
Capability-Based Computer Systems 



I 

Capability- and Object-Based 
System Concepts 

Although the complexity of computer applications increases 
yearly, the underlying hardware architecture for applications 
has remained unchanged for decades. It is, therefore, not sur- 
prising that the demands of modern applications have exposed 
limitations in conventional architectures. For example, many 
conventional systems lack support in: 

1. Information sharing and communications. An essential system 
function is the dynamic sharing and exchange of informa- 
tion, whether on a timesharing system or across a network. 
Fundamental to the sharing of storage is the addressing or 
naming of objects. Sharing is difficult on conventional sys- 
tems because addressing is local to a single process. Sharing 
would be simplified if addresses could be transmitted be- 
tween processes and used to access the shared data. 

2. Protectiott and security. As information sharing becomes eas- 
ier, users require access controls on their private data. It 
must also be possible to share information with, or run pro- 
grams written by, other users without compromising conti- 
dential data. On conventional systems, all of a user’s objects 
are accessible to any program which the user runs. Protec- 
tion would be enhanced if a user could restrict access to only 
those objects a program requires for its execution. 

3. Reliable construction and maintenance of complex systems. Con- 
ventional architectures support a single privileged mode of 
operation. This structure leads to monolithic design; any 
module needing protection must be part of the single operat- 
ing system kernel. If, instead, any module could execute 
within a protected domain, systems could be built as a col- 
lection of independent modules extensible by any user. 



Capability- and 
Object-Based System 
Concepts 

2 

Over the last several decades, computer industry and uni- 
versity scientists have been searching for alternative architec- 
tures that better support these essential functions. One alterna- 
tive architectural structure is capability-based addressing. 
Capability-based systems support the object-based approach to 
computing. 

This book explains the capability/object-based approach 
and its implications, and examines the features, advantages, 
and disadvantages of many existing designs. Each chapter 
presents details of one or more capability-based systems. Table 
l-l lists the systems described, where they were developed, 
and when they were designed or introduced. 

System Developer 
Rice University Rice University 
Computer 

Burroughs B5000 Burroughs Coro. 

Year Attributes 
1959 segmented memory 

with “codeword” 
addressing 

1961 stack machine with 

Basic Language 
Machine 

Dennis and Van 
Horn Supervisor 

PDP-1 Time- 
sharing System 

Multicomputerl 
Magic Number 
Machine 

CAL-TSS 

International 
Computers Ltd., U.K. 

MIT 

descriptor addressing 
1964 high-level machine with 

codeword addressing 

System 250 

CAP Computer 

Hydra 

STAROS 

System/38 

iAPX 432 

MIT 

University of 1967 first capability 
Chicago Institute hardware system 
for Computer Research design 

U.C. Berkeley 
Computer Center 
Plessey Corp., U.K. 

1968 capability operating 
system for CDC 6400 

1969 first industrial 
capability hardware 
and software system 

1970 capability hardware 
with microcode support 

1971 object-based multi- 
processor O.S. 

1975 object-based multi- 
processor O.S. 

1978 first major commercial 
capability system, 
tagged capabilities 

1981 highly-integrated 
object-based micro- 
processor system 

University of 
Cambridge, U.K. 
Carnegie-Mellon 
University 
Carnegie-Mellon 
University 
IBM, Rochester, MN. 

Intel, Aloha, OR. 

1966 conceptual design for 
capability supervisor 

1967 capability supervisor 

Tab/e I-1: Major Descriptor and Capability Systems 



1 .I Capability- 
Before surveying these systems at a detailed architectural Based Systems 

level, it is useful to introduce the concepts of capabilities and 
object-based systems. This chapter defines the concept of ca- 
pability, describes the use of capabilities in memory addressing 
and protection, introduces the object-based programming ap- 
proach, and relates object-based systems to capability-based 
addressing. 

Simplified examples of capability-based and conventional 
computer systems are presented throughout this chapter. 
These examples are meant to introduce the capability model by 
contrasting it with more traditional addressing mechanisms. In 
fact, many design choices are possible in both domains, and 
many conventional systems exhibit some of the properties of 
capability systems. No one of the following models is repre- 
sentative of all capability or conventional systems. 

