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Abstract— Over the last years, the robotics community has
made substantial progress in detection and 3D pose estimation
of known and unknown objects. However, the question of
how to identify objects based on language descriptions has
not been investigated in detail. While the computer vision
community recently started to investigate the use of attributes
for object recognition, these approaches do not consider the
task settings typically observed in robotics, where a combination
of appearance attributes and object names might be used in
referral language to identify specific objects in a scene. In
this paper, we introduce an approach for identifying objects
based on natural language containing appearance and name
attributes. To learn rich RGB-D features needed for attribute
classification, we extend recently introduced sparse coding
techniques so as to automatically learn attribute-dependent
features. We introduce a large data set of attribute descriptions
of objects in the RGB-D object dataset. Experiments on this
data set demonstrate the strong performance of our approach
to language based object identification. We also show that
our attribute-dependent features provide significantly better
generalization to previously unseen attribute values, thereby
enabling more rapid learning of new attribute values.

I. INTRODUCTION

Identifying objects in complex scenes is a crucial capabil-
ity for an autonomous robot to understand and interact with
the physical world and be of use in everyday life scenarios.
Over the last years, the robotics community has made
substantial progress in detection and 3D pose estimation of
known and unknown objects [14], [18]. The development
of features and algorithms for combining color and depth
information provided by RGB-D cameras further increased
the accuracy of object detection [14]. So far, virtually all
work on object instance recognition assumes that each object
has a unique ID by which it is referenced. However, this is
not how people would use language to identify objects in
everyday settings [8]. Since not every object in an environ-
ment has a unique language identifier, people often use object
name and additional attributes such as color (blue), shape
(round), size (large), material (metal) and so on to refer to
specific objects. For instance, a person might say “Bring me
my coffee mug; it’s the blue one”, or “Pick up the Oreos
on the kitchen counter” (see Fig. 1). While the first situation
requires a color attribute to identify the correct object, the
object name “Oreos” is sufficient in the second situation.

The computer vision community recently started to inves-
tigate the use of attributes for object recognition [10]. Their
work showed that it is possible to recognize new object types
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Command could be “Bring me my coffee mug; it’s the blue one”.

Command could be “Pick up the Oreos on the kitchen counter”.

Fig. 1. Object identification: Identify and visually recognize language
attributes that refer to the desired object (marked by red rectangle).

solely by their appearance attributes [19], or that attributes
improve recognition of fine-grained object classes such as
bird species [9]. However, these approaches do not consider
the task settings typically observed in robotics, where a
combination of appearance attributes and object names might
be used together to identify specific objects in a scene,
rather than describing general object categories. Recent work
in semantic natural language processing introduced a joint
model for language and visual attributes for the purpose of
object identification [22]. Since the focus of that work was
on language learning, however, only very simple objects such
as uniformly colored plastic toys were considered.

In this paper, we introduce an approach for identifying
objects based on appearance and name attributes (while
people might use additional cues such as gestures and
spatial attributes, we here focus on intrinsic attributes only).
Specifically, we consider the following object identification
task: A robot perceives a set of segmented objects, is given a
sentence describing attributes of one of the objects, and has
to identify the particular object being referred to. Attributes
are grouped into different types: shape, color, material, and
name. The attribute type “name” contains all words people



might use to name an object. For instance, a name could
be an object type, such as “box”, or a specific product,
such as “Mini Oreo”. To learn rich RGB-D features needed
for attribute classification, we build on recently introduced
sparse coding techniques [5]. Our approach first learns code-
books from color and depth images captured by an RGB-D
camera, and then uses group lasso regularization to select
the most relevant codewords for each type of attribute. These
attribute dependent codewords generalize much better than
fully unsupervised learned codebooks, especially when only
limited training samples are available.

To evaluate our approach, we collected an extensive RGB-
D attribute dataset for a subset of objects taken from the
RGB-D object dataset developed by Lai and colleagues [17].
Attribute values are gathered via Amazon Mechanical Turk.
This dataset provides a rich selection of attribute words and
names people use to describe objects. In addition to de-
scribing individual objects, we also collect a SCENE dataset,
which contains multiple objects and simulates a task in
which a person might command a robot to pick up an object
from among multiple objects placed on a table. Experiments
demonstrate that our learned appearance and name attributes
are extremely well suited to identify objects.

