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Abstract. Finding point correspondences plays an important role in automati-
cally building statistical shape models from a training set of 3D surfaces. For the
point correspondence problem, Davies et al. [1] proposed a minimum-description-
length-based objective function to balance the training errors and generalization
ability. A recent evaluation study [2] that compares several well-known 3D point
correspondence methods for modeling purposes shows that the MDL-based ap-
proach [1] is the best method.
We adapt the MDL-based objective function for a feature space that can exploit
nonlinear properties in point correspondences, and propose an efficient optimiza-
tion method to minimize the objective function directly in the feature space, given
that the inner product of any vector pair can be computed in the feature space. We
further employ a Mercer kernel [3] to define the feature space implicitly. A key
aspect of our proposed framework is the generalization of the MDL-based ob-
jective function to kernel principal component analysis (KPCA) [4] spaces and
the design of a gradient-descent approach to minimize such an objective func-
tion. We compare the generalized MDL objective function on KPCA spaces with
the original one and evaluate their abilities in terms of reconstruction errors and
specificity. From our experimental results on different sets of 3D shapes of human
body organs, the proposed method performs significantly better than the original
method.

1 Introduction

Statistical shape models show considerable promise as a basis for understanding and
interpreting images and have been widely used in model-based image segmentation
and tracking [5]. To automatically build statistical shape models [5] from a training set
of shapes, finding point correspondence across images becomes an essential task. In
this paper, we focus on establishing dense 3D point correspondences between all 3D
surfaces of a training set.

There are as many proposed methods and algorithms in automatically computing
point correspondences as in statistical shape modeling itself. These approaches vary
in terms of the shape representation and registration procedure [6]. Davies et al. [1]
assumed the projected coefficients of principal component analysis (PCA) of the data
have multivariate Gaussian distributions and derived an objective function for point
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correspondence problems that uses minimum description length (MDL) to balance the
training errors and generalization ability. This optimization approach, although slow
in convergence, produces high quality matching results. A recent evaluation study [2]
compares several well-known 3D point correspondence methods for modeling purposes
and shows that the MDL-based approach [1] generates the best results.

Despite all the progress, finding accurate 3D point correspondences has remained
a challenging task, largely due to the lack of a well-defined metric for a good corre-
spondence. However, certain properties of a good correspondence can be identified. For
example, various nonlinear properties, such as curvature [7] and torsion [8], can not
be quantified nor computed by linear combinations of point positions but have been
shown not only necessary for modeling shapes but also helpful for finding point corre-
spondences. This suggests that point correspondence algorithms should take nonlinear
information into considerations.

Exploiting nonlinear properties in point correspondences to improve results is the
main motivation of this paper. Despite being ranked as the state-of-the-art method for
finding point correspondences, the MDL-based approach [1] does not capture such
knowledge directly, as no local patch information is used. In addition, one key assump-
tion behind the MDL-based approach is that the projected coefficients on principal com-
ponent analysis have a multivariate Gaussian distribution. Such Gaussian properties are
preserved and propagated back via affine transformations (e.g., PCA reconstruction) to
all points in the set, which may not reflect reality. In this paper, we propose to overcome
this limitation by assuming that the distribution of the projected PCA coefficients of the
data in a feature space is a multivariate normal; thus we allow a nonlinear mapping from
the input space to the feature space. We further adapt the MDL-based objective function
for the feature space, given that the inner product of any vector pair can be computed in
the feature space.

Besides presenting a novel objective function, we further propose an efficient op-
timization method to minimize the objective function directly in the feature space, in-
spired by the success of applying the gradient descent method proposed by Heimann
et al. [9][10] on the original MDL-based approach. In order to compute the gradient
of the proposed objective function in the feature space, we identify the key condition,
which requires the inner product of any vector pair to be computed in the feature space.
This requirement is extremely useful for guiding us to a broad set of feature spaces for
efficient optimization.

