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Abstract

Discovering people’s motion patterns is useful in
many applications of ubiquitous computing, robotics
and artificial intelligence. In this project, we present
a novel approach for parameterizing motion models
based on the structure of the Generalized Voronoi
Graph of the map. We discuss in detail the design of
the motion model and the sensor model in a Voronoi-
graph-based Bayes filter. We implement the Voronoi
tracker using the techniques of particle filtering. We
then demonstrate how to estimate the parameters of
the motion model using an EM algorithm. Applica-
tions of this approach on both indoor and outdoor en-
vironments give encouraging results for Voronoi track-
ing and learning.

1 Introduction

It is often important to know the physical locations of
people. In recent years, great progress has been made
in location estimation and people tracking in the fields
of ubiquitous computing, robotics and artificial intel-
ligence [9; 16; 11]. However in many applications, it is
not enough to just know a person’s current position;
we also want to predict a person’s trajectory or des-
tination in the near future and furthermore anticipate
his needs [18; 5; 3]. This is possible if we are not only
able to estimate the state of a person, but are also
able to learn the person’s motion patterns from his
past experiences. Besides making predictions possi-
ble, understanding people’s motion models is useful in
several other ways. For example, mobile applications
aware of users’ common motion patterns may detect
users deviating from their usual motion patterns and
possibly getting lost [10]. In addition, as shown in
this paper, the learned motion model may be used to
improve tracking when the sensor measurements are
sparse or noisy.

To discover motion patterns, we first need to fig-
ure out what a motion model looks like. This is not
easy because even describing human motion behaviors
in natural language is very complex. In fact, there
seems to be no way to describe them precisely. Thus,
the key here is how to simplify motion models reason-
ably. Our observation is that people’s motion patterns
usually rely heavily on the environment and therefore
the map can give us great deal of valuable informa-
tion. In this project, we present a novel approach to

model humans’ motion patterns utilizing the General-
ized Voronoi Graph of the map [7] (also called simply
Voronoi graph). This approach could be used in both
indoor and outdoor environments. In an indoor envi-
ronment, roughly speaking, the Voronoi graph is the
skeleton of the free spaces, see Figure 1 (a). In the
outdoor environment, we can think the network of all
the streets as the graph, as shown in Figure 3 (a).

Using the Voronoi graph to parameterize the motion
models has three key advantages. First, the Voronoi
graph bridges the gap between continuous spaces and
discrete abstract human motion behaviors. In our de-
scription of the motion model, the smallest unit is an
edge in the Voronoi graph and we don’t distinguish the
behavior differences within the area covered by a single
edge. Second, such a framework is expressive enough
to describe many interesting motion behaviors. For ex-
ample, the motion model can delineate the most likely
direction taken when a person is at an intersection,
or the place where a person usually stays, and even
the bus stops where a person usually gets on and gets
off, etc. Third, confining the state space within the
Voronoi graph makes the implementation much more
efficient, as we’ll show in section 5.

After we determine the general form of the motion
model, we need to figure out estimating the parameters
quantitatively. An obvious difficulty here is that we
cannot estimate the parameters of the motion model
directly from the sensor data, since the motion model
has effects on the sensor data only through humans’
locations, while a person’s real locations are not ob-
servable. One general approach of solving learning
problems with missing features is the well known EM
(Expectation-Maximization) algorithm [6]. Using an
EM algorithm in our system, we first estimate the tra-
jectory distribution from the sensor readings, then we
update the parameters to maximize the likelihood of
the trajectory distribution. Notice that the first step
is in fact a tracking or localization problem and has
been well studied. Particle filtering is one of the most
popular approaches. We present a variant of particle
filtering that restricts all particles onto the Voronoi
graph. We call it Voronoi tracking. Thus, by combin-
ing EM learning with Voronoi tracking, we are able
to completely accomplish unsupervised learning of the
parameters.

In the next section, we give an overview of related



work. Then we discuss Voronoi tracking and parame-
ter estimation in sections 3 and 4 respectively. In sec-
tion 5, we describe the applications of our approach in
indoor environment and outdoor environment. At the
end, we state our conclusions and discuss future work.

