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Lecture #2:  Advanced hashing and concentration bounds

o Bloom filters
o Cuckoo hashing
o Load balancing
o Tail bounds



Bloom filters

Idea:  For the sake of efficiency, sometime we allow our data structure to make mistakes

Bloom filter: Hash table that has only false positives
(may report that a key is present when it is not, but always reports
a key that is present)
Very simple and fast

Example: Google Chrome uses a Bloom filter to maintain its list of potentially
malicious web sites.
- Most queried keys are not in the table
- If a key is in the table, can check against a slower (errorless) hash table

Many applications in networking (see survey by Broder and Mitzenmacher)



Bloom filters

Data structure:   Universe 𝒰.  Parameters 𝑘,𝑀 ≥ 1

Maintain an array 𝐴 of 𝑀 bits; initially 𝐴 0 = 𝐴 1 = ⋯ = 𝐴 𝑀 − 1 = 0

Choose 𝑘 hash functions ℎ1, ℎ2, … , ℎ𝑘: 𝒰 → 𝑀

(assume completely random functions for sake of analysis)
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Data structure:   Universe 𝒰.  Parameters 𝑘,𝑀 ≥ 1

Maintain an array 𝐴 of 𝑀 bits; initially 𝐴 0 = 𝐴 1 = ⋯ = 𝐴 𝑀 − 1 = 0

Choose 𝑘 hash functions ℎ1, ℎ2, … , ℎ𝑘: 𝒰 → 𝑀

(assume completely random functions for sake of analysis)

To add a key 𝑥 ∈ 𝒰 to the dictionary 𝑆 ⊆ 𝒰, set bits
𝐴 ℎ1 𝑥 ≔ 1, 𝐴 ℎ2 𝑥 ≔ 1,… , 𝐴 ℎ𝑘 𝑥 ≔ 1

To answer a query:  𝑞 ∈ 𝑆 ?

Check whether 𝐴 ℎ𝑖 𝑥 = 1 for all 𝑖 = 1,2,… , 𝑘

If yes, answer Yes.  If no, answer No. 



Bloom filters

No false negatives:  Clearly if 𝑥 ∈ 𝑆, we return Yes.
But there is some chance that other keys have caused the bits in positions 
ℎ1 𝑥 ,… , ℎ𝑘(𝑥) to be set even if 𝑥 ∉ 𝑆.
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No false negatives:  Clearly if 𝑥 ∈ 𝑆, we return Yes.

Let us assume that 𝑆 = 𝑛.
Compute ℙ[𝐴 ℓ = 0] for some location ℓ ∈ [𝑀]:

𝑝 𝑘,𝑁 = 1 −
1

𝑀
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≈ 𝑒−
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But there is some chance that other keys have caused the bits in positions 
ℎ1 𝑥 ,… , ℎ𝑘(𝑥) to be set even if 𝑥 ∉ 𝑆.

Heuristic analysis:
(Here we use the approximation  1 − 1

𝑀

𝑀
≈ 𝑒−1

for 𝑀 large enough.)
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No false negatives:  Clearly if 𝑥 ∈ 𝑆, we return Yes.

Let us assume that 𝑆 = 𝑛.
Compute ℙ[𝐴 ℓ = 0] for some location ℓ ∈ [𝑀]:
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But there is some chance that other keys have caused the bits in positions 
ℎ1 𝑥 ,… , ℎ𝑘(𝑥) to be set even if 𝑥 ∉ 𝑆.

Heuristic analysis:
(Here we use the approximation  1 − 1

𝑀

𝑀
≈ 𝑒−1

for 𝑀 large enough.)