This paper is organized as follows. After discussing related
work, we present attribute types and our object attribute
dataset in Section III. Then, in Section IV, we introduce our
approach to attribute dependent feature learning, followed by
experimental results. We conclude in Section VI.

II. RELATED WORK

This research focuses on attribute based object identifi-
cation. To handle attributes used in referral language, we
use attribute dependent feature learning. To the best of our
knowledge, the paper presents the first study on combining
attribute (and object name) learning with feature learning for
object identification. In this section, we review related work
on the model components.
Referral Language: Using language to refer an object in a
scene to a hearer (other people or an autonomous robot)
has been studied extensively by linguistics and cognitive
scientists. Dale and Reiter [8] found that for the goal of
identification, people tend to use easily perceivable attribute-
value pairs, like color-red, which don’t lead to false impli-
cations.
Attribute Learning: Visual attributes have received increas-
ing attention in the computer vision community over the
past few years. Learning visual attributes has been shown to
be beneficial not only for improving performance of object
recognition but also for transferring learned knowledge to
new categories. Ferrari and Zisserman [12] learn to local-
ize color and texture attributes from annotations captured
by image search. Farhadi et al. [10] describe objects by
their attributes and showed that attribute based approaches
generalize well across object categories. Kumar et al. [15]
propose attribute and similar classifiers for face verifica-
tion and showed that such classifiers offer complementary
recognition cues over low-level patch features. Lampert et

al. [19] show that attributes are useful for detecting unseen
object categories. Parikh et al. [24] propose to model relative
attributes and showed their advantages over traditional binary
attributes. Duan et al. [9] show that attributes improve recog-
nition of fine-grained object classes such as bird species.
Matuszek et al. [22] present grounded attribute learning
for jointly learning visual classifiers and semantic parsers
to produce rich, compositional models that span directly
from sensors to meaning. In this paper, we investigate how
attributes are used to identify specific objects from among a
set of objects. This setting is more relevant to the robotics
scenario in which people want to use language to command
a robot to, for instance, pick up an object.
Feature Learning: Over the past decade, there has been
increasing interest in deep learning and unsupervised feature
learning for object recognition. Deep belief nets [13] learn a
hierarchy of features, layer by layer, using the unsupervised
restricted Boltzmann machine. The learned weights are then
further adjusted to the current task using supervised informa-
tion. Alternatively, hierarchical sparse coding [26] and hierar-
chical matching pursuit [4] have been proposed for building
rich features from scratch, layer by layer, using sparse codes
and spatial pooling. Very recently, such unsupervised feature
learning approaches have been adapted to depth maps and
3-D point clouds for RGB-D object recognition [2], [5].

State-of-the-art attribute learning [12], [10], [15], [19],
[24], [22] is still based on hand-designed features, such as
SIFT [21], HOG [7], color histograms, and kernel descrip-
tors [3]. However, these features may not be sufficiently dis-
criminative for general attribute learning since they usually
only capture a small set of recognition cues from raw data.
In contrast to existing approaches, we build our work on top
of unsupervised feature learning [5] and propose attribute
dependent feature learning. The approach adapts the group
lasso to sparsify the codebooks learned via sparse coding
techniques based on supervised attribute type information.

III. OBJECT ATTRIBUTE DATASET

We developed a new RGB-D Object Attribute Dataset for
training attribute classifiers. To do so, we selected 110 ob-
jects in 12 categories from the RGB-D Object Dataset [17]:
Ball, Coffee Mug, Food Bag, Food Box, Food Can, Garlic,
Instant Noodle, Marker, Sponge, Stapler, Tomato and Water
Bottle. Fig. 2 shows the 110 objects from our dataset.

We collect labels for the attributes of objects using Ama-
zon Mechanical Turk (AMT). In particular, we ask workers
on AMT to describe color, shape, material, and name at-
tributes of objects using simple but precise words or phrases.
According to [8], those attributes are most frequently used
in referral language.

We found that annotations for color, shape and material
attributes are rather consistent since different workers tend to
use the same words for the same objects. For these attribute
types, we select the dominant words used to describe each
attribute for each object instance. Overall, we collected 11
color words for the color attribute, 3 shape words for the
shape attribute, and 6 material words for the material attribute



Fig. 2. 110 objects in the RGB-D Object Attribute Dataset. Each image
shown here belongs to a different object.