2 Related Work

2.1 Bayesian Filtering and Particle
Filtering

Bayesian filtering provides a powerful framework for
estimating the state of a dynamical system from sensor
measurements and motion model (or control data) [1].
Within this framework, if we suppose the Markov as-
sumption, i.e. the future state is conditionally inde-
pendent, from the past state given the current state,
the posterior belief of state x; at time ¢ can be com-
puted from the previous sate x;_; recursively using the
following update rule:

p(wt |2‘1:t) o8 P(Zt |37t) /P(Hft |33t71) p(mtfl |Zl:t—l)dxt—l
(1)

Here z;.; is the history of all sensor measurements ob-
tained up to time t. p(z4—1|21.t—1) is the posterior be-
lief of the state at time ¢t —1. When applying Bayesian
filtering to a concrete domain, three key issues have to
be addressed:

1. The description of the state z;. For example, in
the context of location estimation, the state x¢
typically describes the position and velocity of the
object.

2. The probabilistic model of the object dynamics,
i.e. motion model. Motion model corresponds to
the distribution of p(z;|z;—1) in equation (1).

3. The sensor model, i.e. the likelihood of a sensor
measurement z; given the state z;, which corre-
sponds to p(z; |x¢) in equation (1). Bayes filtering
has a number of variants with each has a different
representation of the belief, e.g. Kalman filtering,
multi-hypothesis tracking, grid-based representa-
tion, etc.

Particle filtering [8] is another variant of Bayesian
filtering, which approximates the posterior belief p(z |
z1.¢) using a set of weighted samples:

(@ wiy |i=1,...,n}

Here each z\” is a sample (or state), and the w”
are non-negative numerical factors called importance
weights, which sum up to one. Particle filters apply
the recursive Bayes filter update to estimate posteri-
ors over the state space. The basic form of the particle
filter updates the posterior according to the follow-
ing sampling procedure, often referred to as sequen-
tial importance sampling with re-sampling (SISR, see
also [8]):

Re-sampling: Draw with replacement a random

sample mgi)l from the sample set S;_; according to the
(discrete) distribution defined through the importance
weights wgl_)l.

Sampling: Use aﬁl to sample mE] ) from the distri-
bution p(xy | x¢—1). 29 now represents the density
given by the product p(z; | ¢—1)p(xt—1 | 21:¢—1). This
density is the so-called proposal distribution used in
the next step.

Importance sampling: Weight the sample mgj ) by

the importance weight p(z; | z\”)), the likelihood of

the measurement z; given the state xij ),

Each iteration of these three steps generates a sam-
ple drawn from the posterior density. After n itera-
tions, the importance weights of the samples are nor-
malized so that they sum up to 1. It can be shown that
this procedure in fact approximates the Bayes filter
update (1), using a sample-based representation [8].

2.2 Expectation-Maximization (EM)
Algorithm

The EM algorithm [6] is a general method of finding
the maximum-likelihood estimate of the parameters of
an underlying distribution from a given data set when
the data is incomplete or has missing values. Sup-
pose Z is the set of observations and X is the set of
data that cannot be observed, then the goal of EM
algorithm is to maximize the complete-data likelihood
p(X,Z | ©) by adjusting the parameter ©. The EM
algorithm is an iterative algorithm and each iteration
has an E-step and a M-step. In the E-step, we esti-
mate the posterior distribution of the missing data and
compute the expected value of the complete data log-
likelihood log p(X, Z | ©) given the observed data and
the current parameter estimates ©@°~!. In the second
step, the M-step, the algorithm finds the optimized ©
that maximizes the expectation computed in the E-
step. Each iteration is guaranteed to increase the log-
likelihood and the algorithm is guaranteed to converge
to the local maximum of the log-likelihood function.