If each location in 𝐴 is 0 with probability 𝑝(𝑘, 𝑁), 
then a false positive for 𝑥 ∉ 𝑆 should happen with 
probability at most

1 − 𝑝 𝑘, 𝑁
𝑘
≈ 1 − 𝑒−
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𝑘
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𝑥 ∉ 𝑆 should happen with probability at most
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But the actual fraction of 0′𝑠 in the hash table is a random variable 𝑋𝑘,𝑁 with expectation
𝔼 𝑋𝑘,𝑁 = 𝑝 𝑘,𝑁

To get the analysis right, we need a concentration bound:  Want to say that 𝑋𝑘,𝑁 is close to its 
expected value with high probability.          [We will return to this in the 2nd half of the lecture]



Bloom filters

Heuristic analysis:

If each location in 𝐴 is 0 with probability 𝑝(𝑘, 𝑁), then a false positive for 
𝑥 ∉ 𝑆 should happen with probability at most

1 − 𝑝 𝑘,𝑁
𝑘
≈ 1 − 𝑒−

𝑘𝑁
𝑀

𝑘

But the actual fraction of 0′𝑠 in the hash table is a random variable 𝑋𝑘,𝑁 with expectation
𝔼 𝑋𝑘,𝑁 = 𝑝 𝑘,𝑁

To get the analysis right, we need a concentration bound:  Want to say that 𝑋𝑘,𝑁 is close to its 
expected value with high probability.          [We will return to this in the 2nd half of the lecture]

If the heuristic analysis is correct, it gives nice estimates:
For instance, if 𝑀 = 8𝑁, then choosing the optimal value of 𝑘 = 7 gives 
false positive rate about 2%.
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Cuckoo hashing is a hash scheme with worst-case constant lookup time. 
The name derives from the behavior of some species of cuckoo, where the 
cuckoo chick pushes the other eggs or young out of the nest when it 
hatches; analogously, inserting a new key into a cuckoo hashing table may 
push an older key to a different location in the table.



Cuckoo hashing

Idea:  Simple hashing without errors
Lookups are worst case 𝑂(1) time
Deletions are worst case 𝑂(1) time
Insertions are expected 𝑂(1) time
Insertion time is 𝑂(1) with good probability      [will require a concentration bound] 



Cuckoo hashing

Data structure:   Two tables 𝐴1 and 𝐴2 both of size 𝑀 = 𝑂 𝑁

Two hash functions ℎ1, ℎ2 ∶ 𝒰 → [𝑀]

(will assume hash functions are fully random)

When an element 𝑥 ∈ 𝑆 is inserted, if either 𝐴1 ℎ1 𝑥 or 𝐴2[ℎ2 𝑥 ]
is empty, store 𝑥 there.
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Two hash functions ℎ1, ℎ2 ∶ 𝒰 → [𝑀]

(will assume hash functions are fully random)

When an element 𝑥 ∈ 𝑆 is inserted, if either 𝐴1 ℎ1 𝑥 or 𝐴2[ℎ2 𝑥 ]
is empty, store 𝑥 there.

Bump:

Whenever an element 𝑧 is bumped from 𝐴𝑖 ℎ𝑖 𝑧 , 
attempt to store it in the other location 𝐴𝑗 ℎ𝑗 𝑧
(here 𝑖, 𝑗 = 1,2 or 2,1 )

If both locations are occupied, then place 𝑥 in 𝐴1 ℎ1 𝑥
and bump the current occupant.



Cuckoo hashing

Data structure:   Two tables 𝐴1 and 𝐴2 both of size 𝑀 = 𝑂 𝑁

Two hash functions ℎ1, ℎ2 ∶ 𝒰 → [𝑀]

(will assume hash functions are fully random)

When an element 𝑥 ∈ 𝑆 is inserted, if either 𝐴1 ℎ1 𝑥 or 𝐴2[ℎ2 𝑥 ]
is empty, store 𝑥 there.

Bump:

Whenever an element 𝑧 is bumped from 𝐴𝑖 ℎ𝑖 𝑧 , 
attempt to store it in the other location 𝐴𝑗 ℎ𝑗 𝑧
(here 𝑖, 𝑗 = 1,2 or 2,1 )

Abort:  After 6 log𝑁 consecutive bumps, stop the process and build a 
fresh hash table using new random hash functions ℎ1, ℎ2.

