
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

Guided Time Warping for Motion Editing

Eugene Hsu Marco da Silva Jovan Popović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract
Time warping allows users to modify timing without affecting poses. It has many applications in animation systems
for motion editing, such as refining motions to meet new timing constraints or modifying the acting of animated
characters. However, time warping typically requires many manual adjustments to achieve the desired results. We
present a technique which simplifies this process by allowing time warps to be guided by a provided reference
motion. Given few timing constraints, it computes a warp that both satisfies these constraints and maximizes local
timing similarities to the reference. The algorithm is fast enough to incorporate into standard animation workflows.
We apply the technique to two common tasks: preserving the natural timing of motions under new time constraints
and modifying the timing of motions for stylistic effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

A motion that at first appears perfect, whether it is
keyframed, captured, or synthesized, will often require fur-
ther adjustment when it is combined with other elements in a
scene. Modern animation systems provide a number of tools
that transform motions to meet new requirements. The time
warp is one such tool that allows users to adjust the tim-
ing of animated characters without affecting their poses. Its
importance follows from the fact that poses often must re-
main fixed in later stages of the animation pipeline, since
they provide the interface through which artists collaborate.
Any significant spatial changes to a character often necessi-
tate equally significant changes to the environment, lighting,
or camera placement. Timing is one of the few aspects that
can be changed without significantly disrupting workflow.

Typical time warps, however, require significant man-
ual intervention. After describing high-level synchronization
or duration requirements using keytimes, current animation
tools also require users to adjust a curve to achieve the de-
sired effect. These manual steps are further complicated by
the fact that changes to timing, unlike changes to poses,
inherently cannot provide instant visual feedback. Manual
time warping typically requires alternating between tuning
the time-warp curve and reviewing the results. This process
is laborious even for the most talented animator.

Our guided time warping algorithm aims to simplify this
task. As with traditional techniques, users begin by specify-
ing rough timing constraints using keytimes. Instead of te-
dious manual refinement, users can select a reference mo-
tion that exhibits the desired timing properties. The algo-
rithm then computes a time-warp curve that satisfies the con-
straints and mimics the timing properties of the reference.

Internally, our technique solves a discrete optimization
that balances the goals of preserving the original motion and
mimicking the timing of the provided reference. The con-
straints of the optimization emphasize content preservation
to ensure that the results do not circumvent the intent of the
user. The objective function uses a local measure of tim-
ing similarity that guides the solution towards the reference
without requiring registered motions.

We demonstrate the applicability of guided time warp-
ing to several common timing tasks. It is often necessary,
for instance, to adjust the duration of a motion to meet
time constraints, synchronize it with other scene elements,
or match external signals. Existing animation systems only
offer spline-based time warps which generally require sig-
nificant tuning to achieve natural results. Here, guided time
warping can use the motion as its own reference to preserve
its natural timing properties without needing additional ad-
justments. This is illustrated in Figure 1.

Copyright c© 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Re-
quest permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SCA 2007, San Diego, California, August 04 - 05, 2007
c© 2007 ACM 978-1-59593-624-4/07/0008 $ 5.00

mailto:permissions@acm.org


E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

Guided Warp

Linear Warp

Input Motion

Warp

Warp Speed

Speed

Figure 1: Time warps are often applied to modify the dura-
tions of motions. TOP: In the provided input motion, a char-
acter turns, pauses, and jumps. MIDDLE: To shorten this
motion, spline-based warping techniques perform a linear
warp that speeds up all parts of the motion equally. This
yields an implausibly quick jump. BOTTOM: Our technique
guides the warp towards a more natural result without re-
quiring additional constraints.

Careful adjustments of timing can also be used to affect
critical qualities of animation. Animators routinely use time
warps to change factors such as anticipation, weight, emo-
tion, and style. Such tasks require a great deal of skill and pa-
tience. Guided time warping can be used to propagate care-
fully tuned timing modifications to other portions of an ani-
mation. For instance, an animator can edit a single gait cycle
and use our technique to replicate its timing modifications to
an entire set of walking motions.

We present our technique as a new motion editing tool that
addresses one of the most important aspects of animation:
timing. The application of time warps can achieve surpris-
ingly flexible edits without disrupting carefully tuned spa-
tial relationships. Guided time warping can help animators
achieve these results more easily and has the potential to
augment existing motion synthesis techniques.