We further employ the Mercer kernel [3] to define the feature space implicitly, given
its nice property of supporting pair-wise vector inner product computation. A key aspect
of our proposed framework is to generalize the MDL-based objective function to kernel
principal component analysis (KPCA) [4] spaces and a gradient descent approach to
minimize such an objective function. Although there has been some previous work
[11][12] using KPCA in active shape models to model shapes, we are not aware of
any previous work that generalizes the MDL-based objective functions to KPCA or
shows how to optimize such an objective function. With our generalized framework, the
original MDL framework turns out to be a special case where a homogenous polynomial
kernel of degree 1 (i.e., an inner product between two vectors) is used.
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We compare the generalized MDL objective function on KPCA spaces with the
original MDL approach [1] and evaluate their abilities in terms of reconstruction error
and specificity. From our experimental results on different sets of 3D shapes of different
organs of the body, the proposed method performs significantly better than the original
method.

The two main contributions of the paper are summarized below. First, there is a
significant theoretical generalization of the MDL-based objective function to feature
spaces using gradient descent energy minimization. The original MDL framework, is
a special case of this generalization, when an inner product is used. Second, besides
the theoretical improvement, the empirical contribution is also substantial. Overcoming
the limitation that nonlinear properties are not included in the original MDL framework
directly is significant as our proposed KPCA approach yields much better results.

2 Previous Work

The objective functions automatic methods used to quantize the quality of point corre-
spondences can be partitioned into three classes: shape-based, model-based and information-
theoretic objective functions [5]. Shape-based objective functions are based on similar-
ity between shapes and the representative examples use Euclidean distances, bending
energy, curvatures, shape contexts [13] and SPHARM [14] to measure shape similarity.
In contrast model-based objective functions consider the statistics of the dissimilarity
among shapes; the determinant of the model covariance is a representative example.
Information-theoretic objective functions uses information theoretic measures, such as
MDL and mutual information [1][15]. A recent evaluation study [2] that compares sev-
eral well-known 3D point correspondence methods for modeling purposes shows that
an information theoretic objective function, the MDL-based approach [1], is the best
method. Because of its superior performance, this class of information theoretic objec-
tive functions is the main focus in this paper.

In the following, we first review the MDL-based approach [1] in detail. Then, PCA
and KPCA, which play important roles in both MDL-based objective functions and
understanding the proposed framework, are reviewed. Assume that we have a training
set of N 3D shapes, Γ = {x1, x2, . . . , xN}, and each shape is represented by M 3D
landmarks points. Conventionally, we can represent each such shape by a vector with
dimension 3M×1. Note that 3D shapes are used for illustration only and all the methods
we will review can be applied to both 2D curves and 3D shapes.

2.1 Correspondence by Minimizing Description Length

Davies et al. [1] proposed a MDL-based objective function to quantize the quality of the
point correspondences. In this paper, we use the commonly-used version F proposed
by Thodberg [16] as defined below.

F =
N∑
k=1

Lk with Lk =

{
1 + log(λk/λcut), if λk ≥ λcut
λk/λcut, otherwise

(1)
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Given a set of shapes and a set of known point correspondences, PCA is computed
on the set of shapes, and the computed eigenvalues, {λk|k = 1, . . . , N}, are used to
calculate F in (1). λcut is a parameter that determines the point where we effectively
switch between the determinant-type term (i.e., the if-part in (1)) and the trace-type
term (i.e., the otherwise-part in (1)). The determinant-type terms jointly measure the
volume of the training set after correspondence in shape space, which favors compact-
ness. The trace-type terms jointly measure similarity of each pair of the training shapes
after correspondence via Euclidean distance.

Given the above MDL-based objective function, an efficient method for manipu-
lating point correspondences and an optimization algorithm that minimizes the objec-
tive function are required in order to find optimal point correspondences [5][9]. Typ-
ically, manipulating point correspondences is treated as parameterizing and then re-
parameterizing the surfaces. A parameterization assigns every point on the surface of
the mesh to a unique point on the unit sphere, although parameterizations may not
exist for arbitrary surfaces. In this paper, we assume that the 3D shapes are closed two-
manifolds of genus 0. We use a conformal mapping as a parameterization and a repa-
rameterization that modifies the parameterization based on kernels with strictly local
effects, as developed in [9].

