
2 

Early Descriptor Architectures 

2.1 Introduction 

During the late 1950s and early 1960s a host of architectural 
experiments attacked significant problems in computer system 
utilization. Most computers of that era were batch systems that 
ran one program at a time. A program was loaded into a contig- 
uous section of primary memory and run until completion; 
then another program was loaded and run. This static execu- 
tion and memory environment made inefficient use of the 
costly processor, memory, and peripherals. In addition, pro- 
grams had little flexibility for meeting dynamic programming 
demands. 

Multiprogramming systems showed increased processor uti- 
lization as long as several runnable programs could be kept in 
primary memory. However, multiprogramming required more 
sophisticated memory management techniques and forced op- 
erating systems to deal with dynamic storage allocation and 
compaction. These tasks were greatly eased by the introduc- 
tion of paged systems in which all storage units were the same 
size. 

Although paging helped the operating system to manage 
storage, it did little to help the programmer with the task of 
programming. A program still had to manage a conventional 
linear address space. It was difficult to protect instructions or 
data separately, to catch array bounds violations, to increase 
the size of arrays and other data structures dynamically, or to 
create new data structures dynamically. 

The concept of segmentation, however, aided both the pro- 21 



Early Descriptor 
Architectures 

22 

grammer and the operating system. A segment is a contiguous 
section of memory that represents some logical entity, such as a 
procedure or array. The programmer views memory as a col- 
lection of segments, each separately addressable. A program 
addresses each memory element by a segment number and the 
offset of that element within the specified segment. Because 
each segment has a size, array bounds violations can be caught 
by placing the array within a single segment. 

An operating system can load each segment into memory 
separately or relocate segments if needed (for example, to en- 
large the size of the segment). However, for an operating sys- 
tem to manipulate segments easily, it must ensure that physical 
memory addresses are not embedded in the program. The sim- 
plest way to isolate the program from its physical memory loca- 
tion is to provide a level of indirection between program-gener- 
ated addresses and the primary memory addresses of data 
elements. Just as page tables provide this indirection in the 
paged virtual memory system, segment descriptors-or seg- 
ment base/limit registers in some hardware implementa- 
tions-provide the indirection in a segmented system. A seg- 
ment descriptor is a data element that contains the primary 
memory address and size of a segment. An operating system 
need only modify the relevant descriptors when relocating seg- 
ments . 

This chapter examines several early descriptor-based com- 
puter designs: the Burroughs BSOOO, the Rice University Com- 
puter, and the Basic Language Machine. Although these sys- 
tems preceded the formal definition of capability, each system 
implemented capability-like structures in its addressing mech- 
anisms. These machines were distinguished from their con- 
temporaries by the generalized way in which they applied the 
concept of descriptor. 

2.2 The Burroughs 85000 

Much of the innovation in commercial computer architec- 
tures in the early 1960s emanated from the Burroughs Corpo- 
ration. Introduced in 1961, the Burroughs B5000 system had 
several features unique for its time [Burroughs 611. Most im- 
portant was the use of segmentation for structuring memory 
and the use of descriptors for addressing segments. Also, the 
B5000 was geared to execute high-level language programs, 
particularly ALGOL and COBOL. In fact, assembly language 
was not available to the user. The system was designed to com- 



pile and execute high-level languages efficiently, and relied on 
2.2 The Burroughs 
B5000 

a stack-oriented instruction set to aid in expression evaluation 
and procedure activation. The B5000 supported multiprocess- 
ing as well as multiprogramming by allowing connection of two 
processing units. 

On the B5000 a program consists of many data segments 
and code segments. Each executing program has a local ad- 
dressing environment consisting of its memory segments, its 
private stack, and a private Program Reference Table (PRT). 
The Program Reference Table, up to 1024 48-bit words in 
length, contains descriptors that locate the user’s code and data 
segments in memory, and values of scalar elements, as shown 
in Figure 2- 1. A tag field in each word in the table indicates 
whether the entry is a descriptor or a scalar data element. All 
memory references, including procedure calls, are made 
through Program Reference Table descriptors; thus, the Pro- 
gram Reference Table completely defines the domain of execu- 
tion for each user program. When a program is running, a 
hardware register holds the address of its Program Reference 
Table. 