If both locations are occupied, then place 𝑥 in 𝐴1 ℎ1 𝑥
and bump the current occupant.



Cuckoo hashing

Arrows represent the alternate location for each key.

If we insert an item at the location of 𝐴, it will get 
bumped, thereby bumping 𝐵, and then we are done.

Cycles are possible (where the insertion process never 
completes).  What’s an example?

Alternately (as in the picture), we can use a single table with 2𝑀
entries and two hash functions ℎ1, ℎ2: 𝒰 → 2𝑀

(with the same “bumping” algorithm)



Cuckoo hashing

Data structure:   Two tables 𝐴1 and 𝐴2 both of size 𝑀 = 𝑂 𝑁

Two hash functions ℎ1, ℎ2 ∶ 𝒰 → [𝑀]

(will assume hash functions are fully random)

Theorem:

Expected time to perform an insert operation is 𝑂(1) if 𝑀 ≥ 4𝑁.



Cuckoo hashing

Data structure:   Two tables 𝐴1 and 𝐴2 both of size 𝑀 = 𝑂 𝑁

Two hash functions ℎ1, ℎ2 ∶ 𝒰 → [𝑀]

(will assume hash functions are fully random)

Theorem:

Expected time to perform an insert operation is 𝑂(1) if 𝑀 ≥ 4𝑁.

Pretty good… but only 25% memory utilization.
Can actually get about 50% memory utilization.

Experimentally, with 3 hash functions instead of 2, can get ≈ 90%
utilization, but it is an open question to provide tight analyses for 
𝑑 hash functions when 𝑑 ≥ 3.
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Load balancing

Suppose we have 𝑁 jobs to assign to 𝑁 servers.

Clearly we could achieve a load of one job/server, but this might result in an 
expensive/hard-to-parallelize allocation rule.
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Now a union bound shows that the probability of any server getting at least 𝑘 jobs is 
at most 1/𝑁.
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Let 𝑋𝑖 be the number of jobs assigned to the 𝑖th server.
By linearity of expectation, 𝔼 𝑋𝑖 = σ𝑗=1

𝑁 ℙ job 𝑗 → server 𝑖 = 𝑁 ⋅ 1/𝑁 = 1.
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Let 𝑋𝑖 be the number of jobs assigned to the 𝑖th server.
By linearity of expectation, 𝔼 𝑋𝑖 = σ𝑗=1

𝑁 ℙ job 𝑗 → server 𝑖 = 𝑁 ⋅ 1/𝑁 = 1.

We showed that ℙ 𝑋𝑖 ≥
8 log 𝑁

log log 𝑁
≤

1

𝑁2 and then took a union bound over all 𝑁 servers.

This is a common analysis technique:
If a random variable (like 𝑋𝑖) depends in a “smooth” way on the outcome of many independent
events, then it is likely not too far from its expectation.

“Smooth” in this case means that the outcome of any decision (where to put job 𝑗) does not 
affect the value of 𝑋𝑖 by too much (only by 1).

This is an example of a concentration bound.



EXERCISE

Is it concentrated?    [why or why not?]

#1: Choose a uniformly random vector 𝑋 ∈ ℝ𝑛 with 𝑋 = 𝑋1
2 + 𝑋2

2 +⋯+ 𝑋𝑛
2 = 1

What is 𝔼[𝑋12] ?

What is the typical value of the maximum:  max 𝑋1 , 𝑋2 , … , 𝑋𝑛 ?

#2 Rich get richer:   Suppose we have 𝑁 people.  Everyone starts with 1 dollar.
We assign 𝑁2 more dollars in rounds.
𝒊th round:  If person 𝑗 already has 𝑛𝑗 dollars, we give them the 𝑖th dollar with probability

𝑛𝑗

𝑖 − 1

i.e., with probability to the proportional the amount of money they already have.
Let 𝑋𝑖 be the amount of money person 𝑖 ends up with.

