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Abstract 
Applications that use sensor-based estimates face a 
fundamental tradeoff between true positives and false 
positives when examining the reliability of these 
estimates, one that is inadequately described by the 
straightforward notion of accuracy.  To address this 
tradeoff, this paper examines the use of Receiver 
Operating Characteristic (ROC) curve analysis, a 
method that has a long history but is under-appreciated 
in the human computer interaction research community.  
We present the fundamentals of ROC analysis, the use 
of the A' statistic to compute the area under an ROC 
curve, and the equivalence of A' to the Wilcoxon 
statistic.  We then present several case studies, framed 
in the context of our work on human interruptibility, 
demonstrating how ROC analysis can yield better 
results than analyses based on accuracy.  These case 
studies compare sensor-based estimates with human 
performance, optimize a feature selection process for 
the area under the ROC curve, and examine end-user 
selection of a desirable tradeoff. 
 
Key words:  ROC curves, A' statistic, sensor-based 
estimates, context-aware computing, interruptibility. 

1 Introduction and Motivation 
Context-aware systems, intelligent environments, and 
adaptive interfaces offer potential advances that have 
drawn significant interest from the human-computer 
interaction research community.  These advances are 
based in part on the creation of systems that sense 
low-level features of a situation, use models of people 
and the world to infer higher-level concepts, and take 
action based on these estimates.  For example, our work 
has examined the creation of sensor-based statistical 
models of human interruptibility in office 
environments, showing models can estimate human 
interruptibility as well as or better than human 
observers [3, 4, 5, 11].  These models can be used to 
inform many different approaches to managing 
interruptions [13].  In a mediated approach, models 
could inform the timing of a notification delivery.  In a 
negotiated approach, models could inform the salience 
of the presentation used for a pending interruption. 

 When investigating the reliability of sensor-based 
estimates, the straightforward and common notion of 
accuracy has substantial shortcomings.  These arise 
from the fact that a simple measure of accuracy does 
not account for the different types of mistakes a model 
might make.  For example, our models of human 
interruptibility can fail to detect that a person is “highly 
non-interruptible” or they can falsely report a person as 
“highly non-interruptible”.  Accuracy obscures the 
difference between these two errors and ignores a 
fundamental tradeoff that often exists between them.   
 This tradeoff arises because most models output a 
score representing the degree to which the model 
believes that some condition is true, such as a person 
being “highly non-interruptible.” Applications then 
compare this score to a threshold.  If a lower threshold 
is used, more true positives will be detected, as in our 
work when an application correctly detects that a 
person is “highly non-interruptible.”  However, a lower 
threshold also means that more false positives will be 
generated, as in our work when an application 
mistakenly believes that a person is “highly 
non-interruptible.”  This tradeoff between obtaining 
more true positives at the expense of additional false 
positives is not conveyed by accuracy.   
 Without the ability to understand how this tradeoff 
applies to a model, both researchers and practitioners 
face considerable challenges in trying to understand the 
effect that sensor-based estimates may have on a user.  
Additionally, applications that use sensor-based 
estimates but ignore or minimize this tradeoff miss an 
opportunity to provide end-users with more control 
over how they interact with sensor-based systems.   
 In order to provide some insight into this problem, 
this paper examines the use of Receiver Operating 
Characteristic (ROC) curve analysis, a technique with a 
long history in signal detection [7] and medical 
diagnostics [10, 14] that has more recently drawn 
attention from the machine learning community [1, 9].  
While ROC analysis is not completely unknown to the 
human computer interaction research community, it is 
also not widely used and seems to be of increasing 
relevance as the community investigates context-aware 
systems, intelligent environments, and adaptive 