2. Related Work

The usefulness of the time warp operation is underscored
by its almost universal appearance in professional anima-
tion tools such as Autodesk Maya, 3D Studio Max, and
Avid SOFTIMAGE|XSI. In addition, time warping can be
found in many video editing and compositing tools including
Adobe After Effects and Apple Final Cut Pro. Within these
tools, time warps are used routinely to create remarkable
results. However, the methods available in these products
are basic variants of the spline-based technique proposed by
Witkin and Popović [WP95] and thus require a significant
amount of skill and patience.

In the research community, the importance of timing in
animation has long been appreciated. Lasseter’s seminal
work describes how even the slightest timing differences can
greatly affect the perception of action and intention [Las87].
More recently, a number of interactive techniques have been
proposed to address the timing problem. Performance-driven
animation techniques allow the user to act out animations us-
ing various interfaces (e.g., [DYP03, TBvdP04]). Terra and
Metoyer present a technique that is targeted specifically to-
wards time warping [TM04].

Acting out a motion is a more intuitive way to achieve
proper timing, but it still requires time and skill. McCann and
colleagues [MPS06] describe a technique to compute phys-
ically accurate time warps. Our technique aims for greater
generality by relying on data. By doing so, it can capture
qualities of animation that may be difficult or impossible to
describe using notions of physical consistency or optimal-
ity. Furthermore, many animations draw their appeal from
their stylized interpretations of realism, which can not be
described using physical techniques.

Motion data has been used successfully for many prob-
lems in computer animation. Nonparametric methods as-
semble short segments of motion data to generate results
that match user specifications, such as desired paths on the
ground or scripts of actions to perform [KGP02, LCR∗02,
AF02, AFO03]. Of particular relevance to our work are
methods that detect repeatable actions [GVdG00] or record
timing variations for a particular action [SSSE00]. The tim-
ing problem is only partially addressed by these techniques
because they leave the original timing intact at all but a pre-
determined set of jump points.

Parametric methods employ different models of time.
Blending and morphing methods (e.g., [BW95,RCB98]) ex-
trapolate timing using linear combinations of time warps.
Their flexibility is limited by the availability of multiple
registered examples of particular actions. Statistical param-
eterizations add flexibility, but generally involve complex
model estimation procedures for carefully constructed ex-
amples [HPP05] or large data sets [BH00, LWS02]. By fo-
cusing exclusively on timing, guided time warping avoids
the need for explicit registration and computationally expen-
sive learning procedures.

We drew motivation for our work from the speech domain,
which has employed time warps to compress speech signals
for the purpose of rapid review (e.g., [CWS98]). Such tech-
niques perform nonlinear time warps to preserve compre-
hensibility, showing that far higher playback rates can be
achieved than with linear warps. Unfortunately, they would
be difficult to apply directly to our task because of their re-
liance on specific knowledge about speech understanding.
The current understanding of motion in computer graphics
does not provide the same guidelines.

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

Input

Spline

Guided

Motion Warp Speed

Motion Warp Speed

Motion ReferenceKeys

Figure 2: TOP: A user provides an input motion, a set of
keytimes, and a reference motion. MIDDLE: A spline-based
technique computes a smooth warp that satisfies the con-
straints but ignores the reference motion. BOTTOM: Guided
time warping satisfies the constraints and approximates the
timing properties of the reference motion. A spline-based
technique would require significant manual refinement to
achieve the same results.

3. Method

The guided time warping problem can be stated as follows. A
user provides an input motion, keytimes, and a reference mo-
tion. Our technique aims to compute a time warp that inter-
polates the keytimes, yielding an output motion that is simi-
lar to both the input and the reference, as shown in Figure 2.
These two conflicting goals are reconciled by using different
definitions of similarity.

For similarity to the input motion, we enforce constraints
on the time warp to ensure that it preserves the content of
the input motion independently of temporal transformations.
This is vital to ensure that our technique does not under-
mine the intent of the animator. Our constraint formulation
is inspired by dynamic time warping. We realize these con-
straints in a discrete formulation (§3.1).

For similarity to the reference, we define an objective that
evaluates the local similarity of a candidate output motion
to the reference. The input and reference motions will often
contain different sequences of actions, precluding the use of
standard correspondence techniques. Instead, we pursue lo-
cal timing similarities, in contrast to the global content sim-
ilarities achieved by dynamic time warping. A key intuition
in our work is the application of a local score function that
captures the timing properties of the reference motion (§3.2).