What is the typical value of 𝑋1?  Is 𝑋1 concentrated?
What is the typical value of max(𝑋1, 𝑋2, … , 𝑋𝑛)?  Is it concentrated?
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Markov’s inequality

The more you know:  The more information we have about a random variable, the 
stronger the concentration we can prove.

The most basic concentration bound is Markov’s inequality.  It requires knowing only 
the expected value:

If 𝑋 is a non-negative random variable, then for any 𝜆 ≥ 1,

ℙ 𝑋 ≥ 𝜆 ≤
𝔼 𝑋

𝜆

Proof?  (it’s written there)

Example:
If your expected revenue is $10,000, then the probability to make $1,000 is at most 1/10.



EXERCISE

Markov’s inequality:  If 𝑋 is a non-negative random variable, then for any 𝜆 ≥ 1,

ℙ 𝑋 ≥ 𝜆 ≤
𝔼 𝑋

𝜆

A permutation is an invertible mapping 𝜋 ∶ 1,2, … , 𝑛 → {1,2, … , 𝑛}

A number 𝑗 is called a fixed point of 𝜋 if 𝜋 𝑗 = 𝑗.

Exercise:  Prove that if 𝜋 is a uniformly random permutation, then

ℙ 𝜋 has more than 𝑘 fixed points ≤
1

𝑘



Chebyshev’s inequality

Recall that the variance of a random variable 𝑋 is the value

var 𝑋 = 𝜎2 = 𝔼 𝑋 − 𝔼𝑋 2
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Chebyshev’s inequality

Application:
Suppose we map 𝑁 balls into 𝑁 bins using a 2-universal hash family ℋ.  Then 
with probability at least 1/2, the maximum load is at most 𝑂 𝑁 .

Let 𝐿𝑖 be the load of bin 𝑖.
Let 𝑋𝑖𝑗 be the indicator random variable such that 𝑋𝑖𝑗 = 1 ↔ 𝑖th bin gets the 𝑗th ball.
Note that 𝔼 𝑋𝑖𝑗 = 1/𝑁 for each 𝑖 = 1, … , 𝑁.
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Suppose we map 𝑁 balls into 𝑁 bins using a 2-universal hash family ℋ.  Then 
with probability at least 1/2, the maximum load is at most 𝑂 𝑁 .

Let 𝐿𝑖 be the load of bin 𝑖.
Let 𝑋𝑖𝑗 be the indicator random variable such that 𝑋𝑖𝑗 = 1 ↔ 𝑖th bin gets the 𝑗th ball.
Note that 𝔼 𝑋𝑖𝑗 = 1/𝑁 for each 𝑖 = 1, … , 𝑁.

Exercise:  For any random variable 𝑌, var 𝑌 = 𝔼 𝑌2 − 𝔼𝑌 2
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Application:
Suppose we map 𝑁 balls into 𝑁 bins using a 2-universal hash family ℋ.  Then 
with probability at least 1/2, the maximum load is at most 𝑂 𝑁 .

Let 𝐿𝑖 be the load of bin 𝑖.
Let 𝑋𝑖𝑗 be the indicator random variable such that 𝑋𝑖𝑗 = 1 ↔ 𝑖th bin gets the 𝑗th ball.
Note that 𝔼 𝑋𝑖𝑗 = 1/𝑁 for each 𝑖 = 1, … , 𝑁.