 

interfaces.  Beyond contributing to an increased 
awareness of ROC analysis, this paper also contributes 
several case studies of how ROC curves can yield better 
results than an accuracy measure when applied to 
relevant problems in human computer interaction 
research.  These case studies are framed in the context 
of our work on sensor-based statistical models of 
human interruptibility.  Presenting ROC curves in the 
context of our research gives us a set of concrete 
examples to use, and the improved results we obtain in 
these case studies are also a contribution. 
 The next section introduces ROC curves, their 
computation, and statistically principled comparisons of 
the area under curves.  We then begin our case studies 
by examining how ROC curves allow the performance 
of a model to be compared with human estimates across 
a range of confidence levels, showing that our 
sensor-based statistical models of human interruptibility 
perform significantly better than human observers.  Our 
second case study shows how feature selection based on 
optimizing the area under an ROC curve can yield 
significantly better models than optimizing for simple 
accuracy.  Next is our final case study, using a dialog 
appropriate for end-user threshold selection to examine 
how optimizing feature selection for the area under the 
ROC curve can result in a better set of tradeoffs for 
presentation to end-users.  We then highlight a measure 
for extending ROC analysis to multiple-class problems.  
This is followed by a short discussion and conclusion. 

2 ROC Curve Overview 
The tradeoff at different thresholds between obtaining 
more true positives at the expense of additional false 
positives is visualized in an ROC curve by plotting the 
tradeoff for every possible threshold.  This yields a 
curve like that in Figure 1, which presents the tradeoff 
for a sensor-based naïve Bayes model of human 
interruptibility.  As when estimating accuracy, this plot 
is obtained by building a model from a set of training 
data and then evaluating the model against a set of test 
data, often within a cross-validation process.  The 
output of the model for each case in the test data is then 
compared against each possible threshold, producing a 
point for each threshold in the plot.  These points are 
plotted in a unit square, with the vertical location of the 
point for each threshold corresponding to the 
percentage of positive cases in the test data that are 
correctly labeled as positive when using the model at 
that threshold.  The horizontal location of the point for 
each threshold is the percentage of negative cases in the 
test data that are incorrectly labeled as positive when 
using the model at that threshold.  Note that this means 
neither axis represents possible thresholds, but rather 
the possible thresholds are distributed along the length 

of the curve.  For example, we have marked the 
location of the .5 threshold in Figure 1, showing that 
classifying cases as positive when this model outputs a 
probability of .5 or greater detects 49.5% of “highly 
non-interruptible” situations, with false positives for 
10.7% of negative cases. 
 Given this initial description, there are several 
characteristics of ROC curves worth nothing.  All 
curves start in the bottom left corner, representing a 
threshold at which all cases are classified as negative, 
and end in the upper right corner, representing a 
threshold at which all cases are classified as positive.  
Better curves are closer to the upper-left corner (if one 
curve is above another at a given point on the horizontal 
axis, the higher curve is better at detecting true 
positives, while generating the same percentage of false 
positives as the lower curve).  Curves should also 
always be above the diagonal (indicated as a dashed 
line in Figure 1), as a curve below the diagonal 
indicates that a model is generating more false positives 
than true positives (in which case, inverting the output 
of the model would provide a better model). 
 While the information presented in an ROC curve 
can help a researcher choose an appropriate threshold, 
ROC curves are especially appealing because they 
allow models to be compared independent of what 
threshold will be used in an application.  When the 
curve of one model is completely above the curve of 
another model, it is clear that the model will perform 
better regardless of what threshold is used.  But if two 
curves cross, the determination of which model is better 
again depends on what threshold will be used.  While 
there is no single solution to this problem in the general 
case [8], many researchers have obtained good results 
using the area under the ROC curve as a single measure 
of the quality of a model.  The area under an ROC 
curve also has very useful statistical properties, which 
we will discuss later in this section. 
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Figure 1 – ROC curve for a sensor-based  
statistical model of human interruptibility,  
with the .5 operating threshold highlighted.  



 

2.1 Computing an ROC Curve 
While plotting a curve over every possible threshold 
may sound computationally expensive, the computation 
is actually very simple and inexpensive.  A model is 
first evaluated against each case in the test data, 
outputting larger scores to indicate greater confidence 
that a case is positive.  The cases are then sorted by 
their score.  All of the points in the plot can then be 
computed in a single pass through the sorted cases.  
Each distinct score encountered in this pass represents a 
possible threshold.  A point is plotted for that threshold 
based on what percentage of positive cases in the test 
data have scores greater than or equal to the threshold 
and what percentage of negative cases in the test data 
have scores greater than or equal to the threshold.  Note 
that these counts of positive and negative cases can be 
maintained during the pass through the sorted cases, so 
they do not need to be computed from scratch at each 
threshold. 