TABLE I
WORDS USED FOR COLOR, SHAPE, MATERIAL, AND EXAMPLE

NAME ATTRIBUTES IN THE OBJECT ATTRIBUTE DATASET.

Attributes Words

Color red, orange, yellow, green, blue, purple, pink,
brown, black, white, transparent

Shape rectangle, cylinder, ellipse
Material foam, paper, metal, plastic, food, ceramic

Name
(food bag)

bag, bag of chips, barbecue chips, food bag,
archer farms potato chips, cracker bag, package,
bag of cracker, chicken biscuit, bag of pretzels,
Oreo, snack, Snyder’s pretzels, bag of Sun chips

Name
(instant noodles)

instant noodles, ramen noodles, asian food,
bag, Ichiban instant noodles

(see Table. I). The name attribute is more complex, since
people use different names to refer to the same object in
different scenarios. For instance, some people say “Bag of
chips” and others say “Sun chips” for the object instance
of “Sun chips”. We treat object names in the same manner
as appearance attributes. However, we associate all object
names used by AMT workers with an object instance. As a
result, the name attribute has 90 different values (words or
phrases) and, for instance, the “Sun chips” object has several
possible names like “Sun chips”, “Bag of chips”, “Bag” and
so on. Table I shows some names used for objects in the
food bag and instant noodles categories. This data is mainly
used for the experiments presented in Sections V-C and V-E.

IV. ATTRIBUTE BASED OBJECT IDENTIFICATION

In our object identification framework, the inputs are
values for K attribute types, A = {a1, . . . , aK}, and a set

containing J segmented objects {I1, . . . , IJ}. The goal is
to find the specific object j∗ referred to by the attributes.
We identify j∗ by maximizing the likelihood of the attribute
values A given object Ij∗ :

j∗ = argmax
1≤j≤J

p(A|Ij) =
K∏

k=1

p(ak|Ij) (1)

where p(ak|Ij) is the likelihood function. Here, we have
factorized p(A|Ij) by assuming that the attributes are inde-
pendent given the object Ij .

We model the probability of values of each attribute
type using multinomial logistic regression. In particular, the
probability of object I (we omit the subscript when possible)
having attribute value t is defined as

p(t|I,W ) =
exp(f t(I,W ))∑T

t′=1 exp(f
t′(I,W ))

(2)

where W are the model parameters for the attribute type
k learned from training data, and T is the number of
attribute values belonging to the attribute type k (we used
W and T instead of W k and T k for simplicity). The
functions f t(I,W ) are discriminative functions. It might be
useful to think of f t(I,W ) as a compatibility function that
measures how compatible pairs of the attribute value t and
the segmented object I are. This is also called a soft-max
function in the neural networks literature. The corresponding
log likelihood is of the form log p(t|I,W ) = f t(I,W ) −
log

∑T
t′=1 exp(f

t′(I,W )). We will detail the discriminative
functions in the next section.

The accuracy of attribute recognition strongly depends
on rich features extracted from the color and depth values
of object segments. In our object identification framework,
we first learn general feature codebooks in an unsupervised
way [4], [5], and then sparsify these codebooks to learn at-
tribute dependent features via group lasso optimization [23].
We first describe the general codebook learning approach.

A. Unsupervised Feature Learning

Our attribute dependent feature learning is built on hi-
erarchical sparse coding [4], [5]. The key idea of sparse
coding is to learn a codebook, which is a set of vectors,
or codes, such that the data can be represented by a sparse,
linear combination of codebook entries. In our case, the data
are patches of pixel values sampled from RGB-D images.
Our codebook learning algorithm uses K-SVD [1] to learn
codebooks D = [d1, · · · , dm, · · · , dM ] and the associated
sparse codes X = [x1, · · · , xn, · · · , xN ] from a matrix Y of
observed data by minimizing the reconstruction error

min
D,X

‖Y −DX‖2F (3)

s.t. ‖dm‖2 = 1, ∀m
‖xn‖0 ≤ Q, ∀n

Here, the notation ‖A‖F denotes the Frobenius norm for
matrix A, the zero-norm ‖ · ‖0 counts the non-zero entries in



the sparse codes xn, and Q is the sparsity level controlling
the number of non-zero entries.