1.1 Capability-Based Systems 

Capability-based systems differ significantly from conven- 
tional computer systems. Capabilities provide (1) a single 
mechanism to address both primary and secondary memory, 
and (2) a single mechanism to address both hardware and soft- 
ware resources. While solving many difficult problems in com- 
plex system design, capability systems introduce new chal- 
lenges of their own. 

Conceptually, a capability is a token, ticket, or key that 
gives the possessor permission to access an entity or object in a 
computer system. A capability is implemented as a data struc- 
ture that contains two items of information: a unique object 
identifier and access rights, as shown in Figure l-l. 

The identifier addresses or names a single object in the com- 
puter system. An object, in this context, can be any logical or 
physical entity, such as a segment of memory, an array, a file, a 

Figure l-l: A Capability 



Capability- and 
Object-Based System 
Concepts 

4 

line printer, or a message port. The access rights define the 
operations that can be performed on that object. For example, 
the access rights can permit read-only access to a memory seg- 
ment or send-and-receive access to a message port. 

Each user, program, or procedure in a capability system has 
access to a list of capabilities. These capabilities identify all of 
the objects which that user, program, or procedure is permit- 
ted to access. To specify an object, the user provides the index 
of a capability in the list. For example, to output a record to a 
file, the user might call the file system as follows: 

l?UT( file-capability , “this is a record” ); 

The capability specified in the call serves two purposes. First, 
it identifies the file to be written. Second, it indicates whether 
the operation to be performed (PUT in this case) is permitted. 

A capability thus provides addressing and access rights to an 
object. Capabilities are the basis for object protection; a pro- 
gram cannot access an object unless its capability list contains a 
suitably privileged capability for the object. Therefore, the sys- 
tem must prohibit a program from directly modifying the bits 
in a capability. If a program could modify the bits in a capabil- 
ity, it could forge access to any object in the system by chang- 
ing the identifier and access rights fields. 

Capability system integrity is usually maintained by prohib- 
iting direct program modification of the capability list. The 
capability list is modified only by the operating system or the 
hardware. However, programs can obtain new capabilities by 
executing operating system or hardware operations. For exam- 
ple, when a program calls an operating system routine to create 
a new file, the operating system stores a capability for that 
file in the program’s capability list. A capability system also 
provides other capability operations. Examples include opera- 
tions to: 

1. Move capabilities to different locations in a capability list. 
2. Delete a capability. 
3. Restrict the rights in a capability, producing a less-privi- 

leged version, 
4. Pass a capability as a parameter to a procedure. 
5. Transmit a capability to another user in the system. 

Thus, a program can execute direct control over the movement 
of capabilities and can share capabilities, and therefore, ob- 
jects, with other programs and users. 



It is possible for a user to have several capability lists. One 
list will generally be the master capability list containing capa- 
bilities for secondary lists, and so on. This structure is similar 
to a multi-level directory system, but, while directories address 
only files, capabilities address objects of many types. 

1.1.1 Memory Addressing in Computer Systems 

This section presents simplified models for both conven- 
tional and capability-based memory addressing systems. Al- 
though capabilities can control access to many object types, 
early capability-based systems concentrated on using capabili- 
ties for primary memory addressing. The first use of capabili- 
ties for memory protection was in the Chicago Magic Number 
Machine [Fabry 67, Yyngve 681, and an early description of 
capability-based memory protection appeared in Wilkes’ book 
on timesharing systems [Wilkes 681. Later, [Fabry 741 de- 
scribed the advantages of capabilities for generalized ad- 
dressing and sharing. 

For purposes of a simplified model, consider a conventional 
computer supporting a multiprogramming system in which 
each program executes within a single process. A program is 
divided into a collection of segments, where a segment is a 
contiguous section of memory that represents some logical en- 
tity, such as a procedure or array. A process defines a pro- 
gram’s address space: that is, the memory segments it can ac- 
cess. The process also contains data structures that describe 
the user, and a directory that contains the names of a set of 
files. These files represent the user’s long-term storage. 

