
Chapter 9 

Memory 

9.1. Introduction 

Memory and its management affect the performance of computer sys- 
tems in &o major ways. First, almost every system h.as a memory con- 
straint: a limit on the number of “threads of control” that can be active 
simultaneously, imposed by the availability of memory. A memory con- 
straint places an upper bound on the extent to which prccessing resources 
(CPUs, disks, etc.) can be utilized concurrently, a?d thus on the 
throughput of the system. Second, there is overhead associated with 
memory management. As an example, swapping a user between primary 
memory and secondary storage places service demands on the I/O subsys- 
tem (and the CPU, as well). To the extent that the operating system 
devotes processing resources to the management of merr,ory, the progress 
of “useful” work is impeded. 

Although memory seldom was mentioned explicitly .n Parts I and II, 
specific implicit assumptions were made in each example : 
l When we described the intensity of a workload by its population N (a 

closed model with a batch workload), we were assurring that the sys- 
tem had a memory constraint, that this constraint could be expressed 
in terms of a specific number of jobs (i.e., that all Jobs required the 
same amount of memory), and that there was a sufficient backlog of 
work that the system was continuously operating at it:; maximum mul- 
tiprogramming level. 

l When we described the intensity of a workload by its population N 
and average think time Z (a closed model with a terminal workload), 
we were assuming that the system had a fixed number of interactive 
users, and that enough memory existed to accommodate as many of 
these users as might concurrently require it (i.e., that there was no 
memory constraint >. 

179 



180 Representing Specific Subsystems: Memory 

l When we described the intensity of a workload by its arrival rate X (an 
open model with a transaction workload), we were again assuming that 
there was no memory constraint. The assumption in this case is in 
fact somewhat more extreme than in the case of a terminal workload, 
because there is no bound on the central subsystem population of a 
transaction workload. 

In each case we either ignored overhead due to memory management or 
included an average value in the service demands of every customer. 

These simple assumptions about system behavior are encountered fre- 
quently in modelling studies because they satisfy the conditions required 
for queueing network models to be separable, i.e., directly amenable to 
the efficient evaluation techniques described in Part II. The fact that 
these studies are successful indicates that the assumptions, if not strictly 
correct, are at least robust: 
l In an actual computer system, the multiprogramming level of a batch 

workload may vary over time for many reasons: the amount of 
memory available to the batch workload may vary, or the memory 
requirements of individual batch jobs may differ, or the backlog of 
work may drop below the memory constraint. However, usually it is 
possible to validate a model using a single multiprogramming level 
that represents the time-weighted average of the observed multipro- 
gramming levels. Projecting performance for a modified workload or 
configuration requires that the analyst estimate the effect of the 
modification on this average multiprogramming level. 

l Although there are times in almost every interactive system when a 
user must wait for access to memory, these times may be so infre- 
quent that the existence of the memory constraint can be ignored in 
constructing a model. A modification to the workload or configuration 
may affect the distribution of the number of users desiring memory, 
so the validity of the assumption must be checked in modelling such a 
modification. Doing so usually is not difficult. 

l Although detailed paging behavior is difficult to model, many operat- 
ing systems succeed in maintaining an average page transfer rate that 
is relatively insensitive to variations in configuration and workload. In 
such cases it is not difficult to characterize a customer’s service 
demand at the paging device. 
Of course, these simple assumptions are not always adequate. In this 

chapter we will extend the flexibility with which we represent memory 
and its management in queueing network models. The organization of 
the chapter reflects our belief that the throughput-limiting effect of a 
memory constrai2 is the prima/y efict of memory on performance, while 
the overhead associated with memory management is a significant secon- 
dary efsect. The chapter has five principal sections. First, we explore 



9.2. Systems with Known Average Multiprogramming Level 181 

some of the subtleties that can arise in the simple case of a system with a 
known average multiprogramming level. Next‘, we show how to represent 
the effect on system throughput of a memory constraint that is some- 
times, but not continuously, reached. Then, we describe how to 
represent overhead due to swapping (Section 9.4) and paging (Section 
9.5). Finally, we use case studies to relate these techniques to one 
another, supplementing the examples presented in each section. 

9.2. Systems with Known Average Multiprogramming 
Level 

This section serves to illustrate that subtleties can arise even in model- 
ling the apparently straightforward case of a batch workload with a known 
average multiprogramming level. 

A’ - 1 N Iv+1 

Figure 9.1 - Throughput Versus Multiprogramming Level 

In ail but the simplest of systems, the multiprogramming level of a 
workload (the number of active threads of control) is not constant, but 
varies over time due to factors such as competition for memory from 
other workloads, differences in the memory requirements of jobs, and the 
availability of jobs. As the multiprogramming level of a workload varies, 
so does its throughput. The relationship of throughput to multiprogram- 
ming level is illustrated qualitatively by the curve in Figure 9.1. At low 
multiprogramming levels, the marginal increase in throughput due to an 
additional active job is relatively large, since this job causes a relatively 
large increase in the concurrent activity of various processing resources. 



182 Representing Specific Subsystems: Memory 

As the multiprogramming level increases, the marginal increase in 
throughput becomes relatively small, because little additional concurrency 
is realized. (Figure 9.1 assumes that the overhead due to a job can be 
included as a component of its service demands, and is insensitive to 
multiprogramming level.) 

Imagine that we observe such a workload for a period of time and 
measure its average multiprogramming level, N. For the sake of argu- 
ment, let N be an integer. Now, consider two cases: 
l If the system had operated at a-constant multiprogramming level of N 

during the entire observation interval, then its throughput would have 
been X(N), as indicated in the figure. 

l If the system had operated at a constant multiprogramming level of 
N-l during the first half of the interval and at a constant multipro- 
gramming level of N-l-1 during the second half, then its throughput 
would have been XW--1) during the first half of the interval, 
X(N+ 1) during the second half, and XW- 1) + X(Nf 1) Over all 

which, as shown in the figure, is less than X(N). 2 
7 

Clearly, if the system actually had operated as in the latter case but a 
queueing network model of the system is evaluated at the average mul- 
tiprogramming level N, a discrepancy will result. This discrepancy often 
is small; systems almost inevitably are modelled successfully using an 
average multiprogramming level, which almost inevitably represents a 
time-weighted average of several different multiprogramming levels 
encountered during an observation interval. However, if greater accuracy 
is required, the model can be analyzed at each of the observed multipro- 
gramming levels and a weighted average of the results taken. This 
approach can be applied to multiple class models as well as single class 
models. Naturally, though, the incentive to be satisfied with the results 
of an analysis at average workload intensities increases with the number 
of combinations that would have to be considered to do otherwise. 

Here is an example based on actual data collected during a benchmark 
test of a system with three distinct workloads, each of batch type. As 
shown in Table 9.1, the multiprogramming levels of these workloads 
varied in a way that partitions the benchmark into three time periods. 
These periods are described by the first three lines of the table, which 
show the elapsed time (in seconds) at which the transitions between 
periods occurred, the duration of each period (again in seconds), and the 
proportion of the total observation interval due to each period. 

In order to parameterize a queueing network model, we need not only 
the workload intensities, as shown in Table 9.1, but also the service 
demands. These service demands, calculated from measurements taken 
during the benchmark, are shown in Table 9.2. 



9.2. Systems with Known Average Multiprogramming Level 183 

quantity period 1 period 2 period 3 average 
time interval 0 - 1268 1268 - 1734 1734 - 2108 

duration 1268 466 374 
proportion of total ,602 ,221 .177 

workload 1 2 2 3 2.18 
MPL workload 2 1 0 0 0.60 

workload 3 2 3 0 1.87 

Table 9.1 - Variation in Multiprogramming Level (MPL) 

I-. I service demand. seconds/iob 
device 

workload 1 
CPU 12.906 
disk 1 4.133 
disk 2 8.580 
disk 3 7.549 
disk 4 0.424 
disk 5 4.896 
disk 6 6.437 
disk 7 3.651 
disk 8 0 
disk 9 3.057 
disk 10 4.980 

workload 2 
1.315 
0.325 

0 
0.081 
0.001 
0.053 

0 
0 

0.082 
0.087 
0.141 

” 

workload 3 
0.632 
0.004 

0 
0.305 
0.181 
0.198 

0 
0 

0.888 
0.049 
0.080 

Table 9.2 - Service Demands 

First we consider a three class model of this system which we evaluate 
three times, using the three sets of multiprogramming levels correspond- 
ing to the three time periods of the benchmark. The results are shown in 
Table 9.3. 

Table 9.3 - Model Outputs for Three Time Periods 

The alternative is to evaluate the same three class model once, using 
the average multiprogramming levels for each workload. Table 9.4 com- 
pares measurement data, the model using the average multiprogramming 
level, and the model representing the three time periods. 



184 Representing Specific Subsystems: Memory 

model results 
quantity actual L 

value average MPL variable MPL 
value 1 discrep. value 1 discrep. 