When applying the general EM algorithm discussed
above to Hidden Markov Models, we get the widely-
used Baum-Welch algorithm [6; 14]. Suppose we have
a hidden Markov process with N states and T time
slots. Baum-Welch algorithm updates the state tran-
sition probabilities iteratively using the following for-
mula:

expected transitions from state S; to S;
expected transitions from state S;

St e, )
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where & (i, j) is the probability of being in state S; at
time ¢ and in state S; at time ¢ + 1.
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Given the model and the observation sequence, we
have:

&(i,j) = Plxy = Si, 241 = Sjl21.4,0)
o ay(i)aizbi(zi1) B (4) (3)

where ay (i) and B¢41(j) are the forward variable and
backward variable respectively. Refer to [14] for more
details. Intuitively, (i) is the amount of evidence
from observations up to time ¢ that supports s; = S;;
Bi+1(j) is the amount of evidence from observations
after time ¢ + 1 that supports s;41 = S;; and bj(241)
is the support from z;y;. Thus the Baum-Welch al-
gorithm includes a forward pass and a backward pass
where the observations are integrated from forward or
from backward.

2.3 Motion Pattern Learning

Our goal of learning motion models is very similar to
the goals in [5; 3]; [5] learns the motion patterns us-
ing the data collected by the laser range sensors, and
[3] learns them using GPS sensor data. Our approach
of solving the problem is very different from theirs in
a number of ways. Essentially, in both of their work,
the problem of learning motion models is reduced to
the problem of trajectory clustering. That is, they
first collect training data by tracking the moving ob-
jects. The tracking is totally separated from learning,
and the estimation errors during tracking are ignored.
Then they cluster similar trajectories as motion pat-
terns. Their approach does not need a map, but re-
quires a lot of training samples. Instead, we start from
the map of the environment and we regard the learn-
ing problem as a parameter estimation problem. In
our approach, the tracking is one part of learning and
we can use the learned model to reduce tracking er-
rors. Moreover, in our approach the learning could be
performed even without enough training data and the
learned model can be further improved as new data
arises.

3 Voronoi Tracking

In this section, we describe our approach of applying
Bayesian filtering on a Voronoi graph. We first spec-
ify the state representation, motion model and sensor
model. Then we discuss the implementation based on
particle filtering. The concrete specification of Voronoi
tracking may be a little different from application to
application. Our discussion here is based on the sce-
nario of indoor tracking (see section 5.1).

3.1 State Description

The state z; of an object is represented as (e, d, v, m),
where e denotes the current edge on the graph, d indi-
cates the distance of the object from the start vertex
of edge e, v is a non-negative number and indicates
the velocity of the object, and m € {stopped, moving}
indicates the current motion mode of the object. Note

that we treat the Voronoi graph as a directed graph
where each undirected edge is regarded as two directed
edges. Thus an edge e also includes the motion direc-
tions of the object.

3.2 Motion Model

The motion model p(x; | ;—1) has to take into ac-
count that the objects are constrained to moving on
the graph. As we have mentioned, the smallest unit
for the motion model is an edge in the graph. Let
G=(V,E) be the Voronoi graph where V is the set of
vertexes and E is the set of directed edges. We divide
the motion model into three components:

1. For each edge e; € E, we have:

p(m; = moving|m;_; = moving, e;)
p(m; = stopped|m;—_1; = moving, e;) ()
p(my = moving|m;_, = stopped, e;)

p(my; = stopped |m¢_1 = stopped, ¢;)

These four parameters (in fact, only two out of the
four are independent) determine the mode transi-
tion distribution.

2. For each edge e; € E, we have:

plejlei) >0 if e; is e;’s neighboring edge (5)
0 otherwise

Given the object is leaving edge e;, this group
of parameters determines the distribution of the
following edge.

3. We suppose the velocity distribution in the
whole environment is a Gaussian distribution
N (Vmean,v) Where vmean is the average velocity
and o, is the standard deviation of velocity.