With the learned codebooks, sparse codes can be computed
for new images using orthogonal matching pursuit or the
more efficient batch tree orthogonal matching pursuit [4].
Spatial pyramid max pooling is then applied to the resulting
sparse codes to generate object level features. A spatial
pyramid partitions an image into multiple levels of spatial
cells, and the features of each spatial cell are computed
via max pooling, which simply takes the component-wise
maxima over all sparse codes within a cell (see [5] for
details).

B. Attribute Dependent Features via Codeword Selection

As we will show in the experiments, the features learned
via hierarchical sparse coding give excellent results for
attribute classification and object identification, when learned
on raw RGB and Depth image patches. However, a limitation
of such rich features is that they might not generalize as
well as task dependent features. For instance, imagine one
wants to train a classifier for the color “red” by providing a
small set of red example objects. In this case, overly general
features might lead to shape specific codewords being used to
learn a good classifier for the examples (overfitting). To avoid
this, instead of learning only one, general codebook, we
learn subsets of such a codebook containing only codewords
useful for specific attribute types. Our approach sparsifies
codebooks via group lasso [23]. We now describe this
learning approach in the context of attribute classification.

We learn attribute classifiers using linear decision func-
tions

f t(I,W ) =

S∑
s=1

β(Is, D)>ws,t + bt (4)

where β(Is, D) are pooled sparse code features over the
spatial cell Is, S is the number of spatial cells drawn from
the object I , ws,t and bt are weight vectors and a bias
term, W = [w11, · · · , w1T , · · · , wS1, · · · , wST ], and T is
the number of attribute values belonging to one attribute type.
Here, t ∈ {1, · · · , T} denotes a specific attribute value for
one attribute type. For instance, attribute values for the shape
attribute are circular, cylindrical, ellipsoid and rectangular.
Note that previous work has shown that linear classifiers
are sufficient to obtain good performance for sparse code
features [5].

We learn the model parameters from the training data
collected from Amazon Mechanical Turk. For each attribute
type, the training data consists of G pairs of the segmented
objects Ig and their corresponding attribute values ag . Here,
ag belongs to one of T attribute values (e.g. one of the 13
color words for color attribute). We want to find the model
parameters W by maximizing the log likelihood of training
data

G∑
g=1

log p(ag|Ig,W )− λ||W ||21 (5)

Fig. 3. Sparsified codebooks for color (left) and shape (right) attributes.
Our approach learned that solid color codewords are most relevant to classify
colors, while mostly depth codewords (grey scale) are selected for shape
classification.

where ||W ||21 is a regularization term, and its intensity is
controlled by the parameter λ. Let wi and wj denote the i-
th row and the j-column of the matrix W , respectively. The
matrix norm (2, 1) is defined as ‖W ‖21=

∑M
m=1 ‖ wm ‖2.

In our case, we have

||W ||21 =

M∑
m=1

‖ w11
m , · · · , wS1

m , · · · , wST
m ‖2 (6)

where M is the size of the codebook. This regularization
term is called group lasso; it accumulates the weights of
the spatial cells and the attribute values for each codeword
using 2-norm and then enforces 1-norm over them to drive
the weight vectors of individual codewords toward zero. The
group lasso thereby sparsifies the codebook and thus leads
to an attribute dependent codebook that is usually much
smaller than the full codebook. If the group lasso drives an
entire weight vector wm to 0, the corresponding codeword no
longer affects the decision boundary and has effectively been
removed by the optimization. The (2, 1)-norm regularized
log likelihood is a concave function of W , so the optimal
parameter settings can be found without local minima. We
use the accelerated gradient descent algorithm to solve the
above optimization problem; it has been proven to have a
fast convergence rate [6], [20].

The intuition behind our codebook sparsification is that
the full codebook learned by K-SVD consists of many types
of codewords while only a small number of codewords is
relevant to a given attribute type. To demonstrate this intu-
ition, we visualize the codebooks selected by our algorithm
for color and shape attributes in Fig. 3. As can be seen,
the color attribute codebook only contains color codewords,
while the shape codebook is dominated by depth codewords
(black and white) along with some color gradient codewords.

V. EXPERIMENTS

A. Dataset

All datasets used in our experiments are available at
http://www.cs.washington.edu/rgbd-object-attributes

1) Training dataset–Object Attribute Dataset: We use the
Object Attribute Dataset described in Section III to train
attribute classifier. Following the experimental setting in [5],
we take video sequences captured from the 30◦ and 60◦

elevation angles as training set and ones captured from

http://www.cs.washington.edu/rgbd-object-attributes


(a) “Pick up the True De-
light.”