2.2 Area Under an ROC Curve 
The area under an ROC curve is equal to the probability 
that a randomly selected positive case will receive a 
higher score than a randomly selected negative case.1  
In this section, we present the computation of this 
probability, and therefore the area under the ROC 
curve, using pair-wise comparisons.  We focus on a 
tutorial presentation of the equations needed to work 
with and analyze ROC curves, and encourage readers 
interested in a more complete presentation of related 
theories to consult [10, 14].  Our presentation draws 
heavily from that in [10], though that presentation is in 
the context of medical diagnostics. 
 When using a set of test data to estimate the 
probability that a randomly selected positive case will 
receive a higher score than a randomly selected 
negative case, we compare the scores assigned by a 
model to each case in the test set.  We define a function 
for comparing sp, the score of a positive case, with sn, 
the score of a negative case, as: 
 







<
=
>

=
np

np

np

np

 s s

 s s

 s s

ss

 if 
 if 
 if 

0
5.
1

),C(  

 

                                                           
1 In the interest of space, we do not prove this equality.  Interested 
readers are encouraged to consult [7, 10].  For insight into the 
equality, consider that selecting a random negative case is equivalent 
to selecting a random location on the horizontal axis, which is 
equivalent to selecting a random threshold along the curve.  At that 
threshold, the height of the curve is equal to the percentage of 
positive cases with a score greater than the threshold.  Integrating 
across all values on the horizontal axis provides the probability across 
all cases. 

We then compute the average value of this comparison 
function over every pair of positive and negative cases: 
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where np and nn are the number of positive and negative 
cases, s is the score of a case, and P and N are the sets 
of positive and negative test cases.  The resulting 
estimate of the area under an ROC curve is known as 
A'.2  As when plotting the ROC curve, A' can be 
computed in a single pass after sorting the cases in the 
test data by their scores. 
 Readers familiar with the Wilcoxon statistic, 
commonly used to compare the level of a quantitative 
variable in two populations, will recognize that the area 
under the ROC curve can be analyzed in terms of A' 
because A' is equivalent to the Wilcoxon statistic [10].  
The Wilcoxon statistic is well-studied, and this 
equivalence means that a simple computation can be 
used to obtain the standard error for a given A', which 
we can then use to test the significance of a difference 
in the area under two ROC curves.  Defining the terms 
Dp and Dn:   
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the standard error for A' is: 
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Given these formulas for A' and SE(A'), we can test the 
significance of a difference between the area under two 
ROC curves using a Z test, where Z is: 
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In the case where we want to test whether a model is 
significantly more predictive than chance, we use 
A'2 = .5 and SE(A'2) = 0.  The significance of the Z 
value is then checked in a table. 

2.3 ROC Curve Discussion 
This section has presented ROC curves and A', the area 
under an ROC curve, together with statistical tests for 
examining the significance of A' and comparing values 
of A'.  Presented visually, ROC curves allow inspection 
of a model’s fundamental tradeoff between true 
                                                           
2 A related statistic, D', is sometimes used to estimate the area under 
an ROC curve.  D' assumes the scores of positive and negative cases 
are being generated by overlapping normal distributions, while A' 
makes no assumptions about the underlying distributions. 



 

positives and false positives, providing much more 
information than is conveyed by a straightforward 
notion of accuracy.  When comparing two models, 
ROC curves make it clear that a curve entirely above 
another represents a model that will perform better 
regardless of what threshold is used.  In the case where 
two curves cross, A' can be used as a measure of which 
model is better overall.  We have also discussed how 
the relationship between A' and the Wilcoxon statistic 
allows us to use established methods to test whether a 
model is significantly more predictive than chance or 
than another model. 
 As an approach, ROC curve analysis has a history 
of being presented from one research community to 
another.  While not completely unknown to the human 
computer interaction research community, ROC curve 
analysis is relatively uncommon and seems to be 
under-appreciated, so this section has presented what 
we believe are the most relevant properties of ROC 
analysis.  In the coming sections, we illustrate how 
these properties can be applied to examining the 
reliability of sensor-based estimates. 