We assume that the parameterization of the ith shape is controlled by some param-
eter vector αi, for which the individual parameters are given by {αi,a|a = 1, . . . , A}.
The gradient descent approach is used to minimize F with respect to a parameter vector
αi. The Jacobian matrix for the gradient of the objective function is defined as

∂F

∂αi,a
=

N∑
k=1

∂Lk
∂λk

∂λk
∂αi,a

(2)

It is easy to compute ∂Lk

∂λk
(see (1)) and so we focus on ∂λk

∂αi,a
in the following dis-

cussions. ∂λk

∂αi,a
can be computed by using the following chain rule for derivatives.

∂λk
∂αi,a

=
∂λk
∂xi
· ∂xi
∂αi,a

(3)

While ∂xi

∂αi,a
is typically computed by using finite differences, the following analytic

form for ∂λk

∂xi
exists:

∂λk
∂xi

= 2(1− 1
N

)ci,kbk. (4)

where ci,k is the projection coefficient of the i-th shape vector xi onto the k-th eigen-
vector bk.

2.2 PCA and KPCA

PCA PCA is a common approach to model the shape variations of a given training set
of 3D shapes. The total scatter matrix S is defined as

S =
N∑
i=1

(xi − x̄)(xi − x̄)t (5)
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where x̄ is the mean shape vector as defined below.

x̄ =
∑N
i=1 xi
N

(6)

PCA finds a projection axis b that maximizes btSb. Intuitively, the total scatter of
the projected samples is maximized after the projection of the samples onto b. The
optimal Q projection axes bq, q = 1, . . . , Q that maximize the above criterion are the
eigenvectors of S corresponding to the largest Q eigenvalues, {λq|q = 1, . . . , Q}. The
reconstruction x̃ of shape vector x can be used to approximate it.

x̃ = x̄+
Q∑
q=1

cqbq (7)

where cq = (x− x̄)tbq .

KPCA Assume that we have an input space of shapes Ψ = R3M×1, a feature space Ω,
and a mapping φ : Ψ → Ω. Instead of performing PCA in the input space Ψ , KPCA
performs PCA in the feature space Ω.

The mean of the data points in the feature space, x̂, is defined as follows.

x̂ =
1
N

N∑
i=1

φ(xi) (8)

The covariance matrix C can be defined as follows.

C =
N∑
i=1

(φ(xi)− x̂)(φ(xi)− x̂)t (9)

Let β denoting the column vector with entries, β1, β2, . . . , βN , which can be com-
puted by solving the following eigenvalue problem.

Nλβ = K̃β (10)

where K̃ij = (K− 1NK−K1N + 1NK1N )ij , K = [Kij ] is a N ×N Gram matrix,
and Kij = φ(xi) · φ(xj).

To require e, an eigenvector, to be a unit vector, an additional constraint on β must
be posed.

1 = λβ · β (11)

Let {eq, q = 1, . . . , Q} be the eigenvectors of C with the largest Q eigenvalues
{λq|q = 1, . . . , Q}. Any eigenvector ei of C can be expressed as

ei =
N∑
j

βijφ(xj) (12)
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The reconstruction φ̃(x) of φ(x) can be used to approximate it.

φ̃(x) = x̂+
Q∑
q=1

cqeq (13)

where cq = (φ(x)− x̂) · eq .
Instead of using an explicitly defined mapping φ, we can use a Mercer kernel [3]

that satisfies the following constraint:

K(xi, xj) = φ(xi) · φ(xj) (14)

Commonly used Mercer kernels include Gaussian radial basis functions (RBFs),
inhomogeneous polynomial functions, and sigmoidal functions. Gaussian RBFs are de-
fined as

K(xi, xj) = exp(−||xi − xj ||
2

2σ2
) (15)

where σ ∈ R is a kernel parameter, and ||x|| is the Euclidean norm of x. Inhomogeneous
polynomial kernels of degree d ∈ R are defined as

K(xi, xj) = (xi · xj + 1)d (16)

In contrast with inhomogeneous polynomial kernels where the constant one is added in
the definition, homogeneous polynomial kernels of degree d are defined as

K(xi, xj) = (xi · xj)d (17)

The common inner product between two vectors xi and xj is a special case of a ho-
mogenous kernel of degree 1. If such a kernel is used in KPCA, KPCA degenerates to
PCA.