(b) “Pick up the brown
Ichiban Noodle bags.”

(c) “Pick up the bag of
Mini Oreo.”

(d) “Pick up the round
plastic yellow marker
with a black cap.”

(e) “Pick up the basket
ball.”

(f) “Pick up the garlic
with stem.”

(g) “Pick up the rectangu-
lar one.”

(h) “Pick up the chunky
white box.”

(i) “Pick up the Oreo
box.”

(j) “Pick up the tall yellow
can.”

Fig. 4. Scenes and sentences collected from Amazon Mechanical Turk. Our system correctly identifies all objects except the ones in (f), (h), and (j). The
attributes “stem”, “chunky”, and “tall” are relative and parts-based attributes not contained in the training data.

TABLE II
STATISTICS FOR THE SCENE DATASET.

Overall SCENE-D SCENE-S
Raw Data 2,400 2,000 400

V 1 2,027 1,767 260
V 2 1,767 1,577 190

the 45◦ angle as test set (leave-sequence-out on the RGB-
D dataset [17]). For training efficiency, only 1/4 of all
images/views are used for training, i.e. around 2,500 images
for each classifier. All images used in the evaluation dataset,
SCENE, and Section V-C are from sequences of 45◦ angle.

2) Testing dataset–SCENE: To evaluate attribute based
object identification, we collect an additional dataset called
SCENE. There are 2,400 scenes in this dataset. Each scene
has 4 different objects in it. One of the objects is marked
by a red bounding box, which indicates the target object
people should refer to. We present each scene to Amazon
Mechanical Turk and ask people to write down a sentence
based on which a robot can identify the target object. Fig 4
gives some example scenes along with sentences collected
via AMT.

SCENE has two parts, SCENE-D and SCENE-S. The first
part consists of 2,000 images, each of which contains 4 views
of objects randomly picked from all 110 objects. We call this
set SCENE-D, since the objects are typically from different
categories. Panels (b), (c) and (i) in Fig. 4 are examples
of this part. The second part, SCENE-S, consists of 400
scenes containing 4 objects randomly picked from the same
category. The remaining panels in Fig. 4 are taken from
SCENE-S.

To automatically extract attributes and names from the

AMT sentences, we rely on WordNet [11] and the Stanford
Part of Speech (POS) tagger [25]. First, we use POS to tag
every word in a referral sentence. All adjective words are
treated as appearance attributes and noun phrases are treated
as names of objects. However, the scene descriptions might
contain attribute words that were not used in the training set.
For each unknown adjective, we use WordNet to determine
if it is a synonym or hyponym of a known attribute. Since
not all new words can be mapped to known words, the test
scenes might contain information that our classifiers cannot
take advantage of.

To evaluate how well sentences can be automatically
parsed by our approach, we analyzed all 2,400 sentences
provided via Mechanical Turk and checked which of them
were sufficient to identify the referred object. This gave us a
subset of cleaned up data, called V 1. As can be seen in
Table II, 2,027 (or 84.5%) of the AMT sentences in the
SCENE dataset are sufficient to uniquely identify the object
in the scene. Broken down into SCENE-D and SCENE-S,
we get 1,767 (88.4%) and 260 (65.0%) sufficient sentences,
respectively. The lower percentage of correct sentences in
SCENE-S is due to the fact that it contains more difficult
scenes, and Mechanical Turkers tend to make more mistakes
on these. We further checked among the sentences in V 1,
how many of them our system can parse successfully to
known attributes (we call this set V 2). The numbers in
Table II show that our language pipeline can correctly parse
89.2% (1,577 out of 1,767) and 73.1% (190 out of 260) of the
valid sentences in SCENE-D and SCENE-S, respectively. A
careful analysis of the failure cases showed that for difficult
scenes, people use other types of attributes, such as relative
attributes (darker, smaller) and localized attributes (has white
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Fig. 5. Frequency of different subsets of attribute types used by people
to identify objects. N is short for name, C is short for color, S is short for
shape and M is short for material. other means other attribute types such as
relative or parts-based. Only the most frequently used attributes or attribute
combinations are shown.