3 Comparisons with Human Performance 
A common problem when examining the reliability of 
sensor-based estimates is deciding what level of 
performance should be considered good.  In the case of 
human interruptibility, it is clear that models should not 
be expected to perform perfectly.  People cannot 
perfectly estimate interruptibility, and instead negotiate 
entry into interruptions after an initial judgment of 
whether an interruption is appropriate, with cues like 
eye contact avoidance or continuation of the task that 
would be interrupted indicating that an attempted 
interruption should be deferred [6].  When sensor-based 
estimates are similar in quality to estimates commonly 
made by people, comparing the performance of a model 
with human performance can support a compelling 
argument. 
  Because ROC curves are plotted on axes for the 
true and false positive rates, rather than with the range 
of possible scores along one axis, ROC curves support 
the comparison of estimates based on different ranges 
of scores.  This property of ROC curves can be very 
useful to human computer interaction researchers, as 
statistical models typically output probabilities but 
people often find it difficult to effectively use a scale 
that contains more than five or seven values.  The 
remainder of this section presents a case study 
comparison of the reliability of estimates made by 
human observers with the reliability of a sensor-based 
statistical model of human interruptibility.  ROC curves 
support a comparison of the true positive versus false 
positive tradeoff in both types of estimates, providing a 

more complete comparison than the methods used in 
our prior work [3, 4].  This discussion also illustrates 
how human computer interaction researchers can use 
ROC curves to compare the performance of a model 
with the performance of people making a similar 
estimate. 

3.1 Data Overview 
Our work to examine human interruptibility has been 
largely based on collecting self-reports from office 
workers.  At randomly selected times, the computer 
collecting our data played a recorded audio file 
prompting the participant to “rate your current 
interruptibility” on a five-point scale from “highly 
interruptible” to “highly non-interruptible.”  More than 
a third of self-reports have indicated that a participant 
was “highly non-interruptible,” and so our work has 
focused on distinguishing “highly non-interruptible” 
situations from other situations [3, 4, 11]. 
 To examine human estimates of interruptibility, we 
recruited observer subjects and showed them audio and 
video recordings from immediately before self-reports 
were collected.  These observer subjects then estimated 
the interruptibility of the person in the recordings, using 
the same five-point scale [3].  Their estimates are 
shown in Figure 2.  The top row shows estimates for 
situations self-reported as something other than “highly 

 Human Observer Rating 
 Highly  

Non-Interruptible 
Highly 

Interruptible 
Self-Report 5 4 3 2 1 

Other 
99 

(99) 
5.8% 

219 
(318) 
18.8% 

362 
(680) 
41.1% 

516 
(1196) 
71.6% 

498 
(1694) 
100.0% 

Highly  
Non-Interruptible 

250 
(250) 
35.4% 

145 
(395) 
55.9% 

101 
(496) 
70.3% 

121 
(617) 
87.4% 

89 
(706) 

100.0% 
 

Figure 2 – Observer estimates, by whether 
 a self-report was “highly non-interruptible.” 
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Figure 3 – Dashed curve for observer estimates  

and solid curve for a sensor-based statistical model.  
 



 

non-interruptible,” and the bottom row shows estimates 
for situations reported as “highly non-interruptible.”  
The topmost number in each cell indicates how many 
times an observer rated each type of situation at that 
point on the five-point scale.  The number in 
parentheses is a running sum from left to right as the 
rating scale decreases.  The bottom number is ratio of 
the running sum to the total number of cases in the row.  
We include these ratios because they define the ROC 
curve for this data, with the percentages in first row 
providing horizontal values and the percentages in the 
second row providing vertical values, as seen in 
Figure 3, which we discuss next. 