When a program is run, the operating system creates a proc- 
ess-local segment table that defines the memory segments 
available to the program. The segment table is a list of descrip- 
tors that contain physical information about each segment. Fig- 
ure 1-2 shows example formats for a process virtual address 
and segment table descriptor. The operating system loads 
various segments needed by the program into primary 
memory, and loads the segment table descriptors with the 
physical address and length of each segment. A process can 
then access segments by reading from or writing to virtual 
addresses. 

Each virtual address contains two fields: the segment num- 
ber and the offset of a memory element within that specified 
segment. On each virtual address reference the hardware uses 
the segment number field as an index to locate an entry in the 

1.1 Capability- 
Based Systems 

5 



Capability- and 
Object-Based System 
Concepts 

Virtuaisegment number Eiement offset 

6 

0 

Segmenf Descriptors 

- Rights Segment Segmentphysicai 
lengfh address 

J Virtual Address 

-m/ 
Process-Local Segment Tab/e 

Figure 1-2: Conventional Segment Address Translation 

process segment table. This descriptor contains the physical 
location of the segment. The length field in the descriptor is 
used to check that the offset in the virtual address is within the 
segment bounds. The rights field in the segment table entry 
indicates the type of access permitted to that segment (for ex- 
ample, read or write). 

The model shown in Figure 1-2 has the following 
properties: 

1. The system supports a segmented process virtual address 
space. A virtual address is local to the process and is trans- 
lated through the process-local segment table. 

2. A program can construct any virtual address and can at- 
tempt to read or write that address. On each reference, the 
hardware ensures that (a) the segment exists, (b) the offset is 
valid, and (c) the attempted operation is permitted. Other- 
wise, an error is signaled. 

3. Loading of segment table entries is a privileged operation 
and can be accomplished only by the operating system. In 
general, a segment table is created at the time a program is 
loaded. The program then executes in a static addressing 
environment. 

4. Sharing of segments between processes requires that the 
operating system arrange for both process-local segment 
tables to address the shared segments. If two processes wish 
to use the same virtual address to access a shared segment, 



the segment descriptors must be in the same locations in 
both segment tables. 

I,1 Capability- 
Based Systems 

5. Any dynamic sharing of segments requires operating system 
intervention to load segment descriptors. 

A capability-based system also supports the concept of a proc- 
ess that defmes a program’s execution environment. In the 
capability system, each process has a capability list that defines 
the segments it can access. Instead of the segment table de- 
scriptors available to the conventional system hardware, the 
capability addressing system consists of a set of capability regis- 
ters. The program can execute hardware instructions to transfer 
capabilities between the capability list and the capability regis- 
ters. The number of capability registers is generally small com- 
pared to the size of the capability list. Thus, at any time, the 
capability registers define a subset of the potentially accessible 
segments that can be physically addressed by the hardware. A 
simplified hardware model for this system is shown in 
Figure 1-3. 

The model shown in Figure 1-3 has the following 
properties: 

1. The system has a segmented virtual address space. A seg- 
ment of memory can only be addressed by an instruction if a 
capability for that segment has been loaded into a capability 
register. 

Capabiiify register number Hemen! offset 

Segment identifier 

Pfocess Capabiiiiy Registers 

Figure 1-3: Capability Register Addressing 

A Virtuai Address 



Capability- and 
Object-Based System 
Concepts 2. While loading of a segment descriptor in the conventional 

system is privileged, loading of a capability register is not. 
Instead of controlling the loading of the register, the capa- 
bility system controls the pattern of bits that can be loaded. 
Only a valid capability can be loaded into a capability 
register. 

3. The capability system provides a dynamically changing ad- 
dress space. The address space changes whenever the pro- 
gram changes one of the capability registers. 

4. A virtual address identifies a process-local capability regis- 
ter. In this sense, a virtual address has similar properties to a 
virtual address in the conventional system. Sharing a virtual 
address does not in itself give access to the same segment. 