cap), which cannot yet be handled by our system.
We then evaluated which attribute types AMT workers

used for object identification in the SCENE dataset. Fig. 5
shows percentages for the most frequently used combinations
of attribute types among all tasks. For the SCENE-D set,
Name is the most frequently used attribute. The second
most frequently is Name with Color (N/C), followed by
Color only. This is not very surprising, since Name and
Color are very distinctive attributes, especially when the
objects belong to different categories (it is quite interesting
to see from Fig. 6 that Name and Color are also the two
most discriminative attributes for our system). For SENCE-
S, Name is not used as often as it is for SCENE-D. People
turn to use more Color and other attributes to identify specific
objects.

B. Learning Setup

We learn general codebooks of size 1000 with sparsity
level 5 on 1,000,000 sampled 8 × 8 raw patches for both
RGB and depth images. We remove the zero frequency
component from raw patches by subtracting their means.
With these learned codebooks, we compute sparse codes of
each pixel (8 × 8 patch around it) using batch orthogonal
matching pursuit with sparsity level 5, and generate object
level features by spatial pyramid max pooling over the whole
images with 4×4, 2×2, and 1×1 partitions. The final feature
vectors are the concatenation of the features over depth and
color channels, resulting in a feature size of 42,000 dimen-
sions. The hyperparameters of sparse coding and multinomial
logistic regression are optimized on the RGB-D object at-
tribute training set (no test data was used for hyperparameter
optimization). Average classification accuracy for individual
attribute types are 97.9%(name), 89.1%(color), 94.7%(shape)
and 97.0%(material).

C. Attribute Recognition for Object Identification

Here, how useful attributes are for object identification.
The test data for object identification consists of 1,000
scenes, each scene is generated by randomly picking 4-10
different segmented object instances from the 45◦ angle test
sequences. We consider three experimental settings.
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Fig. 6. Object identification results using four types of attributes and their
combination.

TABLE III
OBJECT IDENTIFICATION ACCURACY (%) USING DIFFERENT

SETS OF ATTRIBUTE TYPES.

# of objects
4 6 8 10

All attributes 97.7 96.1 94.6 93.4
Minimal subset of attributes 91.0 88.8 87.3 86.1

In the first setting, we aim to identify the target object
from a set of 4, 10, or all objects using the four attribute
types provided by a Turker for the target object. I.e., we
assume people mention name, color, shape and material of
the target object. We report the results for the different
attribute types and their combination in Fig. 6. First of all,
we can see that all four types of attributes are helpful for
object identification and that their combination outperforms
each individual attribute by a large margin. For instance, for
10 objects, the combination of all four attributes achieves
more than 10 percent higher accuracy than object Name and
more than 20 percent higher accuracy than the appearance
attributes Shape, Color, and Material. Not surprisingly, the
accuracy of object identification decreases with an increasing
number of objects in the set, but the combination of all
four types of attributes drops much less than each individual
attribute. Fig. 6 also contains results for object instance
recognition, in which each object gets a unique Object
ID (note that this is not a realistic setting for a natural
language interface, since not all objects in an environment
can be named uniquely). It is very satisfying to see that our
attribute based identification slightly outperforms even this
setting for 4 and 10 objects, indicating that learning multiple
attribute classifiers provides higher performance than a single
classifier, even when trained on artificially provided IDs.

Note that the rightmost results represent an extreme case,
assuming all 110 objects are placed in the same scene. It
can be seen that using language attributes, we can achieve
accuracy of 50%, which is significantly worse than using
object ID. This shows the potential benefit of introducing
additional attribute types such as relative (darker, smaller)
and spatial attributes (the box on the left) for large scale
scenes.

The Gricean Maxims [8] suggest that people avoid re-
dundancy in referral expressions and use only a subset of
attributes for reference. In this second setting, we aim at
identifying the specific object from a set using a minimal



Fig. 7. Error rates for learning new attribute values from different numbers of training examples (# of training samples are in log scale).

TABLE IV
OBJECT IDENTIFICATION RESULTS (ACCURACY %) FOR SCENE,

SCENE-D AND SCENE-S.