The distribution of p(x;|x¢—1) can be factorized as:

p(xt |$t—1) = p(et, di,ve,my | e—1,di—1,v¢—1, mt—l)
= p(m¢|mi—1)p(ve|ve—1,me)
-ples, di|es—1,di—1,v¢,my) (6)

p(myg | my—1) is available directly from the motion
model.
p(vg |ve—1,my) is computed as:

P(Ut|vt71,mt) =
d(ve,0) if m; =stopped
{ N(v; Umean, 0y)  if my =moving and  (7)
Vg = W1V¢—1 + WaV

where d(v¢,0) is the Dirac delta function which is 1, if
vy = 0 and 0 otherwise. wy,ws are both non-negative
numbers and sum to 1. That is, vy = 0 if the mode is
“stopped”, otherwise it is a linear combination of the
v¢—1 and the random velocity obtained from the mo-
tion model. The weights w; and w, are set manually.
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ples,d; | e—1,di—1,v¢,my) is more complex, and is
computed as follows:

ples, di|ep—1,di—1,v¢,m) =
d(es,er—1)d(de, dy—q) if my =stopped
(5(6,57 etfl)é(dt, di_1 + ’UtAt)
if dt—l + UtAt S |€t_1|(8)
ple|er—1)0(de, di—1 + v At — |eg_1])
if dtfl + UtAt > |€t,1|

where At is duration of the time slot and |e;—1]| is
the length of edge e;—;. That is, if m; =stopped, the
object will stay at the same position. Otherwise, if the
distance it moves, i.e. v;At, is less than its distance to
the end of the edge, the object will stay on the edge
and we only need to update d;. Otherwise, the object
will travel to another edge with transition probability
plet]et—1).

In summary, for a given motion model and current
state, we can compute the next state based on equa-
tions (4)- (8).

3.3 Sensor Model

Given that a sensor has a measurement z at time ¢,
the likelihood of p(z|z) is a function of z. For differ-
ent kinds of sensors, this function takes quite different
formats. In Figure 1 (c), the probabilistic models of
ultrasound Crickets and infrared badges are shown.

In the scenario of Voronoi tracking, the state has
the format x =< e, d,v,m >. One simple way to com-
puting the likelihood is to compute the 2D position
of r and apply the sensor model only to that point.
But this method may be problematic because a single
point on the Voronoi graph may not be a good rep-
resentation of the space it covers. Hence, to compute
the likelihood of p(z|z), we compute the average like-
lihood of all the positions projected onto (e,d). That
is:

p(zlz) = p(z|e,d) 9)
_ / p(z | v) pv | esd) dv (10)
veS(e,d)

N
*

*®

(c) (d)

Figure 1: Voronoi graphs for location estimation: (a) Indoor environment along with manually pruned Voronoi graph.
Shown are also the positions of ultrasound Crickets (circle) and infrared sensors (square). (b) Patches used to compute
likelihoods of sensor measurements. (c¢) Likelihoods of an ultra-sound cricket reading (upper) and an infrared reading (lower)
in the full state space and (d) The likelihoods in (c) projected onto the Voronoi graph patches.

Here, (9) follows from the fact that in our scenario the
velocity and mode of moving objects does not affect
sensor measurements. S(e,d) denotes the set of all
positions v projected onto (e,d). In our implementa-
tion of the sensor model, we discretized positions on
the graph, which results in location patches S(e,d), as
illustrated in Figure 1 (b)-(d).

3.4 Particle Filtering-based Voronoi
Tracking

The application of particle filters to location estima-
tion on a Voronoi graph is rather straightforward. The
resampling step does not have to be changed at all.
Sampling the motion update has to be done according
to equations (4)-(8). To be more specific, we first sam-
ple motion mode m; based on p(my|m¢—1) in (4). If
my ="stopped”, we set vy = 0. Otherwise, we sample
new velocity v; based on (7). After v; is determined,
we compute the distance s it moves as s = v;At. For
this distance s, we have to determine whether the mo-
tion along the edge results in a transition to another
edge. If not, then d; = d;_1 + s and e; = e;_1. Oth-
erwise, d; = s — |e;—1| + dy—1 and the next edge ¢
is drawn with probability p(e; | e;—1). After these
sampling steps, the resulting states are distributed ac-
cording to p(z; | ©4—1). The importance sampling step
of the particle filter is implemented by weighting each
sample proportional to the projected observation like-
lihood as given in (10).