3.2 Analysis Comparison 
In our prior work, we used accuracy to compare the 
performance of our statistical models with the 
performance of these human observers.  The 1845 
unshaded entries in Figure 2 correspond to a correct 
label of 5 for a “highly non-interruptible” situation or a 
correct label of a value other than 5 for a situation that 
was not “highly non-interruptible,” for an accuracy of 
76.9%.  Using chi-squared tests, we have compared this 
accuracy to the accuracy of sensor-based statistical 
models [3, 4].  However, this comparison does not 
consider the relationship between human estimates and 
statistical models across the different possible 
thresholds.   
 Figure 3 presents a dashed ROC curve for the 
human observer estimates and a solid ROC curve for a 
sensor-based statistical model of the interruptibility of 
ten office workers with diverse responsibilities and 
working environments [4].  Note that the marked points 
on the human estimates curve correspond to the 
percentages shown in Figure 2, and the curve for the 
statistical model is entirely above the human estimates 
curve.  These curves show that, for each point in the 
rating scale used by the human observers, the 
sensor-based statistical model used with the threshold 
that generates the same percentage of false positives 
will generate a higher percentage of true positives.  
Applying the statistical tests presented in the last 
section, we see that both the human observers 
(A' = .724, Z = 18.7, p < .0001) and the sensor-based 
statistical model (A' = .804, Z = 19.0, p < .0001) 
perform significantly better than chance.  We can also 
see that the model is significantly more predictive than 
the human observers (Z = 3.98, p < .0001).   
 This case study has shown how ROC curves enable 
a more complete comparison of the performance of 
sensor-based estimates with human performance for 
similar estimates.  We used a 5-point scale for human 
observers to indicate the degree to which a person was 
not interruptible, while our statistical models output 

probabilities.  ROC curves allow these different types 
of scores to be compared, and A' allows us to test the 
significance of the difference in the area under two 
ROC curves.  This ability to support comparisons of the 
performance of estimates based on different types of 
scores, and the resulting implications for making 
comparisons to human performance, seems especially 
useful to human computer interaction researchers. 

4 ROC Curves in Feature Selection 
By definition, statistical models are based on extracting 
correlations between dependent variables, generally 
referred to as features, and the variable being predicted, 
generally referred to as the class.  A common approach 
is to create many potential features, then select the 
optimal subset of these potential features.  To determine 
this optimal subset, a wrapper-based feature selection 
process starts with an empty set of features, then 
repeatedly adds or removes features until no change 
produces a better subset [12]. 
 This feature selection process requires a metric for 
comparing the quality of potential feature subsets, and 
accuracy is commonly used.  But optimizing for 
accuracy selects the best feature subset for the 
particular threshold used during selection, and using the 
selected features with a different threshold could result 
in sub-optimal performance.  Because A', the area under 
an ROC curve, measures performance at all thresholds, 
selecting feature sets that optimize A' can be a better 
choice. 
 Figure 4 shows ROC curves for two sensor-based 
statistical models of human interruptibility, evaluated 
using our data collected from ten office workers with 
diverse responsibilities and working environments [4].  
The solid curve is the same curve from Figures 2 and 3, 
representing a naïve Bayes model that was 
automatically created by AmIBusy, a system we are 
developing to support sensor-based statistical models of 
human interruptibility.  The features in this model were 
selected in a wrapper-based optimization of A'.  The 
dashed curve represents a model created by the same 
automatic process, except with a wrapper-based 
optimization of accuracy. 
 Considering performance at the .5 threshold, the 
model with a feature set optimized for accuracy 
correctly classifies 791, or 78.6%, of 1006 cases.  The 
model with a feature set optimized for A' correctly 
classifies 771, or 76.6%, of 1006 cases.  If we only 
considered accuracy at this threshold, we might decide 
that the first model was preferable.  Inspecting the ROC 
curves in Figure 4, we see that the performance of the 
model optimized for accuracy is indeed slightly better 
at the .5 threshold (which we have marked), but it is 
also much worse for most of the curve.  Using A' to 



 

quantify this observation, we can see that the model 
optimized for accuracy has an A' of .740, significantly 
worse than the A' of .804 for the model optimized for A' 
(Z = 2.68, p < .01). 
 Considered in the terminology of ROC curves, 
optimizing feature selection for accuracy pulls a single 
point on an ROC curve towards the upper-left corner, 
but ignores every other point on the curve.  The feature 
selection process also has no motivation to raise the 
score of a test case any higher than the threshold that is 
being used.  In the case of feature selection with a .5 
threshold, accuracy makes no distinction between a 
feature set that assigns a positive case a probability of 
.51 or a feature set that assigns the positive case a 
probability of .99.  Slight differences in the data 
encountered when the model is deployed might then 
result in the .51 probability slipping below .5, 
unnecessarily reducing the reliability of the model.  
Optimizing A' allows feature selection to consider 
performance at all thresholds.  A statistical model that 
assigns a positive case a probability of .99 will have a 
higher A' than if the model assigned a probability of 
.51, and so the feature selection process can choose 
features that maximize the separation between positive 
and negative cases.  This case study has shown how 
these differences apply to human interruptibility, and 
the next section considers how they can manifest in an 
interface for end-user threshold selection. 