The objective function, subject to the previously men-
tioned constraints, is minimized by mapping the problem to
a constrained path search. This yields an efficient dynamic
programming solution (§3.3). Simple postprocessing opera-
tions are then applied to achieve the desired results (§3.4).

3.1. Constraints

Time warps can only reproduce poses from the input motion,
but their general application can still yield results that look
vastly different. An animator may desire such effects, but
producing them automatically without explicit instructions
to do so can lead to unexpected and undesirable results. For
instance, a general time warp could be used to lengthen a
walk motion by repeating gait cycles. In earlier prototyping,
this may be acceptable. But when environments are consid-
ered, such a change could mean the difference between ap-
proaching an obstacle and walking straight through it. Our
technique realizes these concerns by enforcing constraints
that ensure that the content of the input is preserved.

We borrow our constraint formulation from dynamic time
warping [RJ93]. This algorithm is commonly used in com-
puter animation to find global correspondences between mo-
tions (e.g., [RCB98]), but it can also be viewed as a time-
invariant similarity measure. The latter perspective offers a
convenient and proven way to define preservation of input
content: the result of the any time warp must be identical to
the input motion under the allowed transformations. Since
time warps do not change poses, this can be performed by
simply enforcing the constraints of dynamic time warping
within our optimization.

In the context of our problem, the constraints of dynamic
time warping can be stated as follows. It requires complete
time warps, in that they subjectively contain the entirety of
the input motion. In other words, large blocks of motion
should not be deleted, although it is acceptable to speed
through them quickly. It also requires monotonic time warps,
in that they do not loop or reverse time.

We enforce these constraints in a discrete time compres-
sion, which we define as follows. Given a sequence of in-
put frames {x1, . . . ,xn}, any time warp can be specified by
a subsequence of its frame indices. The identity time warp
is defined by the complete subsequence {1, . . . ,n}. Any sub-
sequence of the identity time warp yields a monotonic time
warp, as its indices must be strictly increasing. Any mono-
tonic time warp is also complete if it includes 1 and n, and
satisfies the property that no two adjacent elements differ by
more than some integer s. The latter constraint forces the
speed of the output to not exceed s times the original speed;
this prevents the time warp from skipping large blocks of
frames. These concepts are illustrated in Figure 3.

Time compressions are only one of many possible time
warps. However, we can reduce other desired warps to com-
pression by suitable transformations. Time modifications
and expansions are reformulated as compressions by up-
sampling the input. Backward time warps can be converted
to forward time warps by reversing the input. Finally, time
warps with multiple keytimes can be split into subproblems
of one of the aforementioned cases. As such, we will limit
our subsequent discussion to the case of compression.

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

y1 y2 y3 y4 y5x1 x2 x3 x4 x5 x6 x7 x8

1 3 1 2

y3z1 z2 z3

Figure 3: An input motion is compressed by selecting a sub-
sequence of its frames. Our constraints require that the first
and last frames are retained and that no gap between se-
lected frames exceeds a certain amount. The resulting output
is scored by computing local velocity and acceleration esti-
mates and comparing them to equivalently computed values
in the provided reference.

3.2. Objective

We aim to compute the quality of a candidate time warp with
respect to a provided reference motion. As mentioned be-
fore, finding a global correspondence between the input mo-
tion and the reference motion is generally neither possible
nor desirable.

Our technique uses a measure of local similarity to the
reference motion. It stems from the following intuition: a
pose is an indication of activity, and that activity is likely to
be executed with a certain timing. For example, a sitting pose
changes more slowly than a jumping pose. The input motion
may already exhibit such canonical timings, but time warps
induce changes to the velocity and acceleration of each pose.
Certain poses, such as ones from walking, exhibit natural
variations in velocity and acceleration. Other poses, such as
ones from jumping, exhibit nearly constant acceleration. At
a minimum, our objective should capture these variations.