4 Parameter Estimation

As discussed in the introduction, we use the EM al-
gorithm to handle the situation where we don’t know
the real trajectories. In this section, we demonstrate
how to apply the EM algorithm in our domain. We
first derive the formula of estimating the parameters
of the motion model, and then we describe an efficient
implementation.

4.1 E-Step:

In the E-step, we update the posterior distribution
over the trajectory of the person and compute the ex-



pectation of the log-likelihood. We define:

6.0t (11)
= Ellogp(z1:4, %14 | ©) | Zl:t,G)(i_l)]

= log p(21:¢, T1:¢ | ©)p(w1:4 | 21:4, V)14 (12)
T1:t

Here z1.; and z;.; are the states and observations, re-
spectively. O are the parameters of the Voronoi graph-
based model we want to estimate and ©(~1) are the
estimation thereof at the ¢ — 1-th iteration of the EM
algorithm. The difficulty here is to estimate the pos-
terior distribution over state trajectories xy.; given
214 and O~ In our scenario, it is not possible to
find a closed form solution to this estimation problem.
Therefore we resort to approximate approaches. Ob-
serve that when we do particle filtering using the mo-
tion model with parameter ©(—1) | the particle distri-
bution at each time ¢ along with the history of particles
is an approximation for p(z1. | zlzt,G(i’l)). There-
fore, (12) can be rewritten as

, 1 & ,
Q0,007) ~ — 3 logp(10,21)10),  (13)
j=1

where m is the number of particles and mgjt) is the
state history of the j-th particle. For simplicity, we as-
sume that all the particles have equal weight, .e. after
they are resampled. It is straightforward to extend our
derivation to the case of different weights.

Our approach is in fact a direct extension of the
Monte Carlo EM algorithm [19]. The only difference
is that we allow particles to evolve with time. It has
been shown that when m is large enough, Monte Carlo
EM estimation converges to the theoretical EM esti-

mation [12].

4.2 M-step:

The goal of the M-step is to maximize the expectation
we computed in the E-step by updating the parameter
estimations. From (13), we have:

0 = argmaxQ(0©,00 1)
)

= argglaxZIng(Zl:t’mgg | ©)

j=1

= argmaxy_(log p(z1 2{)) +logp(al’) |©))14)
j=1

= argmax Y logp(e]) | ©) (15)
j=1

Here, (14) follows from the independence condition
p(z1: | 2),0) = p(z14 | 2V7)), i.e. observations are
independent of model parameters if the state trajec-
tory is known. This result shows that we only need

to update the parameters to maximize the sum of the
likelihood of each particle history.

One point worth mentioning is that our derivation
of combining the EM algorithm with particle filter-
ing does not require a specific parameterization of the
motion model. Although we only implement such an
algorithm over the Voronoi based motion model, it is
also applicable to other parameterizations.

4.3 Implementation

Directly evaluating equation (15) requires a particle
smoothing operation which usually requires storing the
history of each particle. Therefore it is often too ex-
pensive. In practice, we avoid direct smoothing by
performing a forward particle filtering and backward
particle filtering step. Then we multiply the two dis-
tributions at corresponding time slices, which corre-
sponds to the Baum-Welch algorithm as discussed in
section 2.2. This is very efficient since at each time we
only save the aggregate information for each edge, not
for each particle.

We now discuss the implementation in more details.
Recall that the parameters © of the model consist of
the transition probabilities p(e; | e;) on the Voronoi
graph, the mode switching parameters p(m; | m¢—1, €;)
of the motion model, and the Gaussian velocity pa-
rameters (Umean,02). For the first E-step, we initial-
ize ©) with some reasonable values using background
knowledge of typical human motion and a uniform dis-
tribution for the outgoing edges at each vertex of the
Voronoi graph. Then, we collect data in the environ-
ment and estimate the position of the person using the
initial model. Time is discretized in intervals of equal
size At. After each time step, we determine e;;(t),
the number of particles that move from one edge e; to
another edge e;. We also generate counts for my;x(t),
the number of particles on edge e; that switch from
one motion state m; into another other motion state
my,. The reason for learning different switching models
for each edge is that we want to be able to determine
where a person typically stops for extended periods
of time. To estimate the parameters of the Gaussian
motion model, we simply have to store the velocities
of all samples that are in the “moving” state. In the
backward pass, the same values are computed when lo-
calizing the person backward in time, i.e. we proceed
backwards through the data log. The final values of
the E-step are then given by multiplication of the esti-
mates of the forward and backward pass at each time
slice. To maximize the parameter set (1), the M-step
essentially converts the frequency counts obtained in
the E-step into probabilities. The parameters of the
Gaussian motion model are the mean and variance of
the velocity values. In the next iteration of EM, these
new parameters are used to re-estimate the expecta-
tions using forward backward localization. The algo-
rithm stops if O and O~ are close enough.