3 The Proposed Framework

In the following, we first focus on general feature spaces and then on special feature
spaces called Mercer-kernels-induced feature spaces.

3.1 General Feature Spaces

In contrast with [1][16][9] that perform all the work in the input space Ψ , we generalize
and perform our work in the feature space Ω. In other words, instead of using the
eigenvalues computed by PCA in (1), we propose to use those computed by PCA in the
feature space Ω. We propose a gradient descent approach to minimize the objective
function based on the ideas in Section 2.2. to compute the Jacobian matrix for the
gradient of the objective function.

The Jacobian matrix for the gradient of the objective function is defined as

∂F

∂αi,a
=

N∑
k=1

∂Lk
∂λk

∂λk
∂αi,a

(18)
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As in Section 2.1, it is easy to compute ∂Lk

∂λk
, and so we focus on ∂λk

∂αi,a
here. ∂λk

∂αi,a

can be computed by using the following chain rule for derivatives.

∂λk
∂αi,a

=
∂λk
∂φ(xi)

· ∂φ(xi)
∂αi,a

(19)

The term, ∂φ(xi)
∂αi,a

, is typically approximated by using finite differences. For example,

we can use a forward difference to approximate ∂φ(xi)
∂αi,a

as follows.

∂φ(xi)
∂αi,a

≈ φ(xi +4αi,a)− φ(xi) (20)

where4αi,a is a predefined small quantity. In addition to the above forward difference
method, it is also possible to use other finite difference methods, such as backward and
central differences and high-order difference methods.

In this paper, we focus on a general class of finite difference methods whose cal-
culations can be represented by a weighted linear combination,

∑P
p=1 wpφ(yp), where

{wp|p = 1, . . . , P} is a given set of weights and {yp|p = 1, . . . , P} is a given set of
shape vectors as shown below.

∂φ(xi)
∂αi,a

≈
P∑
p=1

wpφ(yp) (21)

Note that forward, backward and central differences, as well as high order difference
methods, are representative examples in this class.

In contrast with using finite differences to approximate ∂φ(xi)
∂αi,a

, the following ana-

lytic form for ∂λk

∂φ(xi)
exists1.

∂λk
∂φ(xi)

= 2(1− 1
N

)ci,kek (22)

where ci,k is the projection coefficient of the feature vector φ(xi) of i-th shape vector
xi onto the k-th eigenvector ek.

By plugging (21), (22) and (12) into (19),

∂λk
∂αi,a

=
∂λk
∂φ(xi)

· ∂φ(xi)
∂αi,a

≈ 2(1− 1
N

)ci,kek · (
L∑
l

wlφ(yl))

= 2(1− 1
N

)ci,k(
N∑
j=1

βk,jφ(xj)) · (
P∑
p=1

wpφ(yp))

= 2(1− 1
N

)ci,k
N∑
j=1

βk,j

P∑
p=1

wpφ(xj) · φ(yp)

(23)
1 The full derivations can be found in appendix A.
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From (23), a key insight is that the calculation of ∂λk

∂αi,a
depends on the inner product

of two vectors in the feature space (φ(xj)·φ(yp)). If an explicitly defined mapping φ(x)
from Ψ to Ω is used, ∂λk

∂αi,a
can be computed by (23).

It is easy to see that the previous methods [1][16][9] are special cases of our work
when φ(x) = x. In other words, when φ(x) = x is used in the proposed framework,
the objective function degenerates to (1)[1][16], and the above gradient descent opti-
mization approach degenerates to the one in Section 2.2 [9]. In addition, our framework
allows nonlinear information easily if we choose φ(x) as a nonlinear mapping from Ψ
to Ω.

3.2 Mercer-Kernel-Induced Feature Spaces

Instead of using an explicitly defined mapping φ(x) from Ψ to Ω , we can in (23) use a
Mercer kernel (14) that implicitly induces a mapping. In other words, (23) can be further
simplified as follows by plugging (14) into the right-hand side of the last equation in
(23).