Our solution uses a local score function that computes
whether the velocities and accelerations induced by the time
warp resemble those that appear in the reference motion. In
the context of discrete compression, this can be more for-
mally defined as follows. Suppose a candidate time warp
yields an output of {y1, . . . ,ym}. Using finite differences, we
compute feature vectors for each frame that encode pose, ve-
locity, and acceleration. The local score of a frame is then
defined as its distance to the nearest equivalently computed
feature vector from the reference motion. The value of the
objective function is defined as a sum of local scores:

m−1

∑
i=2

f (yi−1,yi,yi+1) . (1)

To compute meaningful velocities and accelerations, we
must first choose a proper representation of poses. We fol-
low the approach of Arikan and Forsyth [AF02] and compute

feature vectors for joint positions in the torso coordinate sys-
tem of the character. This transformation allows frames to be
represented independently of global position and orientation,
thus increasing the generality of the local timing models.

The function f (yi−1,yi,yi+1) is evaluated as follows. We
use the adjacent frames to compute finite-difference approx-
imations of ẏi and ÿi. These terms are assembled into a fea-
ture vector ŷi = [yi, ẏi, ÿi]. We perform a k-nearest-neighbor
query on equivalently computed feature vectors for the ref-
erence ẑ j . The value of f is then defined as the average Eu-
clidean distance between the feature vector and its nearest
neighbors:

f (yi−1,yi,yi+1) =
1
k ∑

ẑ j∈Ni

∥∥ŷi− ẑ j
∥∥ . (2)

Here, Ni is the set of k-nearest-neigbhors to ŷi. For the typi-
cal case of smaller reference motions, this can be performed
with a linear search. For larger reference motions, we use an
approximate nearest-neighbor data structure [AMN∗98].

One concern that arises here is that of temporal aliasing.
Our technique shares this issue with the dynamic time warp-
ing algorithm, as it also employs a discrete signal represen-
tation. However, we must take greater precautions, as alias-
ing artifacts can be exacerbated by the application of finite-
difference estimators. We initially experimented with multi-
scale representations of the input motion to account for vari-
able sampling, but found in the end that prefiltering with a
uniform low-pass filter was sufficient.

Our decision to avoid higher-order derivatives was moti-
vated by the need to balance the flexibility and generality
of the local timing model. Higher-order derivatives would
more accurately reflect the local properties of a given refer-
ence frame, but they would also be more sensitive to slight
differences and provide less meaningful feature vectors. Ul-
timately, our choice was made by a combination of intuition
and experimentation.

Before arriving at the current solution, we first tried a
purely kinematic approach that attempted to preserve veloci-
ties and accelerations of the input motion. We found that this
strategy works fairly well when the goal is to match the tim-
ing of the input motion as much as possible. However, it can
not be applied to more interesting cases in which the input
and reference differ.

We also considered a number of parametric statistical
models for the conditional probabilities of velocity and ac-
celeration given a certain pose. We found that, in practi-
cal use, the small sizes of the provided reference motions
made it difficult to produce reliable estimates without over-
fitting. While various forms of priors and dimensionality re-
duction could be applied, we opted for the nearest-neighbor
approach because of its relative simplicity and successful ap-
plication towards a number of difficult modeling problems in
graphics (e.g., [FTP03]) and other domains.

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

3.3. Optimization

Given the constraints and objective function described in the
previous sections, we can define a globally optimal opti-
mization procedure by transforming the problem into a con-
strained shortest path search. Note that, as with dynamic
time warping, we define global optimality with respect to
a discrete formulation.

We construct vertices that correspond to pairs of input
frames that may occur together in the warped output. This
allows us to represent the local terms of the objective func-
tion as edge weights. Formally, we denote each vertex by an
ordered pair of frames (xi,x j), where i< j and j− i≤ s. We
define directed edges connecting vertices (xi,x j) to (x j,xk)
with weight f (xi,x j,xk). This yields a directed acyclic graph
with ns vertices and ns2 edges.

Any path from (x1,xi) to (x j,xn) yields a time warp that
satisfies the desired constraints, and the total weight of such
a path is precisely the value of our objective. For example,
suppose the input consists of frames {x1, . . . ,x8}. Then a
time warp {1,2,5,6,8} corresponds to the path (x1,x2)→
(x2,x5) → (x5,x6) → (x6,x8). The edge weights sum to
the value of the objective: f (x1,x2,x5) + f (x2,x5,x6) +
f (x5,x6,x8). This example is shown in Figure 3.