CPU utilization .820 .819 0 .825 + 1% 
t’put., wkld. 1 1.59 1.51 - 5% 1.58 - 1 % 

jobs/min. wkld. 2 8.77 8.72 - 1% 8.86 + 1% 
wkld. 3 27.0 28.9 + 7% 27.6 + 2% 

Table 9.4 - Measurements Versus Two Modelling Approaches 

Two summary comments, the first of which is technical, the second 
philosophical: 
l As we have observed in other contexts (e.g., Chapter 41, average 

response time must be calculated in a different and less obvious way 
than average throughput, queue length, and utilization. These latter 
quantities are obtained by weighting the performance measure for each 
period by the relative length of that period. For example: 

u = 2 ( U during period p) X 
duration of period p 

all total duration of 
periods p observation interval 

Average response time, on the other hand, is obtained by weighting 
the performance measure for each period by the relative number of 
jobs completed during that period: 

E = 2 (I? during p> X 
(A’ during p) X (duration of p) 

a/l 2 (X during p) X (duration of p> 
periods p all 

periods p 

l We observe frequently in queueing network modelling that significant 
increases in effort (both in data collection and in analysis) yield only 
small increases in accuracy. This is perhaps the most important point 
illustrated by this example. 

9.3. Memory Constraints 

Since the throughput-limiting effect of a memory constraint is the pri- 
mary effect of memory on performance, its accurate representation can be 
important. We have noted that separable queueing network models allow 
the direct representation of certain extreme cases, such as a memory con- 



9.3. Memory Constraints 185 

straint that is continuously reached (batch workloads) and a memory con- 
straint that is never reached (terminal or transaction workloads). Unfor- 
tunately, the interesting general case of a memory constraint that is 
sometimes, but not continuously, reached, is an instance of simultaneous 
resource possession, which violates the conditions required for separability. 
Fortunately, rather elegant techniques exist for the indirect representation 
of such a memory constraint in separable models. These techniques are 
the subject of the present section. 

Our approach is based on the concepts of flow equivalence and 
hierarchical modelling, as described in Chapter 8. As shown in boxes 1 
and 2 of Figure 9.2, we initially are confronted with a queueing network 
model that is non-separable because of the existence of a memory queue. 
First, we decompose the model into two parts: the central subsystem plus 
the memory queue (box 2) and the external environment (box 1). Next, we 
define a load dependent service center (shown in box 3) that is flow 
equivalent to 2 from the point of view of the external environment. We 
do this using a separable subsystem model, which can be evaluated 
efficiently. Finally, we analyze a high-level model consisting of this FESC 
and the external environment (1 and 3 taken together). The joint 
analysis of 1 and 3, which again can be carried out efficiently, will yield 
nearly the same results as the joint analysis of 1 and 2, which cannot. 

This hierarchical analysis coincides nicely with the users’ view of the 
system. Referring again to Figure 9.2, each customer can be in one of 
two principal states : thinking (i.e., at the terminals; equivalently, within 
box 1) or ready (i.e., desiring to compute; equivalently, within box 2). 
The primary concern of a user is the average time spent in the ready state 
(box 21, which corresponds to average response time. It happens that, 
because of the memory constraint, ready customers can be in one of two 
sub-states: waiting (i.e., in the memory queue; equivalently, above the 
dashed line in box 2) or active (i.e., memory resident and competing for 
the processing resources of the central subsystem; equivalently, below the 
dashed line in box 2). This influences the completion rate of customers 
- the rate at which customers flow from box 2 back to box 1 - and thus 
average response time. The objective of our analytic approach is to define 
an FESC that characterizes this completion rate as a function of the cus- 
tomer population within box 2. This characterization will account for 
competition within the central subsystem (i.e., below the dashed line in 
box 2), and also for the effect of the memory constraint on the actual 
population of the central subsystem. 

We first discuss single class memory constrained systems, and then 
extend our discussion to the multiple class case. 



186 Representing Specific Subsystems: Memory 

I’--- _--_--_--------------- 

1 1 Memory queue I - ------------------- 

.- 13 1 
CPU -t-- 

_--__-_--_--------_-- , 

r- ID- 

“D- 
Disks 

I FESC I 
I I 
I I 
I I 
13 I 
L---I----------b----------l ._ - - 

Figure 9.2 - Modelling a Memory Constrained System 



9.3. Memory Constraints 187 

9.3.1. The Single Class Case 

We assume that customers have indistinguishable memory require- 
ments, as well as service demands. We denote the memory constraint by 
M. If a customer becomes ready when there are fewer than M other 
ready customers (i.e., when there are N-M or more thinking custo- 
mers> then that customer becomes active immediately. If a customer 
becomes ready when there are M or more other ready customers (and 
thus A4 active customers fully occupying memory) then that customer 
must wait until memory becomes available. 

Our task is to-define an FESC for the central subsystem plus the 
memory queue. As noted in Chapter 8, a load dependent service center 
has a throughput that varies with its queue length. The queue length at 
the FESC in box 3 corresponds to the number of ready customers - the 
number of customers anywhere within box 2. In the actual system, how 
does throughput vary with the number of ready customers? The answer 
to this question is displayed qualitatively in Figure 9.3 both with the 
memory constraint (the solid curve> and without (the dashed curve>. 
Once the memory constraint is reached (once there are A4 ready custo- 
mers), no further increase in throughput results from an increase in the 
number of ready customers. Why is this the case? Because these addi- 
tional ready customers are not active, but rather are waiting (for 
memory). This is made explicit by Table 9.5, in which X(n) denotes the 
throughput of the central subsystem with a population of it customers. 

Without memory 
constraint 

\ )4*- 
e-0 

/)) 

With memory 
constraint 

iI4 - 1 M Ii4 + 1 

Number of ready usem 

Figure 9.3 - Throughput Versus Number of Ready Customers 



188 Representing Specific Subsystems: Memory 

FESC queue length 

N 

ready active 
customers customers 

1 1 
2 2 

G-1 ML1 
M M 

M+l M 

Ii Ai 

throughput 

X(1) 
X(2) 

XL@ 1) 
X(M) 
X(+0 

X(;M) 

Table 9.5 - Throughput of a Memory Constrained System 

It is a simple matter to determine X(n). We define a low-level model 
consisting of the processing resources comprising the central subsystem. 
We evaluate this model for each feasible customer population n, i.e., for 
each number of active customers from 1 to M. For each population, we 
note the throughput. These throughputs are the X(n) that are used to 
define the FESC used in the high-level model. This is stated more pre- 
cisely in Algorithm 9.1. 

1. Define a low-level model consisting of the service centers 
representing the processing resources that comprise the cen- 
tral subsystem. 

2. Evaluate this model, which is separable, for each feasible po- 
pulation, n = 1 ) . . . ) M. Note the load dependent 
throughputs, X(n). 

3. Create a load dependent service center that is flow 
equivalent to the central subsystem plus the memory queue, 
by setting its throughput with queue length n, p.(n), to: 

1 

X(n) 
dn) = X(M) 

n = 1 , . . . , M 
n>M 

4. Define a high-level model consisting of this FESC and the 
external environment: if a terminal workload, then N custo- 
mers with think time Z; if a transaction workload, then an 
external arrival rate X. Evaluate this model, which is separ- 
able. 

Algorithm 9.1 - Single Class Memory Constrained Systems 



9.3. Memory Constraints 189 

As an example application of this algorithm, consider a small 
timesharing system with a CPU, two disks, and 512K bytes of memory. 
An average interaction requires 3 seconds of CPU service, 4 seconds of 
service at one of the disks, 2 seconds of service at the other disk, and 
1OOK bytes of memory. The operating system requires 150K bytes of 
memory, so that at most 3 users can be memory-resident simultaneously. 
There are 15 users, with average think times of 60 seconds. We wish to 
know: 

- the average response time 
- the average number of ready users 
- the average number of active users 
- the distribution of memory partition occupancy 
- the average time spent queued awaiting access to memory 
- the utilization of each processing resource 
- the improvement in response time that would result if 256K of 

memory were added 
We begin by analyzing the central subsystem for 1, 2, and 3 active users. 
This low-level model has three centers with service demands of 3, 4, and 
2 seconds per interaction respectively. We obtain the load dependent 
throughputs shown below: 

throughput, 
population interactiondsec. 

1 0.1111 
2 0.1636 
3 0.1930 

Next we define a high-level model with N = 15 customers, 2 = 60 
seconds, and a load dependent center that is flow equivalent to the central 
subsystem plus the memory queue, defined as follows: 

queue length 
1 

throughput 
0.1111 

2 0.1636 
3 0.1930 
4 0.1930 

1’5 0.1930 

We evaluate this model, obtaining the basic outputs shown in Table 9.6. 
Interactive response time is available directly: 25.7 seconds. So is the 
average number of ready customers: 4.5. From the queue length distri- 
bution at the FESC we see that 3.8% of the time the central subsystem is 
idle, 8.6% of the time there is a single active customer, 12.2% of the time 
there are two active customers, and 75.4% of the time there are three 



190 Representing Specific Subsystems: Memory 

throughput: 0.175 interactions/second 
average residence time at the FESC: 25.7 seconds 
average queue length at the FESC: 4.5 
queue length distribution at the FESC: 

queue length probability 
0 ,038 
1 .086 
2 .I22 
3 .137 
4 .142 
5 .135 
6 .117 

>6 .228 

Table 9.6 - Basic Outputs 

active customers (i.e., 3 or more ready customers). Thus the average 
number of active customers is 2.6. Substituting this into Little’s law, 
N = XR, we find that the average time spent in the central subsystem 
once a memory partition has been obtained is 2.6/0.175 = 14.9 seconds. 
Thus a customer spends 25.7-14.9 = 10.8 seconds awaiting access to 
memory. To calculate device utilizations we employ the utilization law, 
uk = X0,. At the CPU, utilization must be 0.175X 3.0 = 52.5%. At 
the two disks, utilization must be 70% and 35%, respectively. 