5. A capability, however, is not process-local. Capabilities are 
context independent; that is, the segment addressed by a capa- 
bility is independent of the process using that capability. A 
process can share a segment by copying or sending a capabil- 
ity from its capability list to the capability list of a cooperat- 
ing process. Each of the processes can then access the 
segment. 

8 

One important difference between the conventional and 
capability approaches involves the ability of a program to affect 
system-wide or process-local objects. In the conventional sys- 
tem, a program executes within a virtual address space defined 
by a process. Every procedure called by that program has ac- 
cess to the process address space, including segments and files. 
Every procedure executes within an identical protection 
environment. 

In the capability system, a procedure can only affect objects 
for which capability registers have been loaded. It is possible, 
therefore, for different procedures called by the same program 
to have access to different segments. Although all procedures 
may have the potential to load capability registers from the 
capability list, some procedures may choose to execute within a 
very small addressing sphere. 

The ability to restrict the execution or addressing environ- 
ment of a procedure has several benefits. First, if a procedure 
is allowed access only to those segments absolutely needed, the 
hardware can detect any erroneous references. For example, 
a reference past the end of an array might be caught before it 
destroys another variable. Second, if a procedure is found to be 
in error, it is easy to determine what segments might have been 
affected. If the segments that could have been modified were 
local to the procedure, recovery might be substantially easier. 

Most capability systems go a step further by allowing each 
procedure to have a private capability list. A procedure can 



1 .I Capability- 
thus protect its objects from accidental or malicious access by Based Systems 

its callers, and a program can protect its objects from access by 
called procedures. Every procedure can have, in effect, its own 
address space. To permit a procedure access to a local object, a 
program can pass a capability for the object as a parameter 

’ when the procedure is called. Therefore, in a capability sys- 
tem, every procedure can be protected from every other proce- 
dure because each has a private capability list. When one pro- 
cedure calls another, it knows that the called procedure can 
access only local objects for which capabilities are passed. 

1 .I.2 The Context of an Address 

Each object in a capability system has a unique identifier. 
Conceptually, each object’s identifier is unique for all time. 
That is, an identifier is assigned when an object is created and 
that identifier is never reused, even after the object is deleted. 
During the object’s lifetime, its unique identifier is used within 
capabilities to specify the object. An attempt to use a capability 
with an identifier for a deleted object causes an error. 

In practice, the object identifier field of a capability must be 
used by hardware to locate the object. From the hardware 
viewpoint, the identifier is an address-either the address of a 
segment or perhaps the address of a central descriptor that 
contains physical information about the segment. The need to 
handle addresses efficiently in hardware typically causes ad- 
dresses to be small-16 or 32 bits, for example. For this rea- 
son, identifiers tend to have too few bits to be unique for all 
time. However, the choice of the number of bits in an identi- 
fier is an important system design decision that dictates the 
way in which capabilities can be used. 

In conventional systems, an address is meaningful only 
within a single process. In a capability system, addresses (capa- 
bilities and their identifiers) are context-independent. That is, 
the interpretation of a capability is independent of the process 
using it. The unique identifier within a capability must have a 
system-wide interpretation. Unique identifiers must be large 

, enough to address all of the segments likely to be in use by all 
executing processes at any time. This allows capabilities to be 
freely passed between processes and used to access shared data. 

Addressing on most conventional systems is restricted in 
terms of time as well as context. An address is meaningful only 
within the lifetime of a single process. Therefore, addresses 
cannot be used to name objects whose lifetimes are greater than 9 



Capability- and 
Object-Based System 
Concepts the process creating the objects. If a process wishes to create a 

long-term storage object, such as a file, it must interface to the 
file system. Files typically require different naming, protec- 
tion, and storage mechanisms than memory segments. 