A simple shortest path search will yield the optimal time
warp of the input if no other constraints are given. Since the
graph is directed and acyclic, such a search is linear in the
size of the input motion: O(ns2). However, in most cases,
we wish to find the optimal time warp given a target du-
ration m (although we show one example in our results in
which this is not the case). This condition can be satisified
by constraining the number of edges in the shortest path
search [Sai68]. Specifically, we want the shortest path from
(x1,xi) to (x j,xn) with precisely (m−2) edges.

The algorithm exploits the fact that the shortest path with
p edges must contain a shortest path of (p− 1) edges. This
is formalized by the following recurrence:

c1(xi,x j) = 0, (3)

cp(x j,xk) = min
i

cp−1(xi,x j) + f (xi,x j,xk), (4)

where cp(xi,x j) is the cost of the shortest p-edge path to
vertex (xi,x j). The minimization proceeds by dynamic pro-
gramming: first compute all 1-edge shortest paths, extend
those paths to yield 2-edge shortest paths, and so on. The op-
timal warp can be recovered by backtracking from the vertex
that minimizes cm−2(x j,xn).

Equivalently, this optimization can be viewed as a stan-
dard shortest path search on a directed acyclic graph
with vertices {(xi,x j)}×{1, . . . ,m− 2} and directed edges
(xi,x j, p)→ (x j,xk, p+1). Here, the× operator denotes the
Cartesian set product. From this perspective, the time com-
plexity of O(mns2) directly follows. Note that this is asymp-
totically identical to dynamic time warping.

So far, we have only described the case when the the first
and last frames of the output are required to match the first
and last frames of the input, respectively. Intermediate con-
straints may arise when more than two keytimes are spec-
ified. These can be enforced by requiring the path to pass
through specific vertices (xi,x j) at specific points p during
the optimization procedure, which essentially restarts the op-
timization with a modified initialization.

This latter observation can be exploited to achieve a sig-
nificant, although heuristic, speed improvement to our tech-
nique: we first solve a warp on a subsampled version of
the input motion (say, at 5Hz instead of 30Hz). The low-
resolution solution can then be used to set intermediate key-
times for a full-resolution search. In practice, we found that
this optimization could significantly improve runtimes with
minimal degradation of quality.

3.4. Postprocessing

Our technique produces a discrete approximation to the opti-
mal time warp. A direct playback of the selected frames will
often yield jumpy results. We resolve this issue by applying
a moving average filter to the warp, which is then used to re-
sample the joint angles of the input motion using quaternion
slerp interpolation.

Time warps, regardless of how they are generated, can
modify the frequency content of the input. For instance,
compressions of time can cause a barely perceivable sway to
become a nervous jitter. Conversely, expansions of time can
yield overly smoothed results. Such results are sometimes
desirable, but they can be distracting in many applications.

A simple solution to the compression issue is to apply a
uniform smoothing to the output motion, but doing so also
dampens important details such as environmental contacts.
Such contacts should ideally be identified and incorporated
into a smoothing process. Unfortunately, this is problematic
for motion-capture data, as robust contact detection is diffi-
cult and prone to error.

We instead chose to extend the simple solution by apply-
ing a local averaging operation to each frame using a win-
dow size equal to the amount of compression. This approach
exploits the observation that undesirable high-frequency de-
tails are only introduced during higher compressions and
adapts the amount of smoothing accordingly. While it can
still cause certain details to be lost, we found that it produces
good results in practice.

The expansion issue is more difficult to resolve, as restor-
ing high frequencies involves hallucinating information ab-
sent from the original motion. Existing techniques could be
applied to restore detail and texture (e.g., [PB02]). We chose
to present our results without additional modification be-
cause we did not find such artifacts to be very distracting.

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

4. Results

We demonstrate the application of our technique to editing
longer input motions rather than interpolating closely spaced
keytimes. This emulates the typical use of keyframing tools
for time warping: animators first set keytimes to meet dura-
tion or synchronization requirements and then add interme-
diate keytimes to achieve the desired results. In these cases,
guided time warping can be used to create a detailed time
warp without further user intervention. We envision this to
be the primary use of our technique.

All of our evaluations are performed on motion capture
data downsampled to 30Hz. We believe our technique to
be equally applicable towards high-quality keyframe anima-
tion, but we unfortunately did not have access to such data
sets. Given the difficulty of presenting our results in figure
form, we instead refer to specific examples shown in our ac-
companying video as V1–V8.