To assess the impact of additional memory we calculate FESC rates for 
4, 5, and 6 customers in the central subsystem. (Three additional users 
can be accommodated by the new configuration.) The FESC now will 
have the characteristics shown below: 

queue length throughput 
1 0.1111 
2 0.1636 
3 0.1930 
4 0.2110 
5 0.2226 
6 0.2305 
7 0.2305 

15 0.2305 

When we analyze a high-level model consisting of 15 users and this 
FESC, we obtain a response time of 20.7 seconds, a 20% improvement. 



9.3. Memory Constraints 191 

The utility of the technique described in Algorithm 9.1 arises both 
from its accuracy and from its efficiency. Its accuracy is due to the fact 
that the terminals and the central subsystem are decomposable: the rate 
at which customers interact in the central subsystem is much greater than 
the rate at which they flow between the thinking and ready states. Its 
efficiency is due to two factors: 
l The load dependent throughputs used in defining the FESC can be 

obtained efficiently. In this case, the model of the central subsystem 
is a single class separable queueing network. 

l The resulting high-level model can be analyzed efficiently. In this 
case, it also is a single class separable queueing network. 

This approach to analyzing single class memory constrained systems epi- 
tomizes the use of flow equivalence and hierarchical modelling to evalu- 
ate non-separable queueing networks efficiently. 

9.3.2. Multiple Classes with Independent Memory Constraints 

Here we consider a system with C customer classes, c = 1 , . . . , C, 
having independent memory constraints M,. (The classes may be 
thought of as differing not only in their workload intensities and service 
demands, but also possibly in their memory requirements.) There is an 
obvious generalization of Algorithm 9.1 to this case: 

- Define a multiple class low-level model consisting of the service 
centers representing the processing resources that comprise the 
central subsystem. 

- Evaluate this model for each feasible population vector, 
3 = (n, , n2, . . . , nc), 0 < n, < M,. Note the “population vec- 
tor dependent” throughputs of each class, X, (77). 

- In a manner analogous to Algorithm 9.1, use these throughputs to 
define a multiple class FESC. 

- Define a multiple class high-level model consisting of this FESC 
and the external environment of each class. Evaluate this model. 

Unfortunately, this generalization possesses neither of the efficiency pro- 
perties of its single class counterpart: 
l Obtaining the throughputs needed to parameterize the FESC requires 

evaluating the low-level model for every feasible population vector. 
The cost of this is proportional to: 

CK fi(M,+l) 
c=l 



192 Representing Specific Subsystems: Memory 

0 The resulting high-level model is not separable, so can be evaluated 
only by the global balance technique, which is prohibitively expensive 
unless there are few classes and the memory constraints are small. 

To circumvent these difficulties we introduce two homogeneity assump- 
tions : 

0 We assume that the throughput of class c when its own central sub- 
system population is n, depends only on the average central subsystem 
populations of the other classes. 

l We assume that each class sees the other classes as though their cen- 
tral subsystem populations were independent of one another. 

The former assumption allows us to determine the load dependent 
throughputs of any class by analyzing a C class queueing network in 
which the populations of the other classes are fixed at their average values. 
These average values are determined from the high-level model; the 
high- and low-level models are solved iteratively, terminating when suc- 
cessive estimates are sufficiently close. The latter assumption allows us to 
define a separate FESC for each class. In essence, we analyze C separ- 
able single class high-level models, rather than a single non-separable C 
class high-level model. 

The result is Algorithm 9.2. This algorithm is applicable to models in 
which some of the C classes are unconstrained. For ease of expression, 
we denote the number of constrained classes by C < C and order the 
classes so that the constrained classes have indices c = 1 , . . . , C. The 
algorithm is a good example of the introduction of homogeneity assump- 
tions in order to facilitate evaluation. 

9.3.3. Multiple Classes with Shared Memory Constraints 

Algorithm 9.2 assumed that each class was subject to a memory con- 
straint that was independent of the behavior of the other classes. Here 
we generalize that algorithm to shared memory constraints: constraints 
on the total number of customers in memory (or in a region of memory), 
rather than on the populations of the individual classes. The only 
significant change to Algorithm 9.2 will be in the calculation of the p*s (n) 
in Step 3.2. 

Let there be F domains, or shared regions of memory. Each memory 
constrained class is assigned to a domain. To simplify the discussion we 
will assume that all domains are shared; dedicated domains are, of course, 
a special case of shared domains. Let MY be the capacity of domain f, 
i.e., the number of customers that can reside in that domain. (We tem- 
porarily assume that the classes assigned to a particular domain have 
indistinguishable memory requirements.) 



9.3. Memory Constraints 193 

Obtain initial estimates of the average central subsystem cus- 
tomer popula$on for each memory constrained class, ?& for 
c=l 7 *a* > C. To do so, ignore all memory constraints in 
the original C class model, yielding a separable queueing 
network. Evaluate this network. For each memory con- 
strained class c, set Y$ to the minimum of M, and the aver- 
age class c central subsystem population in the uncon- 
strained model. 
In preparation for the iteration, modify the original model by 
changing each of the C memory constrained classes into a 
batch class with population equal to EC. Leave the uncon- 
strained classes in their original form. The result is a C class 
separable queueing network. (The non-integer customer po- 
pulations of the constrained classes are naturally suited to 
the MVA-based iterative approximate solution technique.) 
For each memory constrained class c = 1 , . . . , ? : 

- 
3.1. Replace the n, class c customers with each feasible po- 

pulation of class c, n, = 1 , . . . , 44,. Evaluate the 
queueing network, obtaining the throughput of class c, 
Xc h,>. 

3.2. Create an FESC, a single class load dependent service 
center whose throughput with queue length n, ~~ (n>, is 
defined by: 

K(n) n = 1 , . . . , M, 
p.,(n) = 

1 xc MC > n > M, 

3.3. Define and evaluate a single class separable high-level 
model consisting of this FESC and the external environ- 
ment of class c (N and 2, or h). Obtain the queue 
length distribution at the FESC. (We let P[QFEsc= i] 
denote the probability that the queue length at the 
FESC is i.> Use this to calculate a new estimate for the 
average central subsystem population of class c: 

. . continued . . 

Algorithm 9.2 - Multiple Classes, Independent Memory Constraints 



194 Representing Specific Subsystems: Memory 

. . continued . . 

4. Repeat Step 3 until successive estimates of the Zc for each 
constrained class are sufficiently close. 

5. Obtain per[ormance measures for the constrained classes 
from the C high-level models evaluated during the final 
iteration. Obtain performance measures for the uncon- 
strained classes by solving the queueing network defined in 
Step 2 using the final estimates of the EC for the constrained 
classes. 

Algorithm 9.2 - Multiple Classes, Independent Memory Constraints 

Our approach is to view a domain shared by several classes as several 
smaller domains, each used by a single class. The memory constraint on 
a specific class will be determined iteratively, by considering the average 
central subsystem populations of its competitor classes: all other classes 
sharing the domain, in the case of FCFS domain scheduling; all other 
classes of greater or equal priority sharing the domain, in the case of 
priority domain scheduling. This approach is embodied in Algorithm 9.3, 
parts of which are abbreviated because of their similarity to Algorithm 
9.2. 

Algorithm 9.3 can be used to evaluate models in which the classes 
sharing a specific domain have distinct memory requirements. This 
requires straightforward modifications to the functions Mf and 6,., 
defined in the algorithm. Once modified in this way, the algorithm can 
also be used to evaluate single class memory constrained models in which 
customers differ in their memory requirements. This is accomplished by 
defining a single domain shared by several “artificial” classes. Each of 
these artificial classes corresponds to those customers with a specific 
memory requirement. Each has service demands identical to those of the 
“real” class, and a workload intensity adjusted to reflect the proportion of 
customers having the corresponding memory requirement. 



9.3. Memory Constraints 195 

1. Obtain initial estimates of & for c = 1 , . . . , 2. To do so, 
ignore all memory constraints in the original C class model. 
Evaluate the resulting separable network. For each memory 
constrained class c, set Zc to the minimum of the average 
class c central subsystem population in the unconstrained 
model and a “proportionate share” of its domain, calculated 
aS: 

MF(c) x gc Q; 
c phrs its corn - 

i ’ peiiior classes 
where F(c) is a function that gives the domain to which 
class c is assigned (M,+) is thus the capacity of the domain 
to which class c is assigned), and cri is the average class i 
central subsystem population in the unconstrained model. 

2. In preparation for the iteration, modify the original model by 
changing each of the C memory constrained classes into a 
batch class with population equal to ?ic. 

3. For each memory constrained class c = 1 , . . . , ? : 
3.1. Replace the EC class c customers with each feasible po- 

pulation of class c, n,. Evaluate the queueing network 
obtaining the throughput of class c, X, (n,). Feasible 

populations are integers from 1 to 
L MF(c) - & 

I 
> 

where: 

Also evaluate the network at the non-integer population 
Jwqc) - 6,. 

3.2. Create an FESC, a single class load dependent service 
center whose throughput with queue length n, wc (n>, is 
defined by: 

X, (n > n 6 MFK - 6, 
pc(n) = 

I x, (“F(c)-&) n > MF(c) - & 

. . continued . . 