A significant advance made possible by capabilities is the 
naming and protection of both long-term and short-term ob- 
jects with a single mechanism. If the identifier field is very 
large, it may be possible to implement identifiers unique for all 
time. Each object is addressed by capabilities containing its 
unique identifier, independent of whether it is stored in pri- 
mary or secondary memory. The operating system or hardware 
can maintain data structures that indicate the location of each 
object. If a program attempts to access an object in secondary 
memory, the hardware or operating system can bring the ob- 
ject into primary memory so that the operation can be com- 
pleted. From the program’s point of view, however, there is 
a single-level address space. Capabilities, as well as data, can 
be saved for long periods of time and stored in secondary 
memory. 

There are, therefore, several contexts in which an address 
can have meaning. For example, for: 

1. Primary memory segments of a single process. 
2. Primary memory segments of all existing processes. 
3. All existing segments in both primary and secondary 

memory. 

10 

Most conventional systems support only type 1, while capabili- 
ties allow for any of the listed addressing types. More impor- 
tantly, while conventional systems are concerned only with the 
protection of data, capability systems are concerned also with 
the protection of addresses. A process on a capability system 
cannot fabricate new addresses. As systems become more gen- 
eral in their addressing structure as in types 2 and 3, the protec- 
tion of addresses becomes crucial to the integrity of the system. 

1 .I.3 Protection in Computer Systems 

Lampson contrasts the capability approach with the tradi- 
tional approach by showing the structure of protection infor- 
mation needed in a traditional operating system [Lampson 711. 
Figure 1-4 depicts an access matrix showing the privileges that 
each system user is permitted with respect to each system ob- 
ject. For example, user Fred has read and write privileges to 
File1 and no privileges to File2, while user Sandy is allowed to 
read both files. 



System Objects 
1 .I Capability- 
Based Systems 

Fiie I File2 Fiie3 ProcessJ Mailbox10 . . . 

Fred 

System 
Users 

Sandy 

MO//~ 

Figure 1-4: System Object Access Matrix 

One conventional approach to the maintenance of protec- 
tion information is access control lists, in which the operating 
system keeps an access list for each object in the system. Each 
object’s list contains the names of users permitted access to the 
object and the privileges they may exercise. When a user at- 
tempts to access an object, the operating system checks the 
access list associated with that object to see if the operation is 
authorized. Each of the columns of Figure 1-4 represents an 
access control list. 

The capability system offers an alternative structure in 
which the operating system arranges protection information by 
user instead of by object. A capability list is associated with 
each user in the system. Each capability contains the name of 
an object in the system and the user’s permitted privileges for 
accessing the object. To access an object, the user specifies a 
capability in the local capability list. Each of the rows of Figure 
l-4 represents a capability list. Figure l-5 shows an access list 

Access List for MaiiboxlO Capabiiity list for Fred 

F red(send) 
Sandy(send,receive) 
Moiiyjsendj 

Fiie Ijread, write) 
Fi/e3(read) 
ProcessJ(delete,suspend, wakeup) 
MailboxlO(send) 

figure 7-5: Access Control and Capability Lists 
11 



Capability- and 
Object-Based System 
Concepts and a capability list derived from the protection matrix in 

Figure 1-4. 
One important difference between the capability list and 

access list is the user’s ability to name objects. In the access list 
approach, a user can attempt to name any object in the system 
as the target of an operation. The system then checks that 
object’s access list. In the capability system, however, a user 
can only name those objects for which a capability is held: that 
is, to which some access is permitted. 

In either case, the integrity of the system is only as good as 
the integrity of the data structures used to maintain the protec- 
tion information. Both access control list and capability list 
mechanisms must be carefully controlled so that users cannot 
gain unauthorized access to an object. 

Similar protection options exist outside the computer 
world. A useful analogy is the control of a safe deposit box. 
Suppose, for example, that Carla wishes to keep all of her valu- 
ables in a safe deposit box in the bank. On occasion, she would 
like one or more trustworthy friends to make deposits or with- 
drawals. There are basically two ways that the bank can control 
access to the box. First, the bank can maintain a list of people 
authorized to access the box. To make a transaction, Carla or 
any of her friends must prove their identity to the bank’s satis- 
faction The bank checks the (access control) list for Carla’s 
safe deposit box and allows the transaction if the person is 
authorized. Or, instead of maintaining a list, the bank can 
issue Carla one or more keys to her safe deposit box. If Carla 
needs to have a friend access the box, she simply gives a key to 
the friend. 