∂λk
∂αi,a

≈ 2(1− 1
N

)ci,k
N∑
j=1

βk,j

P∑
p=1

wpK(xj , yp)

(24)

Although nonlinear mappings are allowed in both (23) and (24), their time com-
plexities can be very different. In contrast with the time complexity of using (23) to
compute ∂λk

∂αi,a
depending on the dimensionality of the feature space, the time complex-

ity of using (24) to compute ∂λk

∂αi,a
depends on the dimensionality of the input space. If a

Mercer kernel is used, our framework can deal with nonlinear mapping functions whose
feature spaces with infinite dimensionality (the dimensionality of φ(x) is infinite) and
still keep its time complexity dependent on the dimensionality of the input space and
not on the dimensionality of the feature space. Note that although we focus on using a
Mercer kernel in the above discussions, the proposed framework naturally allows using
multiple Mercer kernels without any modifications.

4 Experiments

We have 3D triangular mesh models of 17 left kidneys, 15 right kidneys, and 18 spleens
as shown in Figure 1. All 3D meshes are constructed from CT scans of different pa-
tients2. After correspondences are found, all the mesh models of the same organ have
the same number of vertices (2563) and the same number of faces (5120), and all ver-
tices are used as landmarks to represent the shapes. Two methods, the proposed method
and MDL, are compared. The code [10][9] that implements the ideas described in Sec-
tion 2.1 is used as an implementation of MDL, and the implementation of the proposed

2 We constructs the shape of an organ from manual segmentation of CT scans of a patient by
using marching cubes in ITK-SNAP
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method is built on top of it. The same heuristic used in [10][9] is used to select λcut val-
ues for the organ dataset on which the two methods are compared. A weighted forward
difference (e.g., a weighted form of (20)) is used in (21).

We follow a standard procedure extensively used in [1][5][2][9] to compare dif-
ferent point correspondence methods when the ground truth correspondences among
different shapes are not available, and two standard evaluation measures, leave-one-
out cross validation and specificity, are used. Leave-one-out cross validation is used
to determine how accurately an algorithm will be able to predict data that it was not
trained on. The evaluation measure for this method is the difference between an un-
known shape and its reconstruction. In contrast, given a set of shapes sampled from the
probability density function of the training set, the specificity measure computes the
average distance from each sampled shape to the nearest element of the training set. In
both measures, the Euclidean distance (i.e, the sum of the distances between all pairs of
corresponding landmarks) is used to measure the difference between two shapes.

Figure 2 shows the changes in leave-one-out reconstruction errors for different or-
gans with different kernel parameters and the numbers of principal components in use.
The kernel parameters can greatly affect the reconstruction errors; for example, the pa-
rameters in Gaussian RBF kernels, 9 and 10, gave significantly lower errors than 2 and
16 in Figure 2(a). In addition, some feature spaces induced by using different parame-
ters in Mercer kernels failed to capture the nonlinear properties in the point correspon-
dences and performed worse than MDL. The proposed method with Gaussian RBF ker-
nels, MDL+K(G), and the best kernel parameters, is better than MDL for left kidneys
and spleens and comparable to MDL for right kidneys. In contrast,the proposed method
with inhomogeneous polynomial kernels, MDL+K(P), and the best kernel parameters,
is comparable to MDL in all the datasets. Figure 3 shows that the specificity measures
for different organs change with different kernel parameters and with the numbers of
principal components in use. MDL+K(G) and MDL+K(P) have better performances
than MDL, which has either the worst or the second worst performance in all datasets.
From these two figures, it can be concluded that MDL+K(G) is the best among the
compared methods. Table 1 shows point correspondences resulting from the models
with the lowest reconstruction errors in Figure 2 in for visual comparisons.

The better performance of MDL+K(G) is mainly attributed to the fact that KPCA
with Gaussian RBF kernels can model nonlinear properties in the point correspon-
dences, while PCA can not. The comparisons between MDL+K(G) and MDL+K(P)
show that for the test datasets, Gaussian RBF kernels are more suitable than MDL+K(P)
in capturing nonlinear properties in the point correspondences.