This idea of forward and backward passes come from
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Figure 2:

the forward-backward variables in the Baum-Welch al-
gorithm (see section 2.2).

5 Experiments

We evaluate our approach in two environments with
very different scales. The first environment is indoor
30m by 30m office area with a number of ultrasound
sensors and infrared sensors installed '. The second
environment is a urban area where we have a collec-
tion of GPS sensor readings of a graduate student’s
outdoor activity episodes 2. The experiments demon-
strate the encouraging performance of our approach in
both environments.

5.1 Indoor Environment Experiment

This experiment is based on data recorded at the Intel
Research Lab Seattle. This office is 30 meters by 30
meters. It is equipped with two different kinds of id
sensors: seventy-three Versus infrared receivers which
solely provide id information, and three Cricket ultra-
sound receivers, which provide identity and distance
estimates [17; 13], as shown in Figure 1 (a).

To generate data for which ground truth is available,
we equipped a Pioneer IIDX robot with two Versus
badges, a Cricket beacon, and additionally with a Sick
laser range-finder. Our experiment is based on a log of
sensor measurements received while driving the robot
through the environment at an average velocity of 30
cm/s. During the experiment, we only stopped the
robot at designated resting places. The laser range-
finder allowed us to accurately estimate the path of the
robot using the map which is regarded as the ground
truth of robot locations. Note that we only use the
ground truth as a way to evaluate our approach, the
algorithm itself is not aware of that information. The

!This  application is implemented on  top
of the infrastructure of Location Stack.
http://portolano.cs.washington.edu/projects/location/.

2This application is part of the project Activ-
ity Compass http://www.cs.washington.edu/homes/djp3/
AI/AssistedCognition/ActivityCompass/ and is imple-
mented together with Don Patterson.

(c) (d)

(a) True trajectory of the moving robot. Shown only a small part of the data log we collected. (b) The
most likely trajectory estimated using Voronoi tracking (c) The most likely trajectory estimated using particle filters. (d)
Transition model learned using EM. Shown are only those transitions for which the probability is above 0.7

complete data log was split into a training set of 25
minutes and a test set of 10 minutes of robot motion.

The goal of this experiment is two-folded. First
we want to compare Voronoi tracking with “classical”
particle filters on tracking moving objects before any
learning. Second, we want to verify whether our learn-
ing algorithm is able to give us reasonable results.

The particle filter that is used for comparison shares
the same motion model and sensor model with Voronoi
tracker with only two differences. The first is that its
motion model has no idea of the structure of Voronoi
graph. The particles will move across the whole free
space and changes moving directions with some ran-
dom Gaussian probability. The second difference is
that the sensor model computes the probability over
the whole free space and will not project it onto
patches (see Figure 1 (c)).

The metric we use for comparison is the average
localization error, which is defined as the average dis-
tance from each particle to real locations. The result-
ing error on the test data was 2.586m for the Voronoi
tracker and 3.230m for the particle filter. This result
is encouraging since it indicates that the projection
onto the Voronoi graph may even yield better track-
ing performance. Figure 2(a)-(c) shows a segment of
trajectory and the tracking results using the Voronoi
tracker and particle filter, respectively. It is obvious
from the graph that Voronoi tracker can give a much
more stable estimation of the most likely trajectory.