A number of observations can be made about these two 
alternative protection systems. The properties of the access list 
scheme are: 

1. The bank must maintain a list for each safe deposit box. 
2. The bank must ensure the validity of the list at all times 

(e.g., it cannot allow the night watchman to add a name). 
3. The bank must be able to verify the identity of those asking 

to use a box. 
4. To allow a new person to use the box, the owner must visit 

the bank, verify that he or she is the owner of the box, and 
have the new name added to the list. 

5. A friend cannot extend his or her privilege to someone else. 
6. If a friend becomes untrustworthy, the owner can visit the 

bank and have that person’s name removed from the list. 



1.2 The Object- 
The alternative scheme involving keys has the following Based Approach 

properties: 

1. The bank need not be involved in any transactions once the 
keys are given, except to allow a valid keyholder into the 
vault. 

2. The physical lock and key system must be relatively secure; 
that is, it must be extremely difficult to forge a key or to pick 
the lock on a safe deposit box. 

3. The owner of a box can simply pass a key to anyone who 
needs to access the box. 

4. Once a key has been passed to a friend, it is difficult to keep 
them from giving the key to someone else. 

5. Once a friend has made a transaction, the owner can ask for 
the key back, although it may not be possible to know 
whether or not the friend has made a copy. 

The advantage of the key-based system is ease of use for both 
the bank and customer. However, if today’s friends are likely 
to become tomorrow’s enemies, the access list has the advan- 
tage of simple guaranteed access removal. Of course, the access 
control list and the key (or capability) systems are not mutually 
exclusive, and can be combined in either the computer or 
banking world to provide the advantages of both systems for 
increased protection. 

1.2 The Object-Based Approach 

Over the last few decades, several areas of computer science 
have converged on a single approach to system design. This 
approach, known as object-based computing, seeks to raise the 
level of abstraction in system design. The events that have 
encouraged object-based design include: 

Advances in computer architecture, including capability sys- 
tems and hardware support for operating systems concepts. 
Advances in programming languages, as demonstrated in 
Simula [Dahl66], Pascal [Jensen 751, Smalltalk [Ingalls 781, 
CLU [Liskov 771, and Ada [DOD 801. 
Advances in programming methodology, including modular- 
ization and information hiding [Parnas 721 and monitors 
[Hoare 741. 

section introduces the object approach and discusses its 
relationship to capability-based computer systems. 

What is object-based computing? Simply stated, the object 
approach is a method of structuring systems that supports ab- 13 



Capability- and 
Object-Based System 
Concepts straction. It is a philosophy of system design that decomposes a 

problem into (1) a set of abstract object types, or resources in the 
system, and (2) a set of operations that manipulate instances of 
each object type. 

To make this idea more concrete, consider the following 
simplified example. Imagine that we are programming a traffic 
simulation for a city. First, define a set of objects that repre- 
sent, abstractly, the fundamental entities that make up the 
traffic system. Some of the object types for the traffic simula- 
tion might be: 

14 

l passenger 
l bus 
l bus stop 
l taxi 
l car 

Then, for each object type, define the operations that can be 
performed. Bus objects, for example, might support the 
operations: 

l PUT-BUS-INTO-SERVICE( bukmmber ) 
l MOVE-BUS( bus-number, bus-stop ) 
l LOAD-PASSENGERS( bus-number, passenger-list ) 
l UNLOAD-PASSENGERS( bus-number, passenger-list ) 
l GET-PASSENGER-COUNT( bus-number ) 
l GET-POSITION( bus-number ) 
l REMOVE-BUS-FROM-SERVICE( bus-number ) 

Each bus operation accepts a bus number as a parameter. At 
any time there may be many bus objects in the system, and we 
identify each bus by a unique number. Each of these bus ob- 
jects is an instance of the type bus. The type of an object identi- 
fies it as a member of a class of objects that share some behav- 
ioral properties, such as the set of operations that can be 
performed on them. 