5 Conclusions and Future Work

In this paper, we generalize the MDL-based objective function to feature spaces and
propose a gradient descent approach to minimize the objective function. The original
MDL framework is a special case of this theory when an inner product is used in the
proposed framework. We empirically compare the generalized MDL objective function
on KPCA spaces with the original one. From our experimental results on different sets
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Fig. 1: Some examples of the 3D triangular meshes of different organs used in the exper-
iments. From the top row to the bottom row are left kidneys, right kidneys and spleens,
respectively.

of 3D shapes of different organs, the proposed method is better than the MDL in terms
of the reconstruction errors and specificity.

Instead of using the reconstruction errors and specificity, we plan to use some
datasets whose ground truth correspondences are known to directly compare the pro-
posed method with other existing methods. We currently use a brute-force approach to
test all possible kernel parameter values and select the best one. Because the effect of
kernel parameters can affect the reconstruction errors and specificity greatly, a future
study is to investigate how to choose the kernel parameters that perform best and under
what conditions on input shapes the proposed framework is guaranteed to perform bet-
ter than the original one. In the experiments, we only focus on Mercer kernels that can
implicitly induce nonlinear feature spaces. However, the induced nonlinear mappings
may not be anatomically meaningful. Hence, an interesting future direction is to in-
corporate priori knowledge into the Mercer kernel, so that an anatomically meaningful
feature space can be induced.
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Appendix A

In the following, we will derive an analytic form for ∂λk

∂φ(xi)
. Assume the k-th eigen-

vector and eigenvalue of C defined in (9) are ek and λk, respectively. By definition of
eigenvalues and eigenvectors of a matrix, we have Cek = λkek. The inner product of ek
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Table 1: The point correspondences found with the compared methods. The columns
show different organs. The rows show the results with the proposed method with Gaus-
sian RBF kernels, the results with the proposed method with inhomogeneous polyno-
mial kernels and the results with MDL, respectively. Points that correspond are shown
in same colors.

Left Kidney Right Kidney Spleens

MDL+K(G)

MDL+K(P)

MDL

and Cek, etkCek, is λk because etkλkek = λk and the above relation can be expressed
by using the following equation.

λk =
N∑
i=1

etk(φ(xi)− x̂)(φ(xi)− x̂)tek

=
N∑
i=1

((φ(xi)− x̂)tek)2 (25)

where the second equality is obtained by substituting C by its definition in (9).
∂λk

∂φ(xi)
can be obtained by the following chain rules.

∂λk
∂φ(xi)

=
∂λk

∂(φ(xi)− x̂)tek
∂(φ(xi)− x̂)tek
∂(φ(xi)− x̂)

∂(φ(xi)− x̂)
∂φ(xi)

= 2(φ(xi)− x̂)teketk(1− 1
N

)I

= 2(1− 1
N

)(φ(xi)− x̂)teketk (26)

I is an identity matrix both of whose dimensions are the same as ek. For some nonlinear
mapping functions φ, the dimensionality of φ(x) can be infinite. Note that ∂λk

∂φ(xi)
in (26)

is treated as a row vector but it is defined as a column vector in the main paper.
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(b) Left kidneys
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(c) Right kidneys
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(d) Right kidneys
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(e) Spleens
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(f) Spleens

Fig. 2: How the leave-one-out reconstruction errors for different organs change with
different kernel parameters and the numbers of principal components in use. The rows
show different organs. The first column shows the results with the Gaussian RBF ker-
nels while the second column shows the results with inhomogeneous polynomial ker-
nels.
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(a) Left kidneys
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(b) Left kidneys
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(c) Right kidneys
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(d) Right kidneys

5 6 7 8 9 10 11 12 13 14 15
1265

1270

1275

1280

1285

1290

1295

1300
Spleens

the number of principal component in use

sp
ec

ifi
ci

ty

 

 
kmdl (16)
kmdl (10)
kmdl (9)
kmdl (4)
kmdl (2)
mdl

(e) Spleens
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(f) Spleens

Fig. 3: How the average specificity for different organs change with different kernel
parameters and the numbers of principal components in use. The rows show different
organs. The first column shows the results with the Gaussian RBF kernels while the
second column shows the results with inhomogeneous polynomial kernels.