The B5000 supports three different descriptor types: data 
descriptors, program descriptors, and input/output descrip- 
tors. The formats of these descriptors are shown in Figure 2-2. 
Data descriptors contain the size, primary memory address, and 
drum unit number and address of a data segment. Program 
descriptors are allocated for each procedure and every segment 
of the main program. Reference to a program descriptor auto- 
matically causes a procedure call. Input/output descriptors are 

7% 

Descriptor - 

Descriptor 

Value 

Descriptor 

Value 

. 
Data 

* segment 

h Data 
segment 

Subroutme 
* codesegment 

PRT 

&we 2-1: B5000 Program Reference Table 23 



Early Descriptor 
Architectures 

24 

Tag P nfE,er Segment Drum Memory 
size address address 

Data and Program Descriptor 

Tag P 
l/n/t Operalion Operation Formal/ Memory 

number size type control address 

1/O Descriptor 

Figure 2-Z. B5000 Descriptor Formats 

command words for the operating system, specifying the size 
and type of transfer and any special device control or format- 
ting information. The operating system selects a physical unit 
and allocates primary memory for the operation if needed. 

The presence bit (I’) in data and program descriptors indi- 
cates whether or not the segment is currently in primary mem- 
ory. If reference is made to a segment not in primary memory, 
a trap occurs and the operating system automatically loads the 
segment from drum. 

The B5000 is a stack machine and all instructions operate on 
the stack. The stack is stored in memory; however, the top two 
stack elements are held in hardware registers called the A and 
B registers. As items are pushed onto the stack, they move first 
into the A register, then to the B register, and finally into 
memory as more items are pushed. As items are popped from 
the stack, data moves from memory into the B register. All 
arithmetic operations are performed on operands held in the A 
and B registers, leaving a single result in the B register. 

Each 48-bit B5000 instruction word is divided into four 12- 
bit instruction syllables. There are four types of instruction 
syllables: operators, literals, operand calls, and descriptor 
calls. An operator syllable operates on the top one or two ele- 
ments of the stack, leaving a single-word result. A literal sylla- 
ble simply causes a lo-bit literal field in the syllable to be 
pushed on the stack. 

A program executes an operand call syllable to load a data 
item onto the stack. The operand call references an entry in the 
Program Reference Table, with three possible results depend- 
ing on the type of entry encountered. First, if the PRT entry is 
a scalar, the scalar is pushed onto the stack. Second, if the PRT 
entry contains a program descriptor, a subroutine call takes 
place. Third, if the entry is a descriptor for a segment with 
length greater than zero, then array indexing takes place as 



2.3 The Rice 
follows. The contents of the B register, which contains the University CC 

array index, is validated against the length stored in the de- 
scriptor. The index is then added to the segment base address 
to locate the selected word in memory. The word is read from 
memory and loaded into the B register, replacing the index. 

Descriptors can also be loaded from the PRT onto the stack. 
This is required, for example, to execute the STORE operator, 
which saves the contents of ‘the B register in the location ad- 
dressed by the A register. A descriptor call syllable, used to 
push an address onto the stack, operates in a mode similar to 
the operand call. If the referenced PRT entry is a scalar, a 
descriptor is constructed pointing to its location in the PRT. If 
a PRT entry contains a descriptor, the descriptor is copied to 
the stack, with possible address modification by an index value 
in the B register. Reference to a program descriptor causes a 
subroutine call. 

B5000 subroutines execute in subroutine mode which pro- 
vides some special syllable formats. When a subroutine is 
called, input parameters (as well as linkage information) are 
saved on the stack by the caller. A hardware register is loaded 
with the address of the next available stack location past the 
saved parameters; this is the first location used by the subrou- 
tine for its local variables. One of the subroutine mode sylla- 
bles allows stack addressing relative to the register in the posi- 
tive direction (to access locals) or the negative direction (to 
access inputs). A subroutine can also address constants stored 
in the subroutine code segment using a type of program 
counter relative addressing. References to the caller’s PRT are 
still permitted within the subroutine. 

The B5000’s use of the stack, segmentation, descriptor ad- 
dressing, and high-level languages made it one of the most 
advanced systems of its time. These features have been ex- 
panded and generalized in later Burroughs systems and have 
had an effect on other manufacturers’ products as well. The 
16-bit Hewlett-Packard 3000 [HP 721, in particular, is an out- 
growth of early Burroughs B5000 ideas. More important, the 
B5000 Program Reference Tables and their use in addressing 
and separation of process address spaces directly influenced 
early capability thinking. 