Our first set of results (V1–V5) emphasize how our tech-
nique can change the durations of input motions while pre-
serving their own natural timing properties. We also show
results (V6–V8) in which we modify the timing properies
for different stylistic effects.

4.1. Preservation

Time warping is commonly applied to modify the duration
of motions while preserving the natural timing properties of
input motion as much as possible. As described previously,
our technique can be applied to this task by providing the
input motion as its own reference. In our video, we compare
our preservation results to those achieved by linear warping.
Since duration changes are only specified with two keytimes,
this emulates the behavior of spline-based solutions such as
motion warping [WP95] when given the same task.

Our first evaluations (V1–V3) test a simple base case for
our technique: silence removal. This commonly used ap-
proach for audio can be applied to motions by detecting pe-
riods of inactivity. However, a naive implementation of such
a technique would be difficult to tune, as it is rare that mo-
tions are perfectly static. In contrast, our technique smoothly
speeds through low-activity periods in the motion.

These evaluations highlight another desirable aspect of
our technique: it manages to preserve the timing of ballis-
tic activities (jumping and falling) without any prior knowl-
edge of torques, constraints, or gravity. Instead, our objec-
tive function realizes that accelerations during such motions
are practically constant and thus penalizes any temporal de-
viations. In fact, when presented with the task of shorten-
ing a more challenging motion with only walking and jump-
ing (V4), the walking portions are sped up extensively while
the jumping portions are preserved with framewise accuracy.
In contrast, a linear scaling of the time axis yields slightly
slower locomotion, but implausible jumps. These results are
mirrored for expansions of the time axis (V5).

4.2. Modification

Sometimes time warps are used for the express purpose of
deviating from natural timing. To apply our technique for
such tasks, the user simply has to provide a reference mo-
tion with the desired timing properties. Note that our present
formulation requires the reference motion to have the same
skeleton as the input.

Our first modification evaluation (V6) shows a limited
form of style modification to a weak boxing sequence. By
providing an aggressive sequence of punches as a refer-
ence, our method warps the original input to provide the
desired effect while maintaining its duration. Hsu and col-
leagues [HPP05] present a similar evaluation which relies
on the availability of matched pairs of motions. Guided time
warping has no such requirement: the provided input and
reference motions can have a different sequence of punches.
Although their technique can modify poses as well, there
are benefits to restricting modifications to the time axis, as
evidenced by our application of the computed time warp
to video footage taken during the capture session. This is
shown in Figure 4 and in our accompanying video.

While it may be possible to provide canned reference mo-
tions, it is often the case that the only motion available is the
one to be modified. In these situations, animators typically
must resort to manual warping. Our technique can applied
to simplify this task. We captured a standard locomotion se-
quence and adjusted a small segment of it to look more like a
limp (V7). This was a slow process, and repeating it for the
rest of the motion would have been very tedious. Instead,
we used guided time warping to propagate the timing prop-
erties of the modified segment to the remainder of the clip.
One important note about this result is the somewhat un-
natural upper body movement in both the reference and the
output. This is an unfortunate artifact of any time warping
algorithm, since poses in a true limp differ from those in a
normal walk. In spite of this, we chose to include this exam-
ple because it highlights the ability of our technique to work
with very short reference motions.

McCann and colleagues [MPS06] demonstrated a physi-
cal approach to solve a similar task to the previous example
using a modification of gravity. While this may appear to be
simpler than our technique, it requires estimating physical
parameters which are often unavailable for animated charac-
ters. Furthermore, it is often desirable to have motions that
defy physical laws. We demonstrate one such application by
automatically emphasizing jumps using slow motion (V8).
For this example, we performed a manual time warp to a
brief portion of the input motion and used it as a reference.
The result shows the remainder of the jumps emphasized in
a similar fashion, despite the fact that the jumps in the input
differ significantly from those in the reference. For this eval-
uation, we did not care how long the output was, so we ran
an unconstrained version of our shortest path search (§3.2).

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

Trial n m r s Objective Optimization Heuristic
V1 493 280 493 8 1.3 s 2.7 s 0.17 s
V2 316 180 316 10 1.7 s 1.4 s 0.11 s
V3 378 180 378 8 1.9 s 1.4 s 0.14 s
V4 486 320 486 8 1.0 s 2.6 s 0.20 s
V5 401 150 101 4 0.3 s 0.7 s 0.06 s
V6 601 301 301 8 1.3 s 3.8 s 0.23 s
V7 573 143 45 8 0.9 s 1.8 s 0.14 s
V8 1524 590 91 8 2.5 s 0.1 s —

Table 1: Parameters and running times for our evaluations,
measured on a 2.4 GHz Pentium 4 PC. The fast optimization
time for V8 is due to its unconstrained optimization.