Algorithm 9.3 - Multiple Classes, Shared Memory Constraints 



196 Representing Specific Subsystems: Memory 

. . continued . . 

3.3. Define and evaluate a single class separable high-level 
model consisting of this FESC and the external environ- 
ment of class c (N and Z, or A). Obtain the queue 
length distribution at the FESC. Use this to calculate a 
new estimate for the average central subsystem popula- 
tion of class c:- 

4. Repeat Step 3 until successive estimates of the i$ for each 
constrained class are sufficiently close. 

5. Obtain performance measures as in Algorithm 9.2. 

Algorithm 9.3 - Multiple Classes, Shared Memory Constraints 

9.4. Swapping 

In Section 9.3 we developed techniques for representing the 
throughput-limiting effect of a memory constraint. While concentrating 
on this primary effect of memory on performance, we allowed ourselves 
to ignore the problem of explicitly representing swapping. 

On the one hand, swapping devices are no different than other I/O 
devices: they can be included in a model, and their service demands can 
be calculated by multiplying device utilization by the length of the meas- 
urement interval, then dividing this result by the number of interactions 
during that interval. In this sense, swapping activity has been included 
implicitly in all of the models we have constructed. On the other hand, 
we presently have no way of projecting changes to this service demand 
that might result from system or workload modifications. Service demand 
at the swapping ~device is not an intrinsic property of an interaction, like 
service demand at the CPU or at a file device. The analyst typically 
knows how to modify intrinsic parameters to reflect system changes. On 
the other hand, the influence of system modifications on the level of 



9.4. Swapping 197 

swapping activity is something we would like to learn from our model, 
rather than provide as an input. If the system modifications under con- 
sideration can be expected to influence significantly the level of swapping 
activity, then the modelling approach must include a procedure for 
estimating swapping device service demand. 

The explicit representation of swapping is the subject of the present 
section. The techniques we develop will use the algorithms of Section 9.3 
as a basis, since we wish to represent the effect of the memory constraint 
in addition to the overhead of memory management. For the sake of 
simplicity, the algorithms in this section will be expressed for the case of 
a single workload of terminal type (N customers with think time Z>, and 
a single swapping device. Generalization to multiple workloads and mul- 
tiple swapping devices is possible. 

9.4.1. Swapping to a Dedicated Device 

We first consider memory constrained systems with a single workload 
of terminal type, in which the swapping device is dedicated in the sense 
that activity there does not affect the throughput of the central subsys- 
tem. (The analytic simplicity resulting from this assumption will become 
apparent.) The basis of our approach is Algorithm 9.1. As shown in Fig- 
ure 9.4, we modify the high-level model of that algorithm to include a 
center representing the swapping device, in addition to the FESC 
representing the central subsystem. The only new issue that we 
confront is determining the service demand at the former center. 

must 

Terminals 

Swapping 
device 

FESC 
QF 

Figure 9.4 - High-Level Model for Swapping to a Dedicated Device 



198 Representing Specific Subsystems: Memory 

An interaction’s service demand at the swapping device, Dswapr will be 
equal to the product of two terms: the probability that a swap precedes 
an interaction, Phapl, and the service time for a swap in and subse- 
quent swap out (both must occur), Srwa,,. Ssirop is readily determined, but 
knowledge of the swapping policy of an operating system is necessary to 
estimate Phwapl. Here is an approach that can serve as a starting point. 
As in Algorithm 9.1, let there be N customers, M of whom can occupy 
memory simultaneously. We identify three cases: 
l If N < M then no swapping will occur. Thus PLswapl = 0. 

l If N > M then there will be some swapping. Let QrrcadY be the aver- 
age number of ready customers. If QreadV > 1M then a swap will pre- 
cede every interaction. This is the case because we assume that only 
ready customers will be occupying memory, so a customer making a 
transition from the thinking state to the ready state will never be 
memory resident. Thus Phvapl = 1. (This clearly is an approxima- 
tion, since we consider only the average number of ready customers.) 

l If N > M and QrreadL < M then a swap will sometimes but not always 
precede an interaction. On the average there are N - Qreadl, thinking 
customers. Of these, M - QrreadY are memory resident. So a custo- 
mer leaving the thinking state requires a swap with probability: 

Phvapl = 1 - M - &ad>> N--M 
N - QrreadJ = N - Qrea~v 

The first of these three cases can be identified easily, since N and A4 
are basic inputs. To distinguish between the second and third cases we 
need to know QrPadr’, the average number of ready customers. This is an 
output of the model, not an input. Iteration is required, as described in 
Algorithm 9.4. (In the case that N < M, the swapping device can be 
ignored, and Algorithm 9.1 can be applied directly. For completeness, 
however, we include this case in Algorithm 9.4.) 

From examination of the algorithm, our reliance on the assumption 
that the swapping device was dedicated should become evident. We con- 
structed a flow equivalent representation of the central subsystem prior to 
iterating, and did not modify this representation subsequently. This 
requires that the load dependent throughputs of the central subsystem be 
independent of the level of swapping activity. 

9.4.2. Swapping to a Shared Device 

Especially in smaller systems, the swapping device also is apt to be 
used for other activities. To the extent that swap traffic impedes these 
activities (and vice versa>, the analysis performed in the previous subsec- 
tion will be invalid. Here, we will represent in our model this contention 



9.4. Swapping 

1. As in Algorithm 9.1, define a load dependent server that is 
flow equivalent to the central subsystem. 

2. Define a high-level model consisting of the workload (N 
users with think time Z>, the FESC from Step 1, and a 
center representing the swapping device. Initially, set the 
service demand at this last center, Ds,vaP, to zero. 

3. Evaluate this model. Obtain QreadY, the average number of 
ready customers. This is equivalent to QTsc, the average 
queue length at the FESC. Use Q,.eady to calculate a revised 
estimate for a customer’s service demand at the swapping 
device, as follows: 

D swap = S saaoo X P [swap] 

where: 

Phvapl = 

I N-M 
iv- &my 

N> ~4 and Qrreacb < M 

4. Based on the discrepancy between the current and previous 
estimates for Ds,r.ap, decide whether to repeat Step 3 or to 
terminate. 

Algorithm 9.4 - Swapping to a Dedicated Device 

due to swapping. As before, an iterative analysis will be required. We 
will broaden the scope of the iteration to include the calculation of the 
load dependent throughputs, which now will vary with our estimate of 
swapping activity. 

In generalizing Algorithm 9.4 a conceptual problem arises: Should the 
service center representing the swapping device appear in the high-level 
model (where swapping logically occurs> or in the low-level model 
(because by assumption this device also is used for file activity, which 
logically belongs in the low-level model). Fortunately this problem is not 
of practical concern, because only slight differences in results will occur. 
We choose to return to the high-level model used in Algorithm 9.1, and 
to represent all activity at the swapping device, both swapping activity and 
file activity, in the low-level model. 



200 Representing Specific Subsystems: Memory 

The low-level model, then, will consist of as many centers as there are 
processing resources. The service demand at most of these centers will 
be an intrinsic property of the workload, determined from measurement 
data. At the center representing the swapping device, however, the ser- 
vice demand will have two components: one due to file activity, deter- 
mined from measurement data, and one due to swapping activity, deter- 
mined iteratively as in Algorithm 9.4. The analysis is conducted as stated 
in Algorithm 9.5. 

Define a low-level model consisting of the service centers 
representing the processing resources that comprise the cen- 
tral subsystem. At the center representing the swapping 
device, the service demand will have two components: one 
due to file activity, determined from measurement data, and 
one due to swapping activity, determined iteratively. Initial- 
ly, assume that this latter component is equal to zero. 
As in Algorithm 9.1, evaluate this low-level model for each 
feasible population, create an FESC, and define and evaluate 
a high-level model. 
As in Algorithm 9.4, use the value of QreadY obtained from 
the high-level model to calculate a revised estimate for the 
swapping activity component of the service demand at the 
swapping device. Based on the discrepancy between this es- 
timate and the previous one, decide whether to repeat Steps 
2 and 3 or to terminate. 

Algorithm 9.5 - Swapping to a Shared Device 

As an example, we return to the simple system considered in Section 
9.3.1. Assume that the disk with an intrinsic service demand of 4 
seconds also is used for swapping, and that the service time for a one-way 
swap of a 1OOK program is 150 msec. 

On the first iteration we assume that no swapping occurs, so we evalu- 
ate the same low-level model used in Section 9.3.1, obtaining the same 
load dependent throughputs. We then construct and evaluate the same 
high-level model used in Section 9.3.1, obtaining the same value for the 
average number of ready users, 4.5. Now, we iterate. Since &,dY > M 
(the memory capacity was three customers in the example), we assume 
that a swap precedes each interaction. The service demand at the swap- 
ping device is equal to the sum of the intrinsic service demand there (4.0 
seconds) and the service demand due to swapping. This latter service 
demand equals the product of the one-way swap service time (0.15 



9.5. Paging 201 

seconds), the probability that a swap precedes an interaction (11, and 2 
(to account for the outswap that also must occur>: 0.3 seconds. Total 
service demand at the swapping device is thus 4.3 seconds. We once 
again evaluate the low-level model for populations from 1 to 3, obtaining 
load dependent throughputs of 0.1075, 0.1577, and 0.1851, respectively. 
Using these rates to define a flow equivalent server, we again evaluate the 
high-level model, obtaining: 

throughput: 0.170 interactions/second 
average interactive response time: 28.0 seconds 
average number of ready users: 4.8 

Since our revised estimate for (2ready still is greater than the capacity of 
memory, we still estimate that a swap precedes every interaction, and 
further iteration is unnecessary. As we would expect, throughput and 
response time are slightly worse than in Section 9.3.1, where swapping 
activity was ignored. 