Exercise:  For any random variable 𝑌, var 𝑌 = 𝔼 𝑌2 − 𝔼𝑌 2

So write:       var 𝐿𝑖 = 𝔼 𝑋𝑖1 +⋯+ 𝑋𝑖𝑁
2 − 1

We have 𝔼 𝑋𝑖𝑗
2 = 𝔼 𝑋𝑖𝑗 = 1/𝑁 and 𝔼 𝑋𝑖𝑗𝑋𝑖𝑘 = ℙ ℎ 𝑗 = ℎ 𝑘 = 𝑖 ≤ 1/𝑁2

using the 2-universal property, so

var 𝐿𝑖 ≤ 𝑁 ⋅
1

𝑁
+
𝑁 𝑁 − 1

𝑁2
− 1 = 1 −

1

𝑁
≤ 1



Chebyshev’s inequality

var 𝐿𝑖 ≤ 𝑁 ⋅
1

𝑁
+
𝑁 𝑁 − 1

𝑁2
− 1 = 1 −

1

𝑁
≤ 1

Chebyshev’s inequality:
If 𝑋 is a random variable with var 𝑋 = 𝜎2, then for any 𝜆 > 0,

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆𝜎 ≤
1

𝜆2



Chebyshev’s inequality

var 𝐿𝑖 ≤ 𝑁 ⋅
1

𝑁
+
𝑁 𝑁 − 1

𝑁2
− 1 = 1 −

1

𝑁
≤ 1

Chebyshev’s inequality:
If 𝑋 is a random variable with var 𝑋 = 𝜎2, then for any 𝜆 > 0,

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆𝜎 ≤
1

𝜆2

Apply Chebyshev’s inequality to 𝐿𝑖 , yielding

ℙ 𝐿𝑖 − 1 ≥ 𝜆 ≤
1

𝜆2



Chebyshev’s inequality

var 𝐿𝑖 ≤ 𝑁 ⋅
1

𝑁
+
𝑁 𝑁 − 1

𝑁2
− 1 = 1 −

1

𝑁
≤ 1

Chebyshev’s inequality:
If 𝑋 is a random variable with var 𝑋 = 𝜎2, then for any 𝜆 > 0,

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆𝜎 ≤
1

𝜆2

Apply Chebyshev’s inequality to 𝐿𝑖 , yielding

ℙ 𝐿𝑖 − 1 ≥ 𝜆 ≤
1

𝜆2

Thus ℙ 𝐿𝑖 − 1 ≥ 2𝑁 ≤
1

2𝑁
, so a union bound yields

ℙ max 𝐿1, … , 𝐿𝑁 ≥ 2𝑁 + 1 ≤
1

2



EXERCISE

Let 𝑝 be the actual percentage of the population the prefers candidate 
#1 and let Ƹ𝑝 = 𝑋1 +⋯+ 𝑋𝑛 /𝑛 denote the empirical mean.

Exercise:
Prove that if we want 𝑝 − Ƹ𝑝 ≤ 𝜖 to hold with 99% probability, 
then we need only sample 𝑛 = 𝑂(1/𝜖2) voters.

Chebyshev’s inequality:
If 𝑋 is a random variable with var 𝑋 = 𝜎2, then for any 𝜆 > 0,

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆𝜎 ≤
1

𝜆2

Suppose we choose 𝑛 independent random voters and ask them 
whether they prefer candidate #1 over candidate #2.
We see outcomes 𝑋1, 𝑋2, … , 𝑋𝑛 ∈ 0,1 .



Sums of independent random variables

Hoeffding’s inequality:
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent random variables where, for each 1 ≤ 𝑖 ≤ 𝑛, 
we have 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖.  Let 𝑋 = (𝑋1 +⋯+ 𝑋𝑛)/𝑛.  Then:

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆 ≤ 2 𝑒
−

2𝜆2𝑛2

σ𝑖=1
𝑛 𝑎𝑖−𝑏𝑖

2



Sums of independent random variables

Hoeffding’s inequality:
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent random variables where, for each 1 ≤ 𝑖 ≤ 𝑛, 
we have 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖.  Let 𝑋 = (𝑋1 +⋯+ 𝑋𝑛)/𝑛.  Then:

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆 ≤ 2 𝑒
−

2𝜆2𝑛2

σ𝑖=1
𝑛 𝑎𝑖−𝑏𝑖

2

Suppose we wanted our poll from the previous slide to be correct with probability at least 
1 − 𝛿.  Chebyshev’s inequality would tell us we need at most 𝑂 1

𝜖2 𝛿
samples.