2.3 The Rice University Computer 

In 1959, development of a new machine began at Rice Uni- 
versity. Called the Rice University Computer [Iliffe 62, Jodeit 25 



Early Descriptor 
Architectures 

26 

The Rice .Unlversity computer. Jane Jodeit IS seated at the control console 
with Martln Graham lookrng on (Courtesy Dr. Martin Graham ) 

681, this system was designed for the single-program environ- 
ment and was never intended to support multiprogramming. 
In fact, the original physical memory of the Rice machine was 
only 8K 56-bit words. However, this computer-operational 
until 1971-provided important experimentation with pro- 
gram addressing of memory. 

The Rice architecture focused on several deficiencies in con- 
ventional linear address space machines. First, conventional 
hardware did not support entities corresponding to high-level 
programming objects. Second, for scientific problems, conven- 
tional architectures did not support the addressing of single or 
multidimensional arrays. Third, dynamic growth of data struc- 
tures was difficult on conventional machines. Programmers 
had to code the maximum possible size of each array into their 
programs, so that contiguous storage could be preallocated. 
Support of ALGOL-like languages, with array size determina- 
tion at block entry time, was difficult. 

To solve these problems, the Rice designers chose a seg- 
mented architecture based on the use of codewords. Codewords 
are descriptors for logical program entities; they can be stored 
in the computer’s memory or registers. Each program (as 



2.3 The Rice 
15 12 111 8 15 University Computer 

L / x P * K F 

F Physicai address of the segment. 

K Specifies one of eight index registers whose contents can be used 
to select an array element at iocation F-I+ [Ki. 

P Vaiid bit, indicates whether physicai storage is a/located or not. 

* lndirecf bit. 

X Specifies that the named segment contains codewords 

I Index of the first array element (origin of the array). 

L Length of the segment in words. , 

Figure 2-3: Rice University Computer Codeword Format 

viewed by both the programmer and the machine) consists of a 
collection of segments, called blocks or arrays in the Rice de- 
sign. A segment contains instructions, data, or codewords and 
is addressed indirectly by means of a codeword. Each segment 
is homogeneous, and data types cannot be mixed within a sin- 
gle segment. A single-bit tag within each codeword is set if the 
addressed segment contains codewords. 

In one sense, a codeword is simply a single-word descriptor 
used to address a segment, similar to a segment base register or 
Burroughs B5000 descriptor. In another sense, a codeword 
names the block of storage it addresses. The logical machine 
address space seen by the program on the Rice system is totally 
defined by a list of principal codewords that it can access. The 
actual maintenance of codewords is provided by the operating 
system. The basic structure of Rice codewords (omitting un- 
used bits) is shown in Figure 2-3. 

The physically addressable memory of the Rice machine is 
divided into several fixed regions, as defined below: 

l A 64-word table for accumulators, trap addresses, boot code, 
etc. 

l Two 64-word directories of codewords defming array blocks 
for the operating system and programmer, respectively. 
These are the principal codewords through which all other 
storage is reached, including the following structures. 

* A 128-word stack. 
l A symbol table defining each named global object in the sys- 

tem. 
l A corresponding value table containing values for scalars and 

codewords for arrays named in the symbol table. 27 



Early Descriptor 
Architectures 

28 

The remainder of memory is allocated dynamically to user pro- 
grams and data, including those addressed through the value 
table. 

Figure 2-4 shows the structure of a Rice University Com- 
puter sample procedure. Procedure instructions can address 
variables within the procedure segment without reference to 
codewords (that is, relative to the program counter). However, 
external arrays, procedures, and variables are addressed 
through linkage words stored at the end of the procedure seg- 
ment. When a procedure is compiled, the linkage words are 
initialized with the names of the global variables to be ad- 
dressed. At procedure load time, the operating system locates 
the names in the symbol table and modifies the linkage words 
to point to the corresponding entries in the value table. 

A value table entry can be a value if the object is scalar, or a 
codeword if it is an array, requiring one or more additional 
levels of indirection. Indirection is possible through a tree of 
codewords, and each successive level can specify one of eight 
index registers. For example, in addressing the two-dimen- 
sional array (2DArray) shown in Figure 2-4, each codeword in 
the secondary codeword segment addresses one row of the 
array. Indirection terminates when a scalar object is found. 
Measurements performed on the Rice University Computer 
showed that lo-15% of total data references were made 
through codewords. 