9.5. Paging 

Most computer programs exhibit locality of reference: although a pro- 
gram may have a large address space, only a small portion of that address 
space will be referenced during any short time interval. Virtual memory 
systems exploit this property by allocating to each program an amount of 
(physical) primary memory that is smaller than the program’s (virtual> 
address space, then using a combination of hardware and software to 
translate virtual addresses into physical addresses and to transfer portions 
of the virtual address space between primary memory and disk. 

There are two principal advantages to virtual memory: the system can 
accommodate programs whose virtual address spaces are larger than the 
amount of physical memory that is attached to the CPU, and the number 
of concurrently active programs can be larger than would otherwise be 
possible. There is also a disadvantage: CPU and I/O resources must be 
devoted to the management of the virtual memory. 

Virtual memory systems may employ paging, or segmentation, or both. 
Our focus in this section will be on paging. We consider the system’s 
physical memory to be divided into some number of fixed-size page 
frames, and the address space of each program to be divided into some 
number of pages of the same fixed size. The operating system must make 
decisions on both a system level (How many programs should be allowed 
to compete for memory resources ? How many page frames should be 
allocated to each of these programs?) and on a program level (Which 
pages should occupy the page frames allocated to a program? Alterna- 
tively, which page should be removed from primary memory in order to 



202 Representing Specific Subsystems: Memory 

accommodate a non-resident page that has just been referenced?) The 
I/O associated with moving pages between primary memory and disk in 
response to page faults is the aspect of system behavior whose modelling 
we will study in this section. 

Modelling paging has much in common with modelling swapping. The 
fundamental issue is to determine the contribution of memory manage- 
ment activity to service demands. If it is not anticipated that the system 
modifications under consideration will have a significant effect on service 
demands at the paging devices, then these service demands can be taken 
from measurement data. As with swapping, though, the influence of sys- 
tem modifications on the level of paging activity is something we would 
like to learn from our model, rather than provide as an input. Paging 
activity is especially difficult to forecast because it is highly dependent on 
the characteristics of individual programs and on their interactions with 
each other through the memory management policies of the operating 
system. 

Consider a simple example: a small multiprogrammed virtual memory 
system supporting a batch workload. Processing resources include a CPU 
at which jobs require an average of 3 seconds of service, two file disks at 
which jobs require an average of 8 and 2 seconds of service, respectively, 
and a paging disk. 

Service demand at the paging disk is determined by considering in 
more detail the configuration of the system, the policies of the operating 
system, and the characteristics of the jobs. The system has 512 page 
frames of physical memory, 300 of which are available to user jobs. The 
operating system allocates memory on an equipartition basis: a multipro- 
gramming level is selected and the available page frames are divided 
equally among the jobs. The memory reference characteristics of jobs and 
the page replacement policy of the operating system interact with one 
another in a manner that is reflected by the program lifetime funcfion, 
shown in Figure 9.5. This function shows, for a single job, the average 
number of milliseconds of CPU service that elapse between page faults 
for various numbers of allocated page frames. 

Suppose we are asked to model the performance of this system at mul- 
tiprogramming levels of 2 through 8. A separate analysis must be con- 
ducted for each multiprogramming level. Each analysis must begin by 
determining the service demand at the paging disk. Consider a multipro- 
gramming level of 5. Because 300 page frames are available for users, the 
equipartition policy will allocate 300/5 = 60 page frames to each of the 5 
jobs. The lifetime function tells us that at this memory allocation a job 
will experience an average of one page fault every 9 milliseconds of CPU 
processing. Since the average CPU service requirement of a job is 3 
seconds, a job, on the average, will experience 3000/9 = 333 page faults. 



9.5. Paging 203 

50 100 

Memory allocation, page frames 

Figure 9.5 - Program Lifetime Function 

Suppose we know that an average of 12.5 milliseconds of paging disk ser- 
vice is required to process a single page fault. Then on the average each 
job will place a service demand of 333 x .0125 = 4.16 seconds on the pag- 
ing disk. The resulting queueing network model will have a population of 
5 customers, and four service centers with service demands of 3, 8, 2, 
and 4.16 seconds. 

Figures 9.6, 9.7, and 9.8 show respectively system throughput in 
jobs/minute, average job response time in seconds, and device utiliza- 
tions, each as a function of multiprogramming level. 

This example illustrates the techniques used to analyze paging sys- 
tems. The difficulties that arise in such studies are related to the availa- 
bility of data from which to parameterize the model. The example was 
very much simplified in this respect. For instance: 
l It is extremely difficult to acquire paging lifetime data for a program. 

Doing so requires detailed tracing of the execution of the program in 
the context of the page replacement policy used by the operating sys- 
tem. 

l The paging characteristics of a program are likely to vary as the pro- 
gram passes through different phases of execution, with each phase 
requiring a different lifetime function. 



204 Representing Specific Subsystems: Memory 

31 ? 3 4 5 G 7 8 

Multiprogramming level 

Figure 9.6 - Throughput Versus Multiprogramming Level 

0 
7 i 3 4 5 6 7 8 

Multiprogramming level 

Figure 9.7 - Response Time Versus Multiprogramming Level 



9.5. Paging 205 

0.00 I I I I I 
2 3 4 5 6 7 8 

Multiprogramming level 

Figure 9.8 - Device Utilizations Versus Multiprogramming Level 

l The paging characteristics of different programs will be dissimilar. 
l Since different programs exhibit different paging characteristics, 

operating systems typically do not employ an equipartition strategy. 
At the very least, a different number of physical page frames will be 
allocated to each program. 

l More likely, the operating system will change the number of physical 
page frames allocated to a program over the life of that program. 
Thus the number of programs that can be accommodated in memory 
simultaneously will vary with time. 

l As the number of jobs that can be accommodated in memory varies, 
preemptive swapping may be employed. The swapping policy in a vir- 
tual memory system may be quite complex. 
In practice, analysts using queueing network models to study virtual 

memory systems ignore many of these subtleties by making homogeneity 
assumptions similar to those we have encountered in other contexts. For 
example, it is common to consider only the average number of page 
frames allocated to a program, to assume that this average is the same for 
all programs belonging to the same class, and to assume that this average 
is largely independent of the load on the system. Studies incorporating 
such homogeneity assumptions generally are successful even in projecting 
the effect of modifications to the memory subsystem, e.g., the addition of 
memory. In the next section we will consider two such studies. 



206 Representing Specific Subsystems: Memory 

9.6. Case Studies 

In this section we consider two successful case studies in which queue- 
ing network models were used to explore the effects of modifications to 
the memory subsystems of virtual memory systems. In the first study, a 
very simple model was used to evaluate the effects of increased paging 
device speed and of additional memory on the performance of an early 
IBM virtual memory system. In the second study, a more sophisticated 
model was used to evaluate workload and configuration changes to a Digi- 
tal Equipment Corporation VAX/VMS system. 

9.6.1. A Simple Model of an Early IBM Virtual Memory System 

This study is from the early days of computer system analysis using 
queueing network models. At the time it was conducted, techniques for 
efficiently evaluating separable queueing networks (Chapters 6 and 7) and 
for representing memory subsystems using flow equivalence and hierarch- 
ical modelling (Chapters 8 and 9) were not widely known. This stimu- 
lated a number of clever “short cuts”. The study serves to illustrate that 
useful results can be obtained for complex systems even in the presence 
of rather extreme simplifications. The system under consideration had 
the following characteristics: 

- a small number of interactive users 
- a CPU-intensive workload 
- a large number of disks 
- a low ratio of think time to response time (i.e., slow response) 
- a paging virtual memory system 
- a multiprogramming level limited to three to avoid thrashing 
Figure 9.9 shows the model that was used in the study. It has one 

customer class. Each customer cycles through periods of thinking, (possi- 
bly) queueing for memory, and alternating bursts of CPU and I/O ser- 
vice. Because the multiprogramming level was limited to three and there 
were many possible paths to the I/O devices, little or no I/O queueing 
took place. This allowed the model to be simplified by representing the 
I/O subsystem as a single delay center. (The authors of the study prob- 
ably evaluated the model by hand. Representing the large number of 
disks by a single delay center saved much tedious computation. Given a 
queueing network analysis package, it would be equally easy to represent 
all disks explicitly. This would be a “safer” procedure, since it would not 
rely on the assumption that no I/O queueing takes place.) 

Because of the memory queue, the model is not separable. Even 
without the FESC approach described earlier in this chapter, though, it is 
possible to obtain accurate results in two extreme cases. The first is that 



9.6. Case Studies 

; fT+5+ 

Figure 9.9 - The Model 

memory utilization is low, so that little or no memory queueing takes 
place. This would occur, for instance, if response times were so short 

207 

that most users spent the majority of their time thinking. Thus, the 
number of users in memory simultaneously would be small, and the 
chance that a user ever would need to queue for memory would be negli- 
gible. In this extreme case the memory queue could be ignored entirely, 
yielding a separable model. 