Sums of independent random variables

Hoeffding’s inequality:
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent random variables where, for each 1 ≤ 𝑖 ≤ 𝑛, 
we have 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖.  Let 𝑋 = (𝑋1 +⋯+ 𝑋𝑛)/𝑛.  Then:

ℙ 𝑋 − 𝔼𝑋 ≥ 𝜆 ≤ 2 𝑒
−

2𝜆2𝑛2

σ𝑖=1
𝑛 𝑎𝑖−𝑏𝑖

2

Suppose we wanted our poll from the previous slide to be correct with probability at least 
1 − 𝛿.  Chebyshev’s inequality would tell us we need at most 𝑂 1

𝜖2 𝛿
samples.

Setting 𝑎𝑖 = 0, 𝑏𝑖 = 1, and 𝜆 = 𝜖 in Hoeffding’s inequality gives

ℙ Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤ 2𝑒−2𝜖
2𝑛

so we only need 𝑛 ≤ 𝑂
log

1

𝛿

𝜖2
samples.



Sums of independent random variables

Chernoff bound (multiplicative):
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent 0,1 -valued random variables.
Let 𝑝𝑖 = 𝔼[𝑋𝑖],    𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛,    𝜇 = 𝔼[𝑋].  Then for every 𝛽 ≥ 1:

ℙ 𝑋 ≥ 𝛽𝜇 ≤
𝑒𝛽−1

𝛽𝛽

𝜇

ℙ 𝑋 ≤ 𝜇/𝛽 ≤
𝑒
1
𝛽
−1

𝛽𝛽

𝜇



Sums of independent random variables

Chernoff bound (multiplicative):
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent 0,1 -valued random variables.
Let 𝑝𝑖 = 𝔼[𝑋𝑖],    𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛,    𝜇 = 𝔼[𝑋].  Then for every 𝛽 ≥ 1:

𝑁 balls thrown randomly into 𝑁 bins.
𝑋𝑖 = 1 if ith ball ends up in first bin and 𝑋𝑖 = 0 otherwise.
Then 𝑋 = # of balls in first bin.  As we calculated earlier, 𝔼 𝑋 = 1

For 𝛽 ≈
log 𝑁

log log 𝑁
, the Chernoff bound gives ℙ 𝑋 ≥ 𝛽 ≤ 1/𝑁2

Reproduce balls in bins:

ℙ 𝑋 ≥ 𝛽𝜇 ≤
𝑒𝛽−1

𝛽𝛽

𝜇

ℙ 𝑋 ≤ 𝜇/𝛽 ≤
𝑒
1
𝛽
−1

𝛽𝛽

𝜇



Sums of independent random variables

Chernoff bound (multiplicative):
Let 𝑋1, … , 𝑋𝑛 be a sequence of independent 0,1 -valued random variables.
Let 𝑝𝑖 = 𝔼[𝑋𝑖],    𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛,    𝜇 = 𝔼[𝑋].  Then for every 𝛽 ≥ 1:

ℙ 𝑋 ≥ 𝛽𝜇 ≤
𝑒𝛽−1

𝛽𝛽

𝜇

ℙ 𝑋 ≤ 𝜇/𝛽 ≤
𝑒
1
𝛽
−1

𝛽𝛽

𝜇

𝑁 balls thrown randomly into 𝑁 bins.
𝑋𝑖 = 1 if ith ball ends up in first bin and 𝑋𝑖 = 0 otherwise.
Then 𝑋 = # of balls in first bin.  As we calculated earlier, 𝔼 𝑋 = 1

For 𝛽 ≈
log 𝑁

log log 𝑁
, the Chernoff bound gives ℙ 𝑋 ≥ 𝛽 ≤ 1/𝑁2

Reproduce balls in bins: This type of analysis works for much more 
complicated kinds of events (see homework #2)