Therefore, even without learning, Voronoi tracking
outperforms the particle filter. The main reason is that
the Voronoi-graph-based motion model is closer to the
real motion model of moving objects in most cases.

Another advantage of Voronoi tracker is that it
needs much less particles than the particle filter, since
the moving space is much smaller.

Next, we evaluated the learning performance of
Voronoi tracker. To do so, we trained the Voronoi
motion model using the EM algorithm described
in Section 4 on the training set. The results are
summarized in the table below.
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The three figures are in the same scale. For clarity, the street map is not displayed in (b) and (c). (a)

Street map of northern Seattle where most of the episodes in our data log happened. (b) One training data log. Different
transportation modes are displayed using different types of lines, as explained in the legend. Note there are overlaps between
paths of the car and the bus that are not distinguishable from the figure. (¢c) Motion model after learning, including the edge
transitions and transportation mode transitions. Shown only those transition with probabilities above 0.7.

| EM Tteration | Tracking Errors | Avg. Change |

before learning 2.586
1 1.888 0.235
2 1.787 0.083
3 1.530 0.075
4 1.538 0.054

The middle column is the average localization error
over the training set for the different iterations of EM.
As can be seen, the algorithm converges after only 3
iterations and the average localization error decreases
significantly. This fact is supported by Figure 2 (d),
which shows the transition model of the Voronoi graph
after learning (shown are only transitions with proba-
bility above 70%). The plot demonstrates that the mo-
tion model did learn transitions along the main path of
the robot. One point worth attention is that at some
places, e.g. the upper left room in the map, our re-
sult shows some biased transitions although the robot
has never been there. The reason is that since the
sensor measurements are very noisy and error-prone,
there may be some side effects although the forward-
backward passes help reduce the effects dramatically.

5.2 Outdoor Environment Experiment

In the experiment, we use a data set which consists
of logs of GPS data collected by another graduate stu-
dent. The data contains position and velocity informa-
tion at 2-10 second intervals during periods of time in
which he was moving outdoors. From the data set, we
choose 29 episodes representing a total of 12 hours of
logs. This subset consists of all of portions of the data
set which were bounded by GPS signal loss, had no
intermediate loss of signal for more than 30 seconds,
and contained a change in the mode of transportation
at some point in the episode. These episodes were di-
vided chronologically into three groups which formed

the sets for three-fold cross-validation for our learning.
Figure 3 (a),(b) show the street map and one training
data set.

In this scenario, each state not only includes the po-
sition, velocity information, but also include the mode
of transportation: foot, car or bus. The transporta-
tion information is important for delineating the out-
door motion patterns and is not available from the
GPS data. The motion model also must change ac-
cordingly to take into account the transition between
transportations. Since the GPS data also contains ve-
locities and moving directions, we modify our sensor
model to integrate this information as well.

In this experiment, since GPS provides fairly ac-
curate position information most of the time, we are
more interested in the tracking of transportations. To
do that, we label all the data manually with the real
transportation and at each time we compare the most
likely mode from the trackers with the real mode. For
comparison, we use 3 different approaches. The first
is a decision tree classifier which classifies the modes
based on the velocities. The second is the Voronoi
tracking algorithm which has no clue of bus stops and
car locations. The third is the similar to the second ex-
empt we include bus stop and car location information
into our model.

The results are summarized in the table below.

Model Cross-Validation
Accuracy
Decision Tree 55%
Voronoi Tracking w/o
bus stops and car locations 60%
Voronoi Tracking w/
bus stops and car locations 80%

The result shows that our approach can track well
when using the bus stops and car locations informa-



tion. Note that 80% is in fact quite robust given the
fact that often a change of transportations cannot be
detected instantaneously and each episode in our data
set contains at least one transportation mode change.

Next, we show the learning results and the location
prediction capabilities of the learned model.

One training data set and the corresponding model
after learning is shown in Figure 3. Comparing (b)
and (c) in Figure 3, it is obvious that our motion
model captures most of the edge transition probabil-
ities correctly. What is more interesting, it also cor-
rectly figure out most of the places where transporta-
tion switches happened. For example, as shown in the
figure, the learned model correctly contains the 3 park-
ing areas including the ones at home and campus. It
also recognize the bus stop where the student gets on
the bus to campus.