The other extreme is that memory is utilized nearly lOO%, so that the 
multiprogramming level of the system remains constant at its maximum. 
This was in fact the case in the system under consideration. This analyti- 
cally fortunate situation allowed the model to be evaluated as follows: 
l From the full model of Figure 9.9, extract the central subsystem (the 

queueing center representing the CPU and the delay center represent- 
ing the I/O subsystem). 

0 Evaluate this central subsystem model with appropriate service 
demands and with a fixed population equal to the maximum multipro- 
gramming level (in this case, three). Obtain throughput, X. 

l Apply the response time law (N and Z must be provided). 
For the system under consideration, evaluation of the central subsystem 
model gave a throughput of .395 interactions/second. From measure- 
ments, the number of interactive users was 10 and their average think 
time was 4 seconds. Applying the response time law: 

- 4 = 21.3 seconds 

The measured response time was 21.0 seconds. 



208 Representing Specific Subsystems: Memory 

Two changes to the configuration were being considered in an attempt 
to reduce the effect of the severe memory contention being experienced: 
upgrading the paging disks to drums, and adding memory. The upgrade 
to drums can be reflected in the model by adjusting the service demand at 
the delay center representing the I/O subsystem. The part of this service 
demand due to paging activity must be reduced to account for the elimi- 
nation of the seek portion of data access (the drums have fixed heads) 
and for a decrease in the latency and data transfer portions (the drums 
have higher rotation speed than the disks). These adjustments can be 
estimated rather easily. Once a new service demand has been calculated, 
the evaluation can be carried out as before. 

Representing the addition of memory is somewhat more challenging, 
since this modification affects paging activity (and thus the service 
demand at the delay center) in a manner that is not easily estimated. The 
addition of memory was studied for two cases: using the additional 
memory to increase the maximum multiprogramming level while main- 
taining the current number of page frames allocated to each active user, 
and using the additional memory to increase the number of page frames 
allocated to each active user while maintaining the current maximum 
multiprogramming level. To model the first case, it was determined that 
the additional memory would allow two more users to be active while 
maintaining the current memory allocation per user. Since the memory 
allocation per user would remain fixed, it was postulated that the page 
fault count of each user would be unaffected by the increase in the mul- 
tiprogramming level. The memory addition was therefore modelled by 
increasing the number of customers in the central subsystem model from 
three to five and evaluating as before. 

The other case, increasing the memory allocation to the three active 
users, can be expected to reduce the number of page faults per user. The 
service demand at the delay center in the model must be adjusted to 
reflect this. To estimate each user’s service demand due to paging in the 
new environment, an experiment was conducted in which the maximum 
multiprogramming level of the existing system was reduced to two. (It 
had been determined that the number of page frames available to each of 
two active users on the existing configuration would be roughly the same 
as the number of page frames available to each of three active users on 
the proposed configuration.) I/O subsystem service demand was calcu- 
lated from measurements during this experiment. The memory addition 
was modelled by using this value and a customer population of three, 
evaluating as before. 



9.6. Case Studies 209 

It is important to note a limitation arising from the fact that the 
evaluation technique assumes the central subsystem runs continuously at 
the maximum multiprogramming level. If response times improve 
significantly, this assumption may no longer be valid. Should this occur, 
the model may yield optimistic results. For any particular set of parame- 
ter values, the validity of the assumption can be checked by computing 
the average number of customers competing for memory (the average 
number of ready customers). If there are, on average, at least as many 
ready customers as can be accommodated in memory, the results of the 
model can be expected to be accurate. The average number of ready cus- 
tomers can be computed by applying Little’s law to the central subsystem 
plus the memory queue. For the model of the original system: 

N ready = XR = .395 X 21.3 = 8.4 customers 

The previous paragraph points out that proposed system modifications 
can have side effects that invalidate assumptions made by the particular 
evaluation technique in use. It is also possible for modifications to have 
side effects that invalidate measurements used to calculate model inputs. 
In the system described here, the user think time was measured as 4 
seconds. This low value probably was due in part to the poor response 
time of the system: while one request was processing, users had time to 
prepare their next. If, a system modification resulted in significantly 
improved response times, the think time would likely increase because of 
a reduction in this overlap. 

Much of the success of a modelling study depends on the analyst’s 
ability to anticipate significant side effects. 

9.6.2. A Model of VAX/VMS 

This section presents a queueing network model of Digital Equipment 
Corporation’s VAWVMS system. Memory management in VMS 
includes swapping, paging, and a shared cache of page frames. The ques- 
tions addressed by this modelling study relate to workload and 
configuration changes that can be expected to affect paging and swapping 
behavior. The configuration is a small one, making homogeneity assump- 
tions risky. For these reasons, the example serves to integrate a number 
of the techniques presented in this chapter, and we will examine it in 
considerable detail. The model is of an early release of VMS and does 
not reflect certain major changes in the system that have occurred since 
that time. The study predates the development of the algorithms for 
evaluating multiple class memory constrained queueing networks 
described in Section 9.3, so an alternative technique was employed. 



210 Representing Specific Subsystems: Memory 

9.6.2.1. Essentials of the System 

As noted, memory management in VMS is accomplished through a 
combination of swapping, paging, and a shared cache of page frames. 

A physical memory requirement, the resident set size, is associated with 
each process. An active process is guaranteed a number of page frames 
equal to its resident set size. Should a page fault occur in a process 
already using its entire allocation of page frames, a FIFO page replac= 
ment policy is used to select a page for removal from the resident set. 

Since VMS makes no attempt to adjust processes’ resident set sizes in 
response to observed behavior, an efficient allocation of page frames 
among active processes is unlikely. Since FIFO is a notoriously bad page 
replacement policy, an efficient choice of resident set membership is 
equally unlikely. To compensate for these shortcomings, VMS maintains 
a cache of page frames that is shared among the active processes. When 
a page is removed from a process’ resident set it is added to this shared 
page cache. A fault on a page held in the cache can be resolved without 
disk I/O. Therefore we must distinguish between a page fault, which may 
not result in I/O, and a paging transfer, in which a page is retrieved from 
disk in response to a page fault. (Actually, pages are clustered for 
efficiency, and several pages are transferred in a single paging transfer.) 
The maximum and minimum sizes of the shared page cache are regulated 
by system parameters. If the cache exceeds its maximum size, pages are 
purged FIFO until the cache reaches its minimum size. Thus, as shown 
in Figure 9.10, physical memory can be divided logically into four parts: 
page frames permanently allocated to VMS, page frames containing 
processes’ resident sets, page frames belonging to the shared page cache, 
and unallocated page frames. 

Before a process that is swapped out can become active, it must be 
allocated sufficient page frames to accommodate its resident set. If 
enough unallocated page frames are not available, some other process 
must hrst be swapped out. Typically this process would correspond to an 
interactive user in the think state. The swapping rate at saturation is 
regulated by the quantum: a ready process is not eligible to be swapped 
out until it has acquired one quantum of CPU service. 

One final detail. In point of fact, unallocated page frames are added to 
the shared page cache: the cache is allowed to grow until it reaches a size 
equal to the larger of its maximum size parameter and the number of 
page frames left over after VMS and the memory-resident processes have 
taken their toll. Cache pages that have been modified are written to disk 
when the maximum size parameter is reached, but the images of these 
pages are allowed to remain in memory and, if accessed, can be made 
available without disk I/O. The concept of an unallocated page frame 
principally is of use in understanding the swapping policy. 



9.6. Case Studies 

1 Unallocated 

211 

Shared page cache 

Process 1 H Process 0 

Figure 9.10 - A Logical View of Memory in VAX/VMS 

9.6.2.2. The Queueing Network Model 

The configuration under study is a small one: 512K bytes of memory 
and a single disk used for swapping, paging, and file activity. The work- 
load is a benchmark consisting of one batch job (repeated compilation of 
a 10,000 line program) and 7 simulated interactive users each performing 
a specific task (compilation, execution, editing, trivial commands). The 
study involves validating a model of the base system, using this model to 
project the effect of specific modifications to the workload (eliminating 
the interactive users and running the batch job in isolation) and to the 
configuration (doubling the amount of physical memory), and finally 
making these modifications and comparing the results with the projections 
of the model. Four aspects of the system are of special interest in the 
context of the current chapter: 
l There is a memory constraint. 
l The proposed system modifications can be expected to affect the pag- 

ing behavior of the system, which therefore must be modelled expli- 
citly. 

l The proposed system modifications also can be expected to affect the 
level of swapping activity, so this also must be modelled explicitly. 



212 Representing Specific Subsystems: Memory 

l The single disk means that swapping activity can be expected to inter- 
fere with the throughput of paging and file I/O. 
The basis of the analysis is the familiar two-level hierarchical model: a 

low-level model that is evaluated at each feasible population in order to 
define an FESC for use in a high-level model. The low-level and high- 
level models are described in the following paragraphs. 

The Low-Level Model 

The low-level model has two service centers, representing the CPU 
and the disk, and two customer classes, representing the batch job and 
the interactive users. In the actual system there was a single batch job- 
stream that was locked into memory to reduce swapping activity, so in the 
low-level model the batch class has a constant multiprogramming level of 
one. In the actual system the seven interactive users had various resident 
set sizes, but the differences were small and on the average six interactive 
users could be accommodated in addition to the batch job. So in the 
low-level model there will be from zero to six customers in this class. 