(return to) Bloom filters

Heuristic analysis:

If each location in 𝐴 is 0 with probability 𝑝(𝑘, 𝑁), then a false positive for 
𝑥 ∉ 𝑆 should happen with probability at most

1 − 𝑝 𝑘,𝑁
𝑘
≈ 1 − 𝑒−

𝑘𝑁
𝑀

𝑘

But the actual fraction of 0′𝑠 in the hash table is a random variable 𝑋𝑘,𝑁 with expectation
𝔼 𝑋𝑘,𝑁 = 𝑝 𝑘,𝑁

To get the analysis right, we need a concentration bound:  Want to say that 𝑋𝑘,𝑁 is close to its 
expected value with high probability.

Let’s analyze!



(return to) Bloom filters

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.



(return to) Bloom filters

Let 𝑋 be the # of 0’s in the hash table after 𝑁
elements are hashed.

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.



(return to) Bloom filters

Let 𝑋 be the # of 0’s in the hash table after 𝑁
elements are hashed.

Consider the 𝑁 elements to hash:
𝑥1, 𝑥2, … , 𝑥𝑁

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.
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Let 𝑋 be the # of 0’s in the hash table after 𝑁
elements are hashed.

Consider the 𝑁 elements to hash:
𝑥1, 𝑥2, … , 𝑥𝑁

Let 𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.



(return to) Bloom filters

Let 𝑋 be the # of 0’s in the hash table after 𝑁
elements are hashed.

Consider the 𝑁 elements to hash:
𝑥1, 𝑥2, … , 𝑥𝑁

Let 𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

Define 𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗 to be the expected # of 0’s in the hash table 
after hashing the first 𝑗 elements.

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.



(return to) Bloom filters

Let 𝑋 be the # of 0’s in the hash table after 𝑁
elements are hashed.

Consider the 𝑁 elements to hash:
𝑥1, 𝑥2, … , 𝑥𝑁

Let 𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

Define 𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗 to be the expected # of 0’s in the hash table 
after hashing the first 𝑗 elements.

Note that 𝑥1, … , 𝑥𝑁 are any set of keys.  The randomness here is all in the choice of the 
hash functions ℎ1, … , ℎ𝑘. 

We have an array with 𝑀 bits and to hash an 
element 𝑥 ∈ 𝒰, we set the bits in positions 
ℎ1 𝑥 , ℎ2 𝑥 ,… , ℎ𝑘 𝑥 to 1.
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Let 𝑋 be the # of 0’s in the hash table after 𝑁 elements are hashed.

Consider the 𝑁 elements to hash:   𝑥1, 𝑥2, … , 𝑥𝑁

𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗

We calculated before that 𝑋0 = 𝔼 𝑋 = 𝑚 1 −
1

𝑚

𝑘𝑁
[why?]
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Let 𝑋 be the # of 0’s in the hash table after 𝑁 elements are hashed.

Consider the 𝑁 elements to hash:   𝑥1, 𝑥2, … , 𝑥𝑁

𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗

We calculated before that 𝑋0 = 𝔼 𝑋 = 𝑚 1 −
1

𝑚

𝑘𝑁
[why?]

Now we want to know the probability that 𝑋 is much different from its expectation 𝑋0.
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Let 𝑋 be the # of 0’s in the hash table after 𝑁 elements are hashed.

Consider the 𝑁 elements to hash:   𝑥1, 𝑥2, … , 𝑥𝑁

𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗

We calculated before that 𝑋0 = 𝔼 𝑋 = 𝑚 1 −
1

𝑚

𝑘𝑁
[why?]

Now we want to know the probability that 𝑋 is much different from its expectation 𝑋0.

Claim #1:   𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑘 for all 𝑗 = 1,2,… , 𝑁 − 1
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Let 𝑋 be the # of 0’s in the hash table after 𝑁 elements are hashed.