Arrays can be extended in length by allocating additional 
storage and modifying the codeword. Multidimensional array 
addressing is aided by the fact that each codeword can specify 
an index register. For example, a two-dimensional array can be 
described by a primary codeword pointing to a table of code- 
words, one for each row. No address computation is required 
because the index registers are used to hold the column and 
row indices. In addition, the rows can be of different lengths. 

Although the designers stressed the importance of array 
addressing and extensibility, perhaps more important is the 
use of codewords as object names. Using the Rice scheme, a 
procedure need only specify a codeword parameter to pass an 
object to another procedure. The codeword completely defines 
access to the object, including its address and length. 

The Rice University Computer had several limitations, but 
they were often due to implementation decisions. For example, 
codewords contained the length of the block they defined, but 
the length was not used by hardware to validate an array index. 
Instead, a trap facility was provided to allow software to check 



k 
P P . . . B 8 



Early Descriptor 
Architectures 

30 

array bounds. There was also no hardware-enforced memory 
protection in the system; however, this was due to the simpli- 
fied goals of the machine. One of the more troublesome short- 
comings was that procedure return address links were stored as 
physical addresses, so procedures could not be relocated easily. 

Iliffe and Jodeit suggest that extensions for multiprogram- 
ming would be straightforward and require that each user have 
a separate primary codeword list. Virtual arrays would be pos- 
sible also, but the only secondary storage on the Rice computer 
was a magnetic tape system. The Rice implementation of code- 
words closely resembles the capability concept in the sense that 
possession of the codeword (or knowledge of its address) is 
required to access an object. The designers also suggest that 
Rice codewords could be extended to include usage statistics 
and that device controllers could be developed to understand 
codeword formats. These additions were never made, but sev- 
eral architectural advances were made in a follow-on design, 
the Basic Language Machine. 

2.4 The Basic Language Machine 

The Basic Language Machine (BLM) [Iliffe 68, Iliffe 691 
attempted to extend the capabilities of the Rice University 
Computer and correct some of its shortcomings. Like the Rice 
University machine, the BLM incorporated a codeword mech- 
anism, but it added data type tagging and address manipula- 
tion as well. An additional goal of the BLM project was to 
build a machine defined in terms of higher level functions, 
hiding from the programmer the bit-level details of the ma- 
chine. The Basic Language (not the familiar BASIC program- 
ming language used today) defined this high-level architectural 
interface in terms of an assembly-level command structure. 
Design of the BLM was started in 1964, and an experimental 
version was built by the research division of International 
Computers Limited (ICL) in the United Kingdom. 

The Basic Language Machine supports 8-bit byte, 32-bit 
word, and 64-bit double-word information units. There are 16 
general-purpose registers, each 64 bits long. One of the regis- 
ters is the program counter (called the control number), one 
points to a data structure containing the context local to the 
current process (called the Process Base), and two are reserved 
for special escape actions. Memory on the BLM is segmented, 
the largest segment containing 64K elements of the largest in- 
formation unit. The BLM supports a 24-bit physical address 
space. 



The ELM computer. (Courtesy International Computers Ltd.) 

BLM segments are addressed through codewords, as on the 
Rice computer. However, BLM codewords contain a type field 
indicating the type of information elements stored in the seg- 
ment they address. The defined data types are: 

l 32-bit binary word, 
* g-bit byte, 
* 64-bit long numeric, 
l 32-bit short numeric, 
l mixed type, 
l instruction, 
l absolute codeword, and 
l relative codeword. 

The type field also indicates what access is permitted to the 
segment: data segments can be read-only or read/write; code- 
word and instruction segments are read-only. 

Most of the type encodings specify segments that are homo- 
geneous, that is, segments with only one data type. If the 
codeword type field specifies a mixed-type segment, the seg- 

2.4 The Basic 
Lar iguage P vlachine 

31 



Early Descriptor 
Architectures ment can contain elements of any type. However, in mixed- 

type segments, each element must contain its own tag. A tag is 
a field contained within the information unit indicating its in- 
terpretation. All elements in a mixed-type segment are 64 bits 
long and contain a 3-bit tag. The four tags defined are: 

l 32-bit binary word, 
l escape (an attempt to use such an element as an operand 

causes a trap to software), 
l 45bit address (stored in 64 bits), and 
l 61-bit floating numeric element. 