4.3. Performance

Details of our evaluations are given in Table 1. We used k = 3
nearest neighbors for our local score function. The values
n, m, and r are frame counts for the input, output, and ref-
erence motions, respectively. The value s is the frame skip
limit, as defined in §3.1. These frame counts are given after
reduction to compression. The time expansion for V5, for
instance, was implemented by first upsampling a 101-frame
input to 401 frames and then compressing it using the orig-
inal 101-frame input as the reference. A similar tactic was
employed for V6, V7, and V8, as they required both com-
pressions and expansions of the time axis.

We provide separate timings for the objective evaluation
(§3.2) and optimization (§3.3) components of our technique.
The former was implemented in C++ using publicly avail-
able software [AMN∗98], and the latter was implemented in
MATLAB. The cited timings use our full optimization pro-
cedure. We also applied the heuristic from §3.3 by down-
sampling our motions by a factor of eight. This yields much
faster optimization times with little effect on quality. How-
ever, it does not change objective evaluation times because
it eventually performs a pruned search at full resolution.

5. Conclusion

Time warping is a fundamental motion editing operation that
can be used for a variety of applications. However, time
warps must be carefully constructed to ensure that the de-
sired results are achieved. Guided time warping provides a
simple alternative to tedious manual specification that can fit
into existing animation workflows.

One limitation of our technique, as presented, is that it can
sometimes be uncompromisingly automatic. After keytimes
and a reference motion are provided, an animator has little
control over the shape of the resulting warp curve. More key-
times could be specified, but it may also be desirable to add
smoothness and tangent constraints. These would be difficult
to encode into guided time warping due to its local objec-
tive. A possible solution might employ motion interpolation
methods (e.g., [KG03]): by blending between guided warps
and spline warps of the same motion, a user effectively has
continuous control over the influence of the reference.

Figure 4: Guided time warping is not only useful for warp-
ing animated sequences, but other types of signals as well.
We used the output of our technique to warp video sequences
taken during our motion capture session. Here, a weak box-
ing sequence is made to look more aggressive.

Our results show the preservation of plausible jumps, but
it is important to emphasize that our technique does not ex-
plicitly maintain physical consistency. When this is a prior-
ity, other techniques should be applied [MPS06]. A benefit
using a data model is its capability to handle non-physical
animations. Our focus on animated characters suggests the
use of our technique for cartoons and special effects. How-
ever, a broader view of non-physical animation encompasses
things such as camera movement, motion graphics, video
footage, and so on. In future work, we hope to expand upon
possible applications of our technique in these areas.

Ultimately, all time warps are limited by the fact that they
can not create or modify actual postures. No amount of tem-
poral adjustment can convert a slow walk into a fast sprint,
let alone convert a poorly constructed motion into a good
one. As such, we view our technique as complementary to
motion synthesis methods in two regards. From an applica-
tion perspective, guided time warping is intended for use in
later stages of the animation pipeline, when full resynthesis
is often impractical. From a technical perspective, our tech-
nique can add new capabilities to existing synthesis tech-
niques by providing a more flexible representation of timing.

Acknowledgements

We thank the members of the MIT CSAIL Computer Graph-
ics Group for valuable advice and assistance. This work was
supported in part by the Singapore-MIT GAMBIT Game
Lab and software donations from Autodesk.

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion
generation from examples. ACM Transactions on Graph-
ics 21, 3 (July 2002), 483–490.

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.:
Motion synthesis from annotations. ACM Transactions on
Graphics 22, 3 (July 2003), 402–408.

c© Association for Computing Machinery, Inc. 2007.



E. Hsu, M. da Silva, & J. Popović / Guided Time Warping for Motion Editing

V1 V2 V3 V4 V5 V6 V7 V8

Figure 5: Derivatives of time warps for our video evaluations, shown on logarithmic scales. The center lines in each plot
correspond to unit time, and the limits correspond to tenfold slow-motion and fast-forward.