What has been gained by defining the system in this way? 
First, there now exist a fundamental set of objects and opera- 
tions for the simulation. We can now implement the proce- 
dures to perform the operations on each type of object. Since 
only a limited number of procedures operate on each object 
type, access to the internal data structures used to maintain the 
state of each type can be restricted. This isolation of the knowl- 
edge of those data structures should simplify any future 



changes to one of the object abstractions because only a limited 
1.2 The Object- 
Based Approach 

set of procedures is affected. 
Second, and more importantly, we have raised the level of 

abstraction in the simulation program. That is, we can now 
program the simulation using buses, passengers, and bus stops 
as the fundamental objects, instead of bits, bytes, and words, 
which are normally provided by the underlying hardware. The 
buses and passengers are our data types just as bits and bytes 
are the data types supported in hardware. The simulation pro- 
gram will consist mainly of control structures plus procedure 
calls to perform operations on instances of our fundamental 
objects. 

Of course, in this example, the procedures implementing 
the operations are programmed using lower-level objects, such 
as bytes, words, and so on. Or, they may be further decom- 
posed into simpler abstract objects that are then implemented 
at a low level. Object-based systems provide a fundamental set 
of objects that can be used for computing. From this basis, the 
programmer constructs new higher-level object types using 
combinations of the fundamental objects. In this way the sys- 
tem is extended to provide new features by creating more so- 
phisticated abstractions. 

This methodology aims to increase productivity, improve 
reliability, and ease system modification. Through the use of 
well-defined and well-controlled object interfaces, systems de- 
signers hope to simplify the construction of complex computer 
systems. 

1.2.1 Capabilities and Object-Based Systems 

In the simulation example, each object is identified by a 
unique number. To move a bus from one stop to another, we 
call the MOVE-BUS operation with the unique number of the 
bus to move. For purposes of the simple simulation, a small set 
of integers suffices to identify the buses or other objects. No 
protection is needed because these objects are implemented 
and used by a single program. 

The use of the object approach to build operating system 
facilities presents different requirements. For example, sup- 
pose we wish to build a calendar system to keep track of sched- 
uled meetings, deadlines, reminders, and so on. The funda- 
mental object of the calendar system, from the user’s point of 
view, is a calendar object. Our calendar management system 
provides routines that create a new calendar, and modify, 15 



Caoabilitv- and 
Object-B&ed System 
Concepts query, or display an existing calendar. Many users in the sys- 

tem will, of course, want to use this facility. 
Several familiar issues now arise: (1) how does a user name a 

calendar object, (2) how is that calendar protected from access 
by other users, and (3) how can calendars be shared under 
controlled circumstances? Only the owner of a calendar should 
be able to make changes, and the annotations in each calendar 
must be protected from other users, since they might contain 
confidential information. However, a user might permit se- 
lected other users to check if he or she is busy during a certain 
time, in order to automate the scheduling of meetings. 

Capabilities provide a solution to these problems. When a 
user creates a new calendar, the calendar creation routine allo- 
cates a segment of memory for which it receives a capability. 
This segment is used to store data structures that will hold the 
calendar’s state. The create routine uses this capability to ini- 
tialize the data structures, and then returns it to the caller as 
proof of ownership of the calendar. In order to later modify or 
query the calendar, the user specifies the returned capability; 
the capability identifies the calendar and allows the modify or 
query procedure to gain access to the data structures. Only a 
user with a valid capability can access a calendar. 

A weakness with this scenario is that the calendar system 
cannot prevent the calendar owner from using its capability to 
access the data structures directly. The calendar system would 
like to protect its data structures both to ensure consistency 
and to guarantee that future changes in data format are invisi- 
ble outside of the subsystem. In addition, if a user passes a 
calendar capability to another user, the second user can then 
modify the data structures or read confidential information. 