The BLM automatically performs conversion and tagging of 
data elements on fetch or store operations. In homogeneous 
sets, tags do not need to be stored with each data item, but are 
constructed from the type stored in the codeword used to load 
the item into a register. Therefore, homogeneous information 
can be tightly packed without tagging overhead. The format of 
32-bit and 61-bit numeric elements when stored in registers, 
for example, is shown in Figure 2-S. The tag values of zero and 
three in the figure indicate 32- and 61-bit numerics, respec- 
tively. If an &bit byte is fetched, it is automatically sign- 
extended to 32 bits, and the tag is set to zero. 

The BLM is a multiprogrammed computer, and a Process 
Base defines the execution environment for each process. It is 
possible for several processes to share the same base and, 
hence, share access to the same objects. The process address 
space is composed of a collection of segments, each of which is 
described by a codeword. The segments may be arranged in a 
tree structure, but all nodes are reachable only through code- 
words originating in the Process Base. That is, the terminal 
nodes of the tree structure contain data or instructions, while 
the intermediate or branching nodes are codeword sets. Code- 
words are thus used both to separate user address spaces and to 
separate logical entities within a program. 

3 29 

01 Not used 

32 

" 

32 

61 
h 

3/ 

3 Exponent Mantissa 

figure 2-5. Example of BLM Numeric Formats 



2.4 The Basic 
Relative codewords are provided so that, in situations where Language Machine 

it is natural to do so, codewords can be stored in the same 
segment with the data they describe. To simplify packing, rela- 
tive codewords are only 32 bits long and can only reference 
objects within 4096 bytes of their location. Relative codewords 
allow efficient storage of related data structures. A program 
can maintain several data structures in a single segment by 
placing relative codewords for the data structures in the first 
few segment locations. 

Figure 2-6 shows a sample structure of a BLM process. In 
this case, the Process Base contains codewords for instruction 
segments, data segments, and codeword segments. The termi- 
nal nodes are all data segments. One of the terminal nodes is a 
mixed segment with relative codewords pointing to internal 
data structures. 

Codewords define the address space and are read-only; they 
cannot be manipulated by users. BLM addresses, however, are 
quantities derived from codewords that can be user-manipu- 
lated. Both addresses and codewords contain the same infor- 
mation, as shown in Figure 2-7: the address and length of the 
defined set, its type, and a tag indicating an addressing ele- 
ment. Once an address is derived from a codeword, through an 
operation called codeword evaluation, it can be modified 
through special instructions. MOD and LIM instructions ad- 
dress a subset of the original segment by modifying the loca- 

Process 
Base 

Codeword . 

Codeword 

Data instruction 
segmeni segment 

. 

Codeword Data 

Codeword - Codeword 

Figure 2-6. Basic Language Machine Addressing 33 



Early Descriptor 
Architectures 3 5 12 12 

Jag Jype length Relative iocation (32 bitsj 

Reiative Codeword 

3 5 24 16 16 

Jag Jw Locaiion Not used Length (64 bits) 

Absoiufe Codeword and Address 

Figure 2-7: BLM Address and Codeword Formats 

tion and length fields-to remove a specified number of ele- 
ments from the beginning or end of the segment, respectively. 
Looping instructions are available to step addresses through 
consecutive elements of a segment (performing an implicit 
MOD by one each time) and to test when the last element has 
been examined. Iliffe notes that it would be possible also to use 
the 16 free bits in an absolute codeword to implement linked 
data structures. 

BLM addresses allow users to save intermediate address 
computations through a tree of codewords. (In contrast, on the 
Rice University Computer, a full address computation is re- 
quired on each access to an indirectly referenced object.) On 
the BLM, the programmer can compute the object address 
once and save it. The address for a single element in a set can 
also be computed and saved. Of course, relocation is difficult 
because addresses as well as codewords must be examined 
when an object is relocated; that is, BLM addresses are not 
virtual but contain the primary memory location of a data ele- 
ment. 

The Basic Language Machine made several important ad- 
vances over the Rice University Computer. First, it extended 
the design to encompass multiprogramming, using a separate 
Process Base for each process. Second, it provided a more gen- 
eral addressing structure to give users flexibility in performing 
address arithmetic and saving results. Third, it used a rela- 
tively efficient typing mechanism to reduce the number of op- 
erators in the instruction set. However, despite the advantages 
of its structure, the experimental BLM was dismantled in 1970 
and no product evolved from the research effort. 