[AMN∗98] ARYA S., MOUNT D. M., NETANYAHU

N. S., SILVERMAN R., WU A. Y.: An optimal algorithm
for approximate nearest neighbor searching fixed dimen-
sions. Journal of the ACM 45, 6 (1998), 891–923.

[BH00] BRAND M., HERTZMANN A.: Style machines.
In Proceedings of ACM SIGGRAPH 2000 (July 2000),
Annual Conference Series, ACM SIGGRAPH, pp. 183–
192.

[BW95] BRUDERLIN A., WILLIAMS L.: Motion sig-
nal processing. In Computer Graphics (Proceedings of
SIGGRAPH 95) (Aug. 1995), Annual Conference Series,
ACM SIGGRAPH, pp. 97–104.

[CWS98] COVELL M., WITHGOTT M., SLANEY M.:
Mach1: Nonuniform time-scale modification of speech.
In Proceedings of 1998 IEEE International Conference
on Acoustics, Speech, and Signal Processing (1998),
pp. 328–338.

[DYP03] DONTCHEVA M., YNGVE G., POPOVIĆ Z.:
Layered acting for character animation. ACM Transac-
tions on Graphics 22, 3 (July 2003), 409–416.

[FTP03] FREEMAN W. T., TENENBAUM J. B., PASZTOR

E.: Learning style translation for the lines of a drawing.
ACM Transactions on Graphics 22, 1 (Jan. 2003), 33–46.

[GVdG00] GOMES J., VELHO L., DA SILVA F. W.,
GOLDENSTEIN S. K.: Motion processing using vari-
able harmonic components. In Computer Animation 2000
(May 2000), pp. 62–70.

[HPP05] HSU E., PULLI K., POPOVIĆ J.: Style transla-
tion for human motion. ACM Transactions on Graphics
24, 3 (Aug. 2005), 1082–1089.

[KG03] KOVAR L., GLEICHER M.: Flexible automatic
motion blending with registration curves. In Symposium
on Computer Animation (SCA) (Aug. 2003), ACM Press,
pp. 214–224.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion
graphs. ACM Transactions on Graphics 21, 3 (July 2002),
473–482.

[Las87] LASSETER J.: Principles of traditional animation
applied to 3d computer animation. In Computer Graph-
ics (Proceedings of SIGGRAPH 87) (July 1987), vol. 21,
pp. 35–44.

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS

J. K., POLLARD N. S.: Interactive control of avatars an-
imated with human motion data. ACM Transactions on
Graphics 21, 3 (July 2002), 491–500.

[LWS02] LI Y., WANG T., SHUM H.-Y.: Motion texture:
A two-level statistical model for character motion synthe-
sis. ACM Transactions on Graphics 21, 3 (July 2002),
465–472.

[MPS06] MCCANN J., POLLARD N. S., SRINIVASA S.:
Physics-based motion retiming. In 2006 ACM SIG-
GRAPH / Eurographics Symposium on Computer Anima-
tion (Sept. 2006), pp. 205–214.

[PB02] PULLEN K., BREGLER C.: Motion capture as-
sisted animation: Texturing and synthesis. ACM Transac-
tions on Graphics 21, 3 (July 2002), 501–508.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Computer Graphics and Applications 18, 5
(1998), 32–40.

[RJ93] RABINER L. R., JUANG B.-H.: Fundamentals
of Speech Recognition. Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

[Sai68] SAIGAL R.: A constrained shortest route problem.
Operations Research 16, 1 (Jan.–Feb. 1968), 205–209.

[SSSE00] SCHÖDL A., SZELISKI R., SALESIN D. H.,
ESSA I.: Video textures. In Proceedings of ACM SIG-
GRAPH 2000 (July 2000), Annual Conference Series,
pp. 489–498.

[TBvdP04] THORNE M., BURKE D., VAN DE PANNE M.:
Motion doodles: an interface for sketching character mo-
tion. ACM Transactions on Graphics 23, 3 (Aug. 2004),
424–431.

[TM04] TERRA S. C. L., METOYER R. A.: Performance
timing for keyframe animation. In 2004 ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (July
2004), pp. 253–258.

[WP95] WITKIN A., POPOVIĆ Z.: Motion warping.
In Computer Graphics (Proceedings of SIGGRAPH 95)
(Aug. 1995), Annual Conference Series, ACM SIG-
GRAPH, pp. 105–108.

c© Association for Computing Machinery, Inc. 2007.