SCENE SCENE-D SCENE-S
Raw Data 83.7 85.6 64.3

V 1 88.7 90.2 67.6
V 2 93.2 94.4 77.3

subset of attributes, that is, only attributes required to
distinguish the target object are provided. To get minimal
subsets, we try all combinations of one, two, three, and
four attribute types in turn and stop when the attribute types
used are able to distinguish the target object from the others
(using ground truth attribute labels). We found that for scenes
containing 10 objects, 87.6% of them can be identified based
on one attribute only, 12.6% of them can be identified based
on two attributes, and only 0.01% of them have to use
three attributes. We report the results in Table III. As can
been seen, our approach obtains very high accuracy even
in this setting, suggesting the robustness of attribute based
object identification. Note that it is not surprising that the
minimal subset of attributes works slightly worse than the
combination of all four types of attributes since redundant
attributes increase the robustness of object identification.

D. Scene Based Object Identification

We now describe our evaluation on the SCENE dataset,
which is described in Section V-A.2. We report results on the
raw data and on the two validated subsets (V 1 and V 2) in
Table IV. As can be seen, our object identification framework
achieves high accuracy even for the raw data. The accuracy
on the verified data is even higher: 90.2% and 94.4% on the
first type of test (objects are of different type). The accuracy
decreases for SCENE-S, because this task is much harder
than the first one. However, even in this most difficult setting,
we still achieve 67.6% and 77.3% accuracy on the validated
data and 64.3% on the raw AMT sentences (chance would
be 25%). The overall performance on both types of tasks is
88.7% and 93.2% on the validated data and 83.7% on the
raw data.

E. Sparsified Codebooks for Transfer Learning

To investigate if our attribute dependent codebooks are
more suitable for learning new attribute values when com-
pared to the full codebooks, we perform the following

experiments. For each type of attribute, we leave two attribute
values out as new (or target) attribute values and learn a
sparsified codebook using the remaining attribute values. We
then train models for the left-out attribute values and test
them on the test set for these attribute values. For instance,
in one setup we leave the colors blue and yellow out, learn a
sparsified color-dependent codebook using the other colors,
and then use that codebook to learn classifiers for blue and
yellow (see also Fig. 3 for examples of sparsified codebooks
for color and shape). This result is compared to learning blue
and yellow classifiers using the full codebook.

We report the results obtained by the sparsified code-
book and the full codebook in Fig. 7. As can be seen,
the sparsified codebooks significantly outperform the full
codebooks on small numbers of training samples for color,
shape and material attributes. This is because the sparsified
codebooks effectively remove the codewords unrelated with
the particular attribute type that could confuse the learning
procedure when faced with new attribute values, especially
for limited training samples. The sparsified codebooks result
in much less chance to overfit to the training sets than the full
codebooks and thus achieve better accuracy in this scenario.
We also tried the sparsified and full codebooks for the object
name attribute and found that these two approaches have
comparable accuracy on the test set. This is expected since
the object name attribute is a highly mixed concept and
virtually all codewords are relevant for it.

VI. DISCUSSION

We presented an attribute based approach for object iden-
tification. We consider four types of attributes: shape, color,
material, and name. We classify each type of attribute via
multinomial logistic regression. Our model learns perceptual
features used for attribute classification from raw color and
depth data. It incorporates sparse coding techniques for
codebook learning, and then uses group lasso regularization
to select the most relevant codewords for each type of
attribute.

To investigate the object identification task on realistic
objects, we generate a large attribute data set by collect-
ing descriptions for objects in an existing RGB-D object
dataset [17]. Our experiments demonstrate that (1) each
type of attribute is helpful for object identification and their
combination works much better than each single attribute



including the object name attribute only; and (2) attribute
dependent sparsified codebooks significantly improve the ac-
curacy over non-specific codebooks for learning new attribute
values when only limited training samples are available.
We believe that the capability to learn from smaller sets
of examples will be particularly important in the context of
teaching robots about objects and attributes.

Attribute based object identification is a very promising
area of research in robotics, specifically due to the growing
importance of object manipulation and natural human robot
interfaces. This work has several limitations that deserve
further research. Although treating different attribute types
independently achieves excellent performance, considering
them jointly might further improve performance. More com-
plex combinations of attributes and gestures are also an
important direction for future work. Attributes describing an
object’s spatial and physical relationship to other objects in a
scene are also important. Those localized attributes are useful
especially for fine-grained object identification. Finally, we
only use a flat model for object names, and a more complex,
hierarchical model could further improve results.
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