34 

2.5 Discussion 

The machines described in this section share two major 
traits: segmentation and the use of descriptors (called code- 



words in the Rice and BLM machines) for segment addressing. 2.5 Discussion 

Segmentation of programs was used: 

l to separate programs into logical entities (procedures and ar- 
rays, for example), 

l to separate user processes from each other, 
l to represent and address complex data structures in hard- 

ware, and 
l to allow relocation and dynamic growth of data structures. 

In general, an address is specified by two parts: a segment 
descriptor and an offset. However, different approaches for the 
specifics of addressing and address manipulation were used for 
each machine. For example, array addressing on the Bur- 
roughs B5000 required the index to be pushed onto the stack 
before the array reference was made. Multidimensional array 
address calculation required a series of index pushes and evalu- 
ations. The Rice University Computer used index registers, 
and multilevel indexed addressing was performed automati- 
cally with an index register specified for each level in the ad- 
dressing tree. With the BLM, this idea was abandoned and 
replaced by address modification instructions that allow a con- 
irolled form of user-modifiable codewords. 

All three machines provide a single base segment that de- 
fines a program’s execution environment: the B5000 Program 
Reference Table, the Rice University Computer primary code- 
word list, and the BLM Process Base. The address of the base 
segment is usually held in a hardware register. From the base 
segment, the addressing mechanism provides for the represen- 
tation of programs and data structures as tree structures. The 
trees are slightly different in each case due to the differences in 
addressing. The root of the tree is the base segment hardware 
register, and the first level nodes are in the Process Base. Start- 
ing at the Process Base, the branchpoints of the tree are code- 
words or descriptors and the leaves are data elements (in the 
case of the Rice University Computer) or data segments (in the 
case of B5000 or BLM). The BLM allows a program to tra- 
verse several levels and save the intermediate address of a sub- 
tree, but the Rice machine requires a complete multilevel scan 
for each access. The tree structure allows the user to represent 
complex data structures directly in hardware and to share 
substructures. Different processes can share subtrees by shar- 
ing subtree descriptor segments. 

One of the major reasons for segmentation in these systems 
was to simplify relocation of programs and data. Relocation is 35 



Early Descriptor 
Architectures facilitated by forcing all references to flow through descriptors. 

To relocate a segment, the operating system needed only to 
modify its descriptors. The additional level of indirection pro- 
vided by descriptors also made segments easily “virtual&able,” 
that is, all segments did not have to occupy primary memory 
while a program was running. Of course, the complexity of 
relocation is greatly influenced by the generality with which 
descriptors can be used. For example, if descriptors are stored 
in a single descriptor table, relocation involves only a scan of 
that table. However, if descriptors are stored in segments and 
each descriptor contains a segment base address, then many 
segments may need to be searched. Such a memory search can 
be simplified if segments are typed, as on the BLM, because 
only mixed or codeword segments would need to be examined. 

Care must be taken in any scheme in which multiple copies 
of the physical segment information can exist for a single seg- 
ment. This problem could be reduced if the descriptors them- 
selves referred indirectly to a second-level segment descriptor. 
However, on the machines examined in this chapter, a descrip- 
tor conrains all of the physical information describing a seg- 
ment. Thus, copying a descriptor duplicates the physical ad- 
dress. 

Descriptors on the B5000 can be copied onto the stack, re- 
quiring a possible stack search in order to relocate a segment. 
However, because it is exclusively a high-level language ma- 
chine, the use of descriptors can be restricted by the B5000’s 
compilers. The Rice University Computer allows descriptors 
to exist in any segment of codeword or mixed type, so these 
segments would need to be scanned. The BLM, on the other 
hand, allows pure codeword segments and relative codewords 
within other word-oriented segments. Both the Rice and BLM 
machines require a tree search to find descriptors for segments 
to be relocated. 

36 

Another problem in multiprogramming systems is control- 
ling access to shared segments. A user (or I/O device) wishing 
to perform a multistep transaction on a shared segment must 
gain exclusive access to that segment. This can be achieved by 
disabling interrupts or context switching (usually via executive 
procedures), through the use of explicit software locks, or 
through the use of a “lockout” or software trap bit in the de- 
scriptor. If lockout bits are used, then the executive must find 
all copies of descriptors for the target segment. 

Another issue in descriptor design is the cost of indirection. 