These problems exist because the calendar system returns a 
fully-privileged calendar capability to the user. Instead, what is 
needed is a capability that identifies a specific calendar and is 
proof of ownership, but does not allow direct access to the 
underlying data structures. In other words, the calendar sys- 
tem would like to return only restricted capabilities to its cli- 
ents. However, the calendar system must retain the ability to 
later amplify the privileges in one of its restricted capabilities so 
that it can access the data structures for a calendar. 

16 

There are several ways of providing type managers with this 
special ability. (These mechanisms are examined in detail 
throughout the book.) However, given this power over capa- 
bilities for its objects, a type manager can ensure that its clients 
operate only through the well-defined object operation inter- 
face. A client can pass a capability parameter to the type man- 



ager when requesting a service, but cannot otherwise use the 1.3 Summary 

capability to read or write the object it addresses. This facility 
is fundamental to any system that allows creation and protec- 
tion of new system types. 

1.3 Summary 

The capability concept can be applied in hardware and soft- 
ware to many problems in computer system design. Capabili- 
ties provide a different way of thinking about addressing, pro- 
tection, and sharing of objects. Some of the properties of 
capabilities illustrated in this chapter include their use in: 

1. Addressing primary memory in a computer system. 
2. Sharing objects. 
3. Providing a uniform means of addressing short- and long- 

term storage. 
4. Support for a dynamic addressing environment. 
5. Support for data abstraction and information hiding. 

These, of course, are advantages of capability-based sys- 
tems. The most important advantage is support for object- 
based programming. Object-based programming methodology 
seeks to simplify the design, implementation, debugging, and 
maintenance of sophisticated applications. While capabilities 
solve a number of system problems, their use raises 
a whole new set of concerns. And, as is often the case in com- 
puter system design, the concept is much simpler than the 
implementation. 

The remainder of this book is devoted to examining many 
different capability-based and object-based designs. The char- 
acteristics of each system are described with emphasis on ad- 
dressing, protection, and object management. Each system 
represents a different set of tradeoffs and presents different 
advantages and disadvantages. When comparing the systems, 
consider the differences in goals, technologies, and resources 
available to the system developers. 

The final chapter of this book considers issues in capability 
system design common to all of the systems described. A few 
of the questions to be considered follow. It may be useful to 
remember these questions when examining each system 
design. 

1. What is the structure of an address? 
2. How is a capability represented? How is a capability used to 

locate an object? 17 



Capability- and 
Object-Based System 
Concepts 3. How are capabilities protected? 

4. What is the lifetime of a capability? 
5. What types of objects are supported by the hardware and 

software? 
6. What is the lifetime of an object? 
7. How can users extend the primitive set of objects provided 

by the base hardware and software? 

1.4 For Further Reading 

The concept of capability is formally defined in the 1966 
paper by Dennis and Van Horn [Dennis 661. Chapter 3 exam- 
ines this paper in some detail. The paper by Fabry [Fabry 741 
compares capability addressing and conventional segmented 
addressing of primary memory, while Redell [Redell 74a] de- 
scribes issues in capability systems and the use of sealing mech- 
anisms that support the addition of new object types to a sys- 
tem. These papers are a fundamental part of capability 
literature. 

Capability systems have been discussed in various contexts. 
Two papers by Lampson [Lampson 69 and Lampson 711 de- 
scribe the requirements for protection in operating systems 
and the capability protection model. The surveys by Linden 
[Linden 761 and Denning [Denning 761, which appeared in a 
special issue of ACM Computing Surveys, describe capability 
systems and their relationship to security and fault tolerance in 
operating systems. 

The architecture books by Myers [Myers 821 and Iliffe 
[Iliffe 821 also discuss some of the systems described in this 
book. Myers’ book contains details of Sward [Myers SO], a 
capability-based research system built at IBM that is omitted 
here. A capability system model, as well as discussion of some 
existing capability systems, appears in the book by Gehringer 
[Gehringer 821. Jones [Jones 78a] provides a good introduction 
to the concepts of object-based programming. 

18 



The Burroughs B5000 computer. (Courtesy Burroughs Corporation.)