Consider the 𝑁 elements to hash:   𝑥1, 𝑥2, … , 𝑥𝑁

𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗

We calculated before that 𝑋0 = 𝔼 𝑋 = 𝑚 1 −
1

𝑚

𝑘𝑁
[why?]

Now we want to know the probability that 𝑋 is much different from its expectation 𝑋0.

Claim #1:   𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑘 for all 𝑗 = 1,2,… , 𝑁 − 1

Claim #2:   𝔼 𝑋𝑗+1 𝐻 𝑥1 , … , 𝐻 𝑥𝑗 = 𝑋𝑗 for all 𝑗 = 1,2,… , 𝑁 − 1



(return to) Bloom filters

Let 𝑋 be the # of 0’s in the hash table after 𝑁 elements are hashed.

Consider the 𝑁 elements to hash:   𝑥1, 𝑥2, … , 𝑥𝑁

𝐻 𝑥𝑖 = ℎ1 𝑥𝑖 , … , ℎ𝑘 𝑥𝑖

𝑋𝑗 = 𝔼 𝑋 𝐻 𝑥1 , 𝐻 𝑥2 , … , 𝐻 𝑥𝑗

We calculated before that 𝑋0 = 𝔼 𝑋 = 𝑚 1 −
1

𝑚

𝑘𝑁
[why?]

Now we want to know the probability that 𝑋 is much different from its expectation 𝑋0.

Claim #1:   𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑘 for all 𝑗 = 1,2,… , 𝑁 − 1

Claim #2:   𝔼 𝑋𝑗+1 𝐻 𝑥1 , … , 𝐻 𝑥𝑗 = 𝑋𝑗 for all 𝑗 = 1,2,… , 𝑁 − 1

Such a sequence of random variables is called a martingale



Azuma’s inequality

Suppose that {𝑋0, 𝑋1, … , 𝑋𝑁} is a martingale such that for some constants {𝑐𝑗}, 
𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑐𝑗 for all 𝑗 = 0,1, … , 𝑁 − 1.  Then for any 𝜆 > 0,

ℙ 𝑋𝑁 − 𝑋0 ≥ 𝜆 ≤ 2 exp −
𝜆2

2 𝑐1
2 +⋯+ 𝑐𝑁

2



Azuma’s inequality

Suppose that {𝑋0, 𝑋1, … , 𝑋𝑁} is a martingale such that for some constants {𝑐𝑗}, 
𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑐𝑗 for all 𝑗 = 0,1, … , 𝑁 − 1.  Then for any 𝜆 > 0,

ℙ 𝑋𝑁 − 𝑋0 ≥ 𝜆 ≤ 2 exp −
𝜆2

2 𝑐1
2 +⋯+ 𝑐𝑁

2

For our problem:  𝑐1 = 𝑐2 = ⋯ = 𝑐𝑁 = 𝑘

So the probability that the # of 0’s differs from its expectation by more than 𝜆 is at most
2 exp(−𝜆2/2𝑘2𝑁)

So the deviation is ≈ 𝑘 𝑁 and is tightly concentrated in this window.



(take home) EXERCISE

Suppose that {𝑋0, 𝑋1, … , 𝑋𝑁} is a martingale such that for some constants {𝑐𝑗}, 
𝑋𝑗+1 − 𝑋𝑗 ≤ 𝑐𝑗 for all 𝑗 = 0,1, … , 𝑁 − 1.  Then for any 𝜆 > 0,

ℙ 𝑋𝑁 − 𝑋0 ≥ 𝜆 ≤ 2 exp −
𝜆2

2 𝑐1
2 +⋯+ 𝑐𝑁

2

For our problem:  𝑐1 = 𝑐2 = ⋯ = 𝑐𝑁 = 𝑘

So the probability that the # of 0’s differs from its expectation by more than 𝜆 is at most
2 exp(−𝜆2/2𝑘2𝑁)

So the deviation is ≈ 𝑘 𝑁 and is tightly concentrated in this window.

Improve the error probability to 2 exp(−𝜆2/2𝑘𝑁) using a different martingale.