5 Supporting End-User Threshold Selection 
The fundamental tradeoff between true positives and 
false positives is inherent to applications that use 
sensor-based estimates, and applications that ignore or 
minimize this tradeoff are missing an opportunity to 
give end-users control over how they interact with 
sensor-based systems.  By accounting and designing for 
this tradeoff, applications can enable end-user selection 
of the most desirable tradeoff.  In the case of 
interruptibility, for example, many office workers might 
feel that they are interrupted too often, and so they 
might choose a threshold that aggressively minimized 
the salience of notifications delivered by an application 
(thus maximizing true positives).  Other office workers 
might feel that the information conveyed by the 
application’s notifications is sufficiently important that 
they prefer salient notifications, with notifications being 
deferred or presented more subtly only when it is very 
clear that they are not interruptible (thus minimizing 
false positives). 
 While ROC curves are a powerful tool for analyzing 
and understanding a model’s tradeoff between true 
positives and false positives, they do not seem to be a 
good choice for presentation to end-users.  ROC curves 
require significant explanation before they can be 

interpreted, as evidenced by the first several pages of 
this paper.  ROC curves also do not convey the relative 
frequency of positive and negative cases in a data set3.  
In the case of interruptibility, knowing how often a 
model considers a person interruptible might inform 
that person’s selection of a threshold. 
 To examine how differences in models optimized 
for accuracy and models optimized for A' manifest in an 
interface for end-user threshold selection, we created 
the interface shown in Figures 5 and 6.  This dialog is 
intended for a notification application using a mediated 
approach to manage interruptions caused by non-urgent 
notifications.  Rather than using an ROC curve to 
present the tradeoff between preventing inappropriate 
interruptions (true positives) and unnecessarily delaying 
notifications (false positives), this dialog shows how 
many inappropriate interruptions are prevented at a 
given threshold, how many appropriate notifications are 
delivered, and the overall accuracy of the model for 
each threshold.  The dialog presents both percentages 
and absolute scales, in order to convey the relative 
frequency of positive and negative cases from which 
the model has been constructed.  Figure 5 presents this 
threshold selection dialog for the model optimized for 
accuracy in the previous section, while Figure 6 is for 
the model with a feature set optimized for A'. 
 As we might expect after analyzing the ROC curves 
presented in Figure 4, the model optimized for accuracy 
and shown in Figure 5 has an overall accuracy with a 
well-defined peak at the .5 threshold.  An end-user 
unhappy with the tradeoff at the .5 threshold must 
accept a lower overall accuracy in order to adjust the 
tradeoff.  In contrast, the model in Figure 6 with a 
feature set optimized for A' shows a plateau for overall 
                                                           
3 This is an intentional characteristic of ROC curves, and not a 
shortcoming.  To see why, consider assessing the reliability of a test 
for which the positive case occurs in less than one percent of a 
population.  [10, 14]. 
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Figure 4 – Dashed curve for model optimized by 

accuracy and solid curve for model optimized by A'. 



 

accuracy over a relatively large range of thresholds.  
Within this plateau, different tradeoffs between 
preventing interruptions and delivering notifications 
result in the same overall accuracy.  Even when this 
plateau drops off on the left side of the chart, the overall 
accuracy remains higher than in the model optimized 
for accuracy.   
 This section has presented a dialog appropriate for 
end-user threshold selection and examined how models 
optimized for A' and accuracy differ when presented in 
such a dialog.  Designing for end-user threshold 
selection allows end-users to choose the tradeoff that 
they find most desirable, and models optimized for A' 
can provide a better set of alternatives. 

