, and surpasses the random sampler, par-
ticularly when the labeling error rate is low (< 25%).

The last observation is a very interesting and somewhat
unexpected phenomenon and deserves more attention.
The reason for this behavior remains to be fully under-
stood, but we hypothesize as follows: when there is ran-
dom noise in the data, the classifier performance is de-



graded because it is not able to learn the correct deci-
sion boundary. Hence, it makes sense for the classifier
to focus on examples near the decision boundary, to cor-
rect itself. When the density of examples near the deci-
sion boundary is high, random sampling may be able to
retrieve these examples and potentially help the classi-
fier learn a better boundary. CorrActive learner, on the
other hand, always focuses on retrieving the most mis-
labeled examples at all times. During the initial stages,
this may result in retrieval of the easy mislabeled ex-
amples, which are far from the boundary. These exam-
ples, although useful, do not inform where the decision
boundary is. Therefore, the corrActive learner fails to
learn as well as a random sampler in the initial stages.
However, once the corrActive learner gets past the easy
examples, it learns much faster than random sampling.
This suggests using random sampling at first and switch-
ing to corrActive learning later, but we have not explored
it in this paper.

6 Conclusions and Future Work

In this paper, we introduced the problem of corrActive learn-
ing and presented a simple approach to address this prob-
lem. Our preliminary experiments involving a human, as well
as synthetic experiments using varying noise levels strongly
suggest the utility of this approach.

We believe this work opens the door for several interest-
ing directions for future work. Some of the important open
questions are:

e Given a choice between correcting the label of a mis-
labeled example (corrActive learning), and labeling an
unlabeled example (active learning), which is more ad-
vantageous in terms of classifier performance?

e What is the best way to combine active learning and cor-
rActive in the same framework?

o Are there better approaches to estimating mislabeled ex-
amples than misclassification cost? In particular, can
we combine random sampling and corrActive learning
to improve the performance of either technique?

We hope to answer these questions as part of our future
work.
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Figure 2: Experimental results: top row shows results on classification F1 on the test set and the bottom row displays results on mislabel
retrieval F1 on training set, both as a function of number of iterations. Each iteration consists of a user interaction session in which 10
documents are shown to the user for label correction. Each data point in the figure is a result of averaging across 5 runs and the error bars are
two standard deviations wide. Left column is for error rate of 20% while the right column is for 40% error rate. As is evident from top left
box, corrActive learning is not better than random sampling at first, but quickly recovers and surpasses random sampling at low error rates.
At high error rates (top right box), corrActive learner converges before surpassing random sampler. However, as shown in the bottom row,
corrActive learning is always better than random sampling in identifying mislabeled documents.