For each class, measurement data yields CPU service demand and the 
file activity component of disk service demand. Since we wish to explore 
system modifications that will affect paging and swapping behavior, we 
must develop techniques to estimate for each class the components of 
disk service demand due to these activities. 

First, consider paging activity. Recall that each VMS process has a 
fixed allocation of page frames when it is memory resident. Because of 
this, the number of page faults sustained by a process will be insensitive 
to system load. However, the proportion of those page faults that result 
in disk I/O will vary with load, since this proportion is related to the 
number of page images in the shared page cache belonging to the process 
in question, which in turn depends on the number of processes actively 
using the cache. Thus the key to representing paging activity is estimat- 
ing the effectiveness of the shared page cache. 

We can measure the average number of page faults per interaction and 
we can calculate the average disk service time per paging transfer. We 
expect both of these quantities to be insensitive to the proposed 
modifications. The effectiveness of the shared page cache is reflected in 
the ratio of page faults to paging transfers. We can calculate this ratio for 
the benchmark measurement interval. In order to project performance 
under system modifications, we make the assumption that this ratio is 
linearly related to the average number of cache page frames available to 
each process actively using the cache. As an example, during the bench- 
mark an average interaction caused 158 page faults and the ratio of page 
faults to paging transfers was 4:l. Thus an average interaction caused 



9.6. Case Studies 213 

158/4 = 39.5 paging transfers. The average number of active processes 
was eight: six interactive users, the batch job, and VMS (portions of 
which are pageable). Our assumption makes it possible to estimate that if 
the average number of active processes were three, the ratio of page 
faults to paging transfers would be 4 X 8/3 = 10.7, and an interaction 
would cause 158/10.7 = 14.8 paging transfers. Our assumption also 
allows us to estimate that if the size of the shared page cache were dou- 
bled by the addition of memory (with three active processes), the ratio of 
page faults to paging transfers would become 10.7X 2 = 21.4, and an 
interaction would cause 158/21.4 = 7.4 paging transfers. Multiplying the 
average number of paging transfers per interaction by the average disk 
service time per paging transfer yields the paging activity component of 
disk service demand. 

Next, consider swapping activity. The approach presented in Algo- 
rithm 9.5 is suitable except in the case that the average number of ready 
users exceeds the memory constraint. In this case, VMS will swap once 
per interaction plus once per quantum. The number of swaps per interac- 
tion due to the latter can be approximated by dividing the CPU service 
requirement per interaction by the quantum length. 

The High-Level Model 

We begin the analysis of the system by establishing initial values for 
the average numbers of ready and active interactive customers. These 
values allow us to estimate disk service demand due to paging (the aver- 
age number of active customers is used for this) and swapping (the aver- 
age number of ready customers is used for this). Given disk service 
demand, we can evaluate the low-level model. We do so for each feasible 
interactive population (the batch population is always one>, obtaining load 
dependent throughputs which we use to construct an FESC. 

The high-level model consists of this FESC and the workload (N cus- 
tomers with think time Z>. Evaluation of this model yields revised esti- 
mates for the average numbers of ready and active interactive customers. 
If these revised estimates differ substantially from those used in the pre- 
vious evaluation of the low-level model, we iterate using the new values. 

Interactive response time and throughput, and thus the contribution of 
interactive users to device utilizations, can be determined directly from 
the high-level model. Batch throughput is calculated by taking the sum 
of the batch throughput at each interactive population (obtained from the 
low-level analysis) weighted by the proportion of time each of those 
interactive populations is encountered (obtained from the high-level 
analysis). Average batch response time and the batch contribution to 
device utilizations then can be determined by application of Little’s law. 



214 Representing Specific Subsystems: Memory 

9.6.2.3. Use of the Model 

In this section we illustrate the use of the model in some detail. Table 
9.7 displays certain measured characteristics of the benchmark. 

average interaction: 

0.74 CPU seconds 
158 page faults 
12.4 file I/O operations 

batch job: 

330 CPU seconds 
101386 page faults 
918 file I/O operations 

Table 9.7 - Measured Characteristics 
of the Benchmark Jobstream 

Table 9.8 displays certain system parameters relating to paging activity 
that were measured during the benchmark. 

63.4 page faults per second 
55.8 pages transferred per second 
15.9 paging transfers (physical I/OS) per second 

Table 9.8 - Paging Activity Measures 

Based upon knowledge of device characteristics, the average number 
of bytes transferred per swap and per file operation, and the page I/O 
clustering factors evident from Table 9.8, we calculate the I/O service 
times shown in Table 9.9. 

,150 seconds per two way (in-out) swap 

.039 seconds per paging transfer 

Table 9.9 - I/O Operation Service Times 



9.6. Case Studies 215 

First we calculate service demands for interactive users. The CPU ser- 
vice demand is .74 seconds. The disk service demand due to file I/O is 
12.4~ .037 = .46 seconds. From Table 9.8, the ratio of page faults to 
paging transfers is 63.4/15.9 = 3.99. Thus an average interaction will 
cause 158/3.99 = 39.6 paging transfers, with a resulting disk service 
demand of 39.6X .039 A 1.54 seconds. In the benchmark, interactive 
think times were set to zero. (The system under study had extremely 
long response times, so users often typed ahead.) Thus there were 
always 7 ready and 6 active interactive users. We use the third com- 
ponent of the swapping approximation: each interaction requires 
1 + .74/l = 1.74 swaps (the quantum length was 1 second), so interac- 
tive disk service demand due to swapping is 1.74X .150 = .26 seconds. 
Total disk service demand is therefore .46+ 1.56+ .26 = 2.26 seconds. 

Next we consider the batch job. CPU service demand is 330 seconds. 
Disk service demand due to file I/O is 918 X .037 = 34 seconds. Each 
batch job will cause 101386/3.99 = 25410 paging transfers, with a result- 
ing service de,nand of 25410X .039 = 991 seconds. Since the batch job 
is not swapped, its total disk demand is 34+991 = 1025 seconds. 

Because there are always 7 ready and 6 active interactive users, we can 
take a short cut, analyzing the low-level model only one time, with a 
population of 1 batch job and 6 interactive users. With the exception of 
interactive response time, all interesting system performance measures 
can be obtained directly from the results of this analysis. Interactive 
response time is calculated as in the previous case study, by applying the 
response time law with N=7, Z=O, and X equal to the throughput 
obtained from the evaluation. Table 9.10 displays both observed and pro- 
jected performance measures. 

performance measure observed projected 
total CPU utilization .30 .32 
swapping rate (swaps/set.) .72 .64 
interactive 

throughput (int’s./min.) 22.2 22.2 
response time (secs.1 18.9 19.0 

batch 
throughput (jobs/min.) / .0091 1 .0082 

Table 9.10 - Original System 

Next, we explore the effect of eliminating the interactive workload, 
running the batch job in isolation. The swapping rate will be zero. The 
cache will be shared by VMS and the batch job, rather than among 8 
processes. It will expand to occupy the space vacated by the interactive 
users, increasing in size from 150 to 450 pages, a factor of 3. Our linear 



215 Representing Specific Subsystems: Memory 

approximation to the effectiveness of the shared page cache estimates that 
the ratio of page faults to paging transfers will be 
3.99 X 3 x 8/2 = 47.9. We therefore calculate that the batch job’s disk 
service demand due to paging will be 101386/47.9 X .039 = 82.5 
seconds, and that its total disk service demand will be 34f82.5 = 116.5 
seconds. We evaluate the low-level model once, with a single batch job. 
Table 9.11 displays both observed and projected performance measures. 

performance measure 
total CPU utilization 

observed projected 
.68 .73 

batch 
throughput (iobs/min.) .124 ,133 

Table 9.11 - Batch Only 

Finally, we explore the effect on the original workload of doubling the 
size of memory. Once again, the swapping rate will be zero. All seven 
interactive users will be memory resident, so the page cache will be 
shared by 9 rather than 8 active processes. The size of the cache will 
increase from 150 to 1125 pages, a factor of 7.5. The linear approxima- 
tion to the effectiveness of the shared page cache estimates that the ratio 
of page faults to paging transfers will be 3.99 x 7.5 X 9/8 = 33.7. 
Interactive disk service demand due to paging will be 
158/33.7 x .039 = .183 seconds, and total interactive disk service 
demand will be .46+.183 = .643 seconds. Batch disk service demand 
due to paging will be 101386/33.7 X .039 = 117 seconds, and total batch 
disk service demand will be 34-t 117 = 151 seconds. We simply can 
evaluate the low-level model with a single batch job and 7 interactive cus- 
tomers. Table 9.12 displays both observed and projected performance. 

performance measure observed 1 projected 
total CPU utilization .89 .95 

Table 9.12 - Additional Memory 

The projected performance measures shown in Tables 9.10 - 9.12 are 
sufficiently accurate to be useful. The discrepancies are reasonable when 
we consider the magnitude of the system modifications, the crudeness of 



9.7. Summary 217 

the linear approximation to shared page cache effectiveness, and the 
absence of any consideration of the effect of paging and swapping rates on 
CPU overhead. 