6 Multiple Class ROC Analysis 
Throughout this paper, we have focused on two-class 
problems, where sensor-based estimates are being used 
to choose between two possible alternatives.  Two-class 
problems are very common, in part because existing 
machine learning algorithms tend to work best with two 
classes.  However, applications sometimes require that 
a model choose from among three or more alternatives, 
commonly referred to as a multiple-class problem.  This 
section presents some brief comments on using the 
measure M for multiple-class ROC analysis [9]. 
 For a problem with c different class values, Hand 
and Till present the measure M: 
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where A'(i | j) is A' for the subset of test cases with class 
i or j, using class i as the positive class.  In the case of a 
two-class problem, A'(i | j) is equal to A'(j | i) and M is 
equal to A'. But A'(i | j) and A'(j | i) must both be used 
when examining multiple classes, as A' is not 
symmetrical when examining two classes from a 
multiple-class problem. 
 M has several good properties.  As with A', M is 
computationally inexpensive to compute.  Because M is 
based on the ability of a model to distinguish between 
pairs of classes, it is useful in the case where one or 
more classes in a multiple-class problem cannot be 
reliably detected (in contrast, a measure based on the 
ability of a model to detect every class could degenerate 
if one or more classes cannot be reliably separated from 
the other classes).  Optimizing with respect to M will 
select features that maximize the separation between 
the classes that a model can detect.  The major 
shortcoming of M relative to A' is the lack of an 
equation for the standard error of M, making it more 
difficult to test the significance of a difference between 
two values of M.  Hand and Till suggest the use of 

bootstrap resampling methods [2].  Readers interested 
in further discussion of M and multiple-class ROC 
analysis are encouraged to use [9] as a starting point. 

Discussion and Conclusion 
This paper has presented ROC curves, the use of A' to 
analyze the area under an ROC curve, and how the 
equivalence of A' to the Wilcoxon statistic allows 
statistically principled comparison of the area under 
ROC curves.  ROC analysis allows a principled 
examination of the reliability of sensor-based estimates 
across all possible thresholds, rather than the 

 
 

Figure 5 – Threshold selection  
dialog for a model optimized by accuracy. 

 

 
 

Figure 6 – Threshold selection 
 dialog for a model optimized by A'.  



 

single-threshold examination that is supported by 
accuracy.  Considering performance across possible 
thresholds is important, as the tradeoff between 
obtaining more true positives at the expense of 
additional false positives is inherent to using a threshold 
with sensor-based estimates.  Embracing and designing 
for this tradeoff, rather than ignoring or minimizing it, 
can also provide end-users with more control of how 
they interact with sensor-based estimates.   
 While some members of the human computer 
interaction research community are familiar with ROC 
analysis, its relevance seems to be under-appreciated as 
the community investigates context-aware systems, 
intelligent environments, and adaptive interfaces.  The 
relationship between A' and the Wilcoxon statistic, 
which enables a straightforward test for the significance 
of a difference between the area under two ROC curves, 
seems to be particularly under-appreciated. 
 We have presented several case studies showing 
that ROC analysis, used with our work on sensor-based 
statistical models of human interruptibility, yields better 
results than we have previously obtained with accuracy.  
Comparing estimates of interruptibility made by human 
observers with estimates provided by our sensor-based 
statistical models, we have shown that our statistical 
models perform better at each of the confidence levels 
available to the human observers.  Comparing the A' for 
the estimates collected from human observers and our 
sensor-based statistical model, we have shown that that 
our model is significantly more predictive than human 
observers.  This is a more compelling comparison than 
our prior analysis using accuracy, as ROC analysis 
accounts for the varying degrees of certainty that people 
can have when making such estimates.  Our second 
case study shows how a feature selection process that 
optimizes A' can yield better models than a process that 
optimizes accuracy.  While accuracy considers the 
performance of a model at only a single threshold, the 
additional information available in A' can be used by a 
feature selection process to maximize the separation 
between scores assigned to positive and negative test 
cases.  Because ROC curves can initially be difficult to 
interpret, our final case study examined how differences 
between A' and accuracy can manifest when data is 
examined in a dialog appropriate for end-user threshold 
selection.  Each of these case studies contributes by 
improving upon the results we previously obtained with 
accuracy or by demonstrating how human computer 
interaction researchers can apply ROC curve analysis to 
relevant problems. 
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