All of the examined machines allow tree-structured data. Al- 2.5 Discussion 

though the Rice machine has automatic multilevel addressing, 
the Burroughs and the BLM require several manual steps. 
However, the Burroughs and the BLM allow for partial ad- 
dress computations to be saved. 

One of the perpetual debates in computer architecture is the 
tradeoff between the use of tag bits in data elements and the 
larger operation code set needed in non-tagged architectures. 
The BLM scheme seems to answer the concern for tagging 
overhead by only storing tags in the codeword or address for 
homogeneous segments. However, for mixed or heterogeneous 
structures, each element must still carry a tag. In addition, the 
elements in a mixed set must all be of the same size as the 
largest element in the set; that is, all elements must have the 
same alignment to protect against addressing the middle of 
some element and interpreting data bits as tags. This is not 
particularly efficient because any segment containing a code- 
word pointer must use 64 bits for each element. Still, there are 
benefits to tagging besides the possible savings of operation 
code bits, including automatic conversion and checking by the 
hardware. A certain amount of error detection may also be 
gained by self-tagging of information units. 

A likely problem with these machines was that of garbage 
collection. If a program can write a descriptor to a descriptor 
segment, the descriptor previously occupying that memory 
word could be overwritten. If the overwritten descriptor were 
the only one referencing some segment, that segment would 
then be unreachable. In general, this problem was prevented 
by making descriptor segments read-only. The B5000 PRT 
was not read-only; however, this system relied heavily on the 
compilers for proper system operation. User programs did not 
have direct control of the PRT or descriptors. Garbage seg- 
ments were considered a problem on the BLM, and a garbage 
collection process was written to search for unreachable seg- 
ments. 

One of the more important gains from the use of descriptors 
is the protection of procedures. If procedures can be invoked 
only by referencing a descriptor, then two benefits are realized. 
First, a procedure can only be invoked at its entry point con- 
tained in the descriptor; it cannot be entered at a random 
point. Second, procedure code is protected from accidental or 
deliberate modification. 

Despite their differences, all of these machines have a com- 37 



Early Descriptor 
Architectures mon link to capability architectures: they all use descriptors to 

name programming objects. The objects are generally simple, 
for example, a segment containing an array, a procedure, or a 
list. I/O operations are also described by descriptors on the 
B5000. 

It is important to note that all of these machines support 
large word lengths. A single word is large enough to contain all 
of the segment base and limit information as well as various 
other bits. In general, although bytes may be supported as data 
types, byte addressing is not provided; that is, memory is 
word-addressable. The descriptor is a single word that contains 
all of the physical information needed to locate the object in 
primary or secondary memory. In retrospect, this fact is im- 
portant because duplicating the descriptor duplicates all of the 
segment mapping information. Descriptors are therefore dif- 
ferent from virtual addresses or modern capabilities where a 
second level of addressing is employed. 

Although the Rice family of machines was not directly con- 
tinued, the B5000 led to many stack and descriptor machines 
in the Burroughs family, and other manufacturers were also 
influenced by its design. Whether or not they were long-lived, 
these machines demonstrated the feasibility of using descrip- 
tors and segmentation to greatly increase programming flexi- 
bility for the user, the compilers, and the operating system. 

38 Following the BLM, design of a third member of the Rice 

2.6 For Further Reading 

The Burroughs B5000 is described in The Descriptor 
[Burroughs 611, a remarkably modern document for the time it 
was written. One section of the manual is devoted to the ad- 
vantages of high-level language systems (ALGOL in this case), 
such as reduced programming time, simplified debugging, and 
program maintenance. Such goals are remarkably similar to 
the objectives of today’s object-based systems. 

Two papers that discuss storage allocation in the Rice Uni- 
versity Computer are [Iliffe 621 and [Jodeit 681. A book is 
available on the Basic Language Machine [Iliffe 681; however, 
it is unfortunate that more was not published on the machine’s 
design and use. Perhaps this indicates the fate of industry’s 
research projects that never become products. However, an 
excellent discussion of the BLM within the context of modern 
capability systems appears in [Iliffe 821. 



2.6 For Further 
computer family, called the Rice Research Computer, was Reading 

started at Rice University [Feustel 721. The Rice Research 
Computer was to be a high-performance tagged architecture, 
but technological problems caused the termination of the proj- 
ect in 1974. A discussion of the general advantages of tagged 
architectures can be found in [Feustel 731. 

39 