Figure 4: Prediction capability of the learned model

The prediction capabilities of our approach are
shown in Figure 4. Here, the learned model was used
to predict the location of the person into the future.
This was done by providing the ground truth location
to the algorithm and then predicting the most likely
path based on the transition probabilities learned from
the training data. The figure shows the percentage of
trajectories that were predicted correctly, given differ-
ent prediction interval. Prediction length was mea-
sured in city blocks. For example, in 50% of the cases,
the location of the person was predicted correctly for
2.5 blocks when the person was on the bus. In 30% of
the cases, the prediction was correct for 5 blocks, and
15 blocks were predicted correctly in 10% of the cases.

6 Conclusions and Future Work

In this paper, we presented a novel approach to pa-
rameterize motion models based on the Voronoi graph
of the map. Modeling motion model in this way has 3

key advantages: 1) It bridges the gap between contin-
uous space and discrete motion behaviors by naturally
approximating real motion patterns. 2) It is expres-
sive enough to represent many useful motion patterns.
3) It reduces the state space and can be implemented
efficiently.

We discussed in detail the design of a Voronoi graph-
based Bayes filtering and its implementation using par-
ticle filter. We also presented a parameter estimation
algorithm based on the EM learning framework. Such
a learning algorithm also has three advantages: 1) It
is an unsupervised algorithm in that we don’t need
to know the ground truth during the training stage.
Thus it can be more useful in practice. 2) It takes
into account the tracking errors in a natural way. The
tracking process is in fact one step in the learning
and the learned model can be used to reduce tracking
errors. 3) Our algorithm for learning motion model
does not require a specific parameterization. It can
be applied to any motion model specifications besides
Voronoi graph.

We implemented our system in both indoor and
outdoor environments. Through the experiments, we
showed that:

1. Our approach is by far more efficient than the
particle filters which estimate the locations in the
complete free spaces. Using the Voronoi-graph-
based motion model and sensor model, it needs
less particles and gives better tracking accuracy.

2. Our unsupervised learning algorithm is able to
discover correctly the motion patterns when fed
the real data log. It can capture the edge transi-
tion, mode transition and velocity patterns in our
experiments.

3. Our approach scales well. It performs well in both
a small office area and a large urban area.

4. Our system is relatively easy to implement. Par-
ticle filtering is one of the easiest implementations
for Bayesian filtering. The tracking is also part of
the learning which allows us to reuse the tracking
module when implementing learning.

We can extend our work in a number of directions,
including the following.

1. Although we have tested our approach using real
data, it could be better if we have long term data
from multiple people. Then we would be able to
analyze the differences of motion behaviors and
further verify the robustness of the approach.

2. So far, our Voronoi model only captures first-order
transitions. This could be the first step toward
high-level pattern learning. For example, most
navigation patterns depend on the time of day
and the (potentially far away) goal of the person
and not only on the previous position. We intend
to use the model presented here as a tool to gener-
ate long sequences of data logs from which we can
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determine high-level behavior patterns. On this
point, a hierarchical approach may be appropri-
ate. In a hierarchical structure, a motion model
has different expressions on different levels. We
believe our general framework of combining EM
learning with particle filters will work in hierar-
chical structures, too.

We could use relational models to make predic-
tions about novel events. A significant limitation
to our current approach is that useful predictions
cannot be made when the user is in a location
where he has never been before. However, recent
work on relational probabilistic models [2; 15]
has developed a promising approach where pre-
dictions can be made for novel states by smooth-
ing in statistics from semantically similar states.
For example, such a model might predict that the
user has a significant chance of entering a nearby
restaurant at noon even if there is no history of
the user patronizing that particular restaurant.

For large areas, e.g. the urban area in our exper-
iment, there are at least thousands of edges. Al-
though most of edges will never be touched, they
have to be included in the motion model. We can
use non-parametric approach with Dirichlet prior
[4] such that we only need to store histograms for
the edges visited before and are still able to travel
to new edges.
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