9.7. Summary 

Memory and its management affect the performance of computer sys- 
tems in two major ways. The existence of a memory constraint can 
impose a bound on the multiprogramming level, and thus the 
throughput, of a system. The overhead associated with memory manage- 
ment can impede the progress of “useful” work. In this chapter we have 
presented techniques for representing these effects, techniques which 
extend the flexibility of separable queueing network models. 

It never is possible to represent every detail of an operating system’s 
memory subsystem in a queueing network model. However, nor is it 
necessary or desirable to do so. This latter point is a philosophical corner- 
stone of computer system analysis using queueing network models, and 
cannot be overemphasized. In each particular modelling study - for 
each configuration, workload, and set of questions to be investigated - it 
is imperative to identify the essential characteristics of the system - those 
that can be expected to have primary effects on performance - and to 
represent these and only these in the model. A large body of case study 
literature testifies to the success of this approach. 

In closing this chapter, we should mention two related points. First, 
the fact that we have organized Part III on a “subsystem” basis rather 
than on a “technique” basis means that the broad applicability of certain 
techniques is not emphasized. As an example, Algorithm 9.1 for evaluat-1 
ing single class memory constrained subsystems is applicable to any sub- 
system in which there is a population constraint. (See Exercise 2.) 

The second related point is a brief mention of cache memory: rela- 
tively small, fast memory sometimes interposed between the CPU and 
primary memory, which is managed by hardware and firmware in a 
manner not unlike the paging that may occur one level removed in the 
memory hierarchy. The effect of cache memory is usually included in a 
queueing network model simply as an adjustment to the service demand 
at the CPU. This is consistent with the decomposition approach, since 
memory references occur extremely frequently relative to other events. 
The analyst must be aware that a statement about the instruction execu- 
tion rate of a machine with a cache must necessarily rely on some 
assumption about the cache hit ratio, and that this assumption should be 
verified, probably by benchmark. 



218 Representing Specific Subsystems: Memory 

9.8. References 

The implications of the fact that throughput is convex with respect to 
multiprogramming level were noted by Dowdy, Gordon, and Agre 
[Dowdy et al. 19791. 

Brandwajn [19741 first analyzed single class memory constrained sys- 
tems using a decomposition approach, although he did not couch the 
analysis in the simple terms of an FESC. Lazowska and Zahorjan [19821 
and Brandwajn [19821 independently developed the extension to multiple 
classes. An interesting alternative for evaluating single class models with 
non-homogeneous memory requirements was suggested by Brown, 
Browne, and Chandy [Brown et al. 19771. 

The iterative analysis of swapping behavior presented in Section 9.4 is 
due to Lazowska [19791. The analysis of a paging system presented in 
Section 9.5 comes from Graham and Lazowska 119781. 

The case study of the early IBM virtual memory system was conducted 
by Boyce and Warn [19751. Lazowska I19791 performed the VAX/VMS 
case study. Hodges and Stewart [19821 use the same techniques to 
analyze a more recent version of VAXNMS; this system is described in 
detail by Levy and Eckhouse 119801. A good overview of memory 
management in general, and of paging and segmentation in particular, is 
provided by Denning and Graham 119751. 

[Boyce & Warn 19751 
J.W. Boyce and David R. Warn. A Straightforward Model for Com- 
puter Performance Prediction. Computing Surveys 7,2 (June 19751, 
73-93. Copyright @ 1975 by the Association for Computing 
Machinery. 

[Brandwajn 19741 
Alexandre Brandwajn. A Model of a Time-Sharing System Solved 
Using Equivalence and Decomposition Methods. Acta Znjiormatica #,l 
(19741, 11-47. 

[Brandwajn 19821 
Alexandre Brandwajn. Fast Approximate Solution of Multiprogram- 
ming Models, Proc. ACM SIGMETRICS Corlference on Measurement 
and Modeling of Computer Systems (1982), 141-149. 

[Brown et al. 19771 
R.M. Brown, J.C. Browne, and K.M. Chandy. Memory Management 
and Response Time. CACM20,3 (March 1977), 153-165. 

[Denning & Graham 19751 
Peter J. Denning and G. Scott Graham. Multiprogrammed Memory 
Management. Proc. IEEE 63,6 (June 19751, 924-939. 



9.9, Exercises 219 

[Dowdy et al. 19791 
Lawrence W. Dowdy, Karen D. Gordon, and Jonathan R. Agre. On 
the Multiprogramming Level in Closed Queuing Networks. Technical 
Report TR-831, Department of Computer Science, University of 
Maryland, November 1979. 

[Graham & Lazowska 19781 
G. Scott Graham and Edward D. Lazowska. Quark: A Performance 
Evaluation Package for an Operating Systems Course. Technical 
Report 78-04-01, Department of Computer Science, University of 
Washington, April 1978. 

[Hodges & Stewart 19821 
Larry F. Hodges and William J. Stewart. Workload Characterization 
and Performance Evaluation in a Research Environment. Proc. ACM 
SIGMETRICS Conference on Measurement and Modeling of Computer 
Systems (19821, 39-50. 

[Lazowska 19791 
Edward D. Lazowska. The Benchmarking, Tuning and Analytic 
Modelling of VAXIVMS. Proc. ACM SIGMETRICS Conference on 
Simulation, Measurement and Modeling of Computer Systems (19791, 
57-64. Copyright @ 1979 by the Association for Computing 
Machinery. 

[Lazowska & Zahorjan 19821 
Edward D. Lazowska and John Zahorjan. Multiple Class Memory 
Constrained Queueing Networks. Proc. ACM SIGMETRICS Confer- 
ence on Measurement and Modeling of Computer Systems (1982)) 130- 
140. 

[Levy & Eckhouse 19801 
Henry M. Levy and Richard Eckhouse, Jr. Computer Programming and 
Architecture: The VAX-11. Digital Press, 1980. 

9.9. Exercises 

1. Suppose that in the example of Section 9.2 the observed average mul- 
tiprogramming levels of the three classes had been 2.60, 0.40, and 
1.75, but that no additional information was available (i.e., you did not 
know the actual distribution of multiprogramn%g mixes). 
a. How could you analyze this system using approximate MVA? 
b. How could you analyze this system using exact MVA? 



220 Representing Specific Subsystems: Memory 

2. Consider a Control Data 6000-series batch computer system consisting 
of a CPU, K-l disks, and P peripheral processors, with a fixed mul- 
tiprogramming level of N jobs. A job desiring disk service first must 
contend for access to any one of the PPs. Once allocated, the PP is 
held while the job contends for and uses the specific disk on which its 
data resides. At the conclusion of the I/O activity, both the disk and 
the PP are released, and the job enters the CPU queue. Thus, 
although there may be N jobs and K- 1 disks, at most P jobs can be 
using disks simultaneously. The actual number may be less than P, 
either because fewer jobs desire disk service, or because several jobs 
desire access to the same disk. 
a. Draw an analogy between this modelling problem and the single 

class memory constraint problem discussed in Section 9.3. 
b. Analyze a system in which there are 10 jobs, a CPU at which each 

job has a service demand of 50 seconds, 3 PPs, and 5 disks at 
which each job has service demands of 20, 25, 30, 35, and 40 
seconds, respectively. Report CPU utilization, disk utilizations, 
and average job response times. (Use the Fortran program in 
Chapter 18, extended to accommodate FESCs as described in 
Chapter 20.) 

c. Analyze the same system ignoring the PP constraint. (That is, 
represent the system using a separable single class model with 6 
centers and 10 jobs.) What error in job response times results 
from this assumption? How about CPU utilization? 

3. Re-work the example of Section 9.3.1 for the following values of think 
time: 
a. 10 seconds 
b. 180 seconds 
Simpler approaches to modelling memory constraints do not require 
the use of FESCs. The case study in 9.6.1 presents one such 
approach. Another approach is simply to ignore the memory con- 
straint, which causes the model to be separable and thus amenable to 
the standard MVA algorithms. 
c. For think times of 10, 60, and 180 seconds in this example, how 

well do you think each of the simpler approaches will work? 
d. Test your intuition by applying both approaches in these three 

cases, and comparing the results to those obtained using the more 
accurate flow equivalent technique. 



9.9. Exercises 221 

4. Some computer systems do not impose a fixed limit on the number of 
jobs that can be loaded in memory, but instead load jobs in a FCFS 
manner until either there are no jobs left to be loaded or no memory 
in which to load them. 
a. In the case where all jobs can be thought of as belonging to a single 

class, how can Algorithm 9,2 be used to model such systems? 
b. If jobs in the system have widely differing memory requirements 

(e.g., many small jobs but occasional very large jobs), we may wish 
to model the system using multiple job classes. In this case, how 
can Algorithm 9.3 be used? 

5. In Section 9.5 a technique was described for modelling the primary 
effect of the change in page fault rate with system load (or 
equivalently with main memory allocation per job): the change in the 
service demand at the paging device. An important secondary effect is 
a change in CPU overhead per job due to page fault handling. 
a. How would you reflect this secondary effect in the model (i.e., 

what parameters would you change)? 
b. How would you determine appropriate parameter values for a 

specific system? 
6. Suppose that a system contains a number of disks dedicated to swap- 

ping, and a number dedicated to paging. 
a. What modifications to the techniques of this chapter need to be 

made for such systems? 
b. What additional measurement information would be required to 

parameterize such models? 
c. In the absence of such measurements, what reasonable guesses 

could you make to allow you to analyze the model? 


