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Abstract

In this paper we discuss a system that can learn
personal maps customized for each user and infer
his daily activities and movements from raw GPS
data. The system uses discriminative and genera-
tive models for different parts of this task. A dis-
criminative relational Markov network is used to
extract significant places and label them; a gener-
ative dynamic Bayesian network is used to learn
transportation routines, and infer goals and poten-
tial user errors at real time. In this paper we focus
on the basic structures of the models and briefly dis-
cuss the inference and learning techniques. Experi-
ments show that our system is able to accurately ex-
tract and label places, predict the goals of a person,
and recognize situations in which the user makes
mistakes (e.g., taking a wrong bus).

1 Introduction
A typical map consists of significant places and road net-
works within a geographic region. In this paper, we present
the concept of apersonal map, which is customized based
on an individual’s behavior. A personal map includes person-
ally significant places, such as home, a workplace, shopping
centers, and meeting places and personally significant routes
(i.e., the paths and transportation modes such as foot, car, or
bus, that the person usually uses to travel from place to place).
In contrast with general maps, a personal map is customized
and primarily useful for a given person. Because of the cus-
tomization, it is well-suited for recognizing an individual’s
behavior and offering detailed personalized help. For exam-
ple, in this paper we use a personal map to

• Discriminate a user’s activities (is she dining at a restau-
rant or visiting a friend?);

• Predict a user’s future movements and transportation
modes, both in the short term (will she turn left at the
next street corner? will she get off the bus at the next
bus stop?) and in terms of distant goals (is she going to
her workplace?);

• Infer when a user hasbroken his ordinary routinein a
way that may indicate that he has made an error, such

as failing to get off his bus at his usual stop on the way
home.

We describe a system that builds personal maps automati-
cally from raw location data collected by wearable GPS units.
Many potential applications can be built upon the system.
A motivating application for this work is the development
of personal guidance systems that helps cognitively-impaired
individuals move safely and independently throughout their
community[Pattersonet al., 2004]. Other potential applica-
tions includecustomized“just in time” information services
(for example, providing the user with current bus schedule
information when she is likely to need it or real time traffic
conditions on her future trajectories), intelligent user inter-
face (instructing a cell phone not to ring when in a restaurant
or at a meeting), and so on.

This paper is focused on the fundamental techniques of
learning and inference. We develop probabilistic models that
bridge low level sensor measurements (i.e., GPS data) with
high level information in the personal maps. Given raw GPS
data from a user, our system first finds a user’s set of sig-
nificant places, then a Relational Markov Network (RMN) is
constructed to recognize the activities in those places (e.g.,
working, visiting, and dining out); as discriminative models,
RMNs often outperform their corresponding generative mod-
els (e.g., HMMs) for classification tasks[Taskaret al., 2002].
The system then uses a dynamic Bayesian network (DBN)
model[Murphy, 2002] for learning and inferring transporta-
tion routines between the significant places; such a generative
model is well-suited for online tracking and real-time user er-
ror detection.

The paper is organized as follows. In the next section, we
discuss related work. In Section 3, we present the discrimina-
tive model for place extraction and labeling, followed by the
generative DBN model in Section 4. We show experimental
evaluations before concluding.

2 Related Work
Over the last years, estimating a person’s activities has
gained increased interest in the AI, robotics, and ubiqui-
tous computing communities.[Ashbrook and Starner, 2003;
Hariharan and Toyama, 2004] learn significant locations from
logs of GPS measurements by determining the time a person
spends at a certain location. For these locations, they use



frequency counting to estimate the transition parameters of
Markov models. Their approach then predicts the next goal
based on the current and the previous goals. Our system goes
beyond their work in many aspects. First, our system not only
extracts places, but also recognizes activities associated with
those places. Second, their models are not able to refine the
goal estimates using GPS information observed when moving
from one significant location to another. Furthermore, such a
coarse representation does not allow the detection of poten-
tial user errors. In contrast, our hierarchical generative model
is able to learn more specific motion patterns of transpiration
routines, which also enables us to detect user errors.

In the machine learning community, a variety ofrelational
probabilistic modelswere introduced to overcome limita-
tions of propositional probabilistic models. Relational mod-
els combine first-order logical languages with probabilistic
graphical models. Intuitively, a relational probabilistic model
is a templatefor propositional models such as Bayesian net-
works or MRFs (similar to how first-order logic formulas can
be instantiated to propositional logic). Templates are defined
over object classes through logical languages such as Horn
clauses, frame systems, SQL, and full first-order logic. Given
data, these templates are theninstantiatedto generate propo-
sitional models (typically Bayesian networks or MRFs), on
which inference and learning is performed. Relational prob-
abilistic models use high level languages for describing sys-
tems involving complex relations and uncertainties. Since the
structures and parameters are defined at the level of classes,
they are shared by the instantiated networks. Parameter shar-
ing is particularly essential for learning from sparse training
data and for knowledge transfer between different people. As
a popular relational probabilistic model, Relational Markov
Networks (RMN) define the templates using SQL, a widely
used query language for database systems, and the templates
are instantiated into (conditional) Markov networks, which
areundirectedmodels that do not suffer the cyclicity prob-
lem and are thereby more flexible and convenient. Since their
introduction, RMNs have been used successfully in a number
of domains, including web page classification[Taskaret al.,
2002], link prediction[Taskaret al., 2003], and information
extraction[Bunescu and Mooney, 2004].

In the context of probabilistic plan recognition,[Bui et al.,
2002] introduced the abstract hidden Markov model, which
uses hierarchical representations to efficiently infer a person’s
goal in an indoor environment from camera information.
[Bui, 2003] extended this model to include memory nodes,
which enables the transfer of context information over mul-
tiple time steps. Bui and colleagues introduced efficient in-
ference algorithms for their models using Rao-Blackwellised
particle filters. Since our model has a similar structure to
theirs, we apply the inference mechanisms developed in[Bui,
2003]. Our work goes beyond the work of Buiet al. in that
we show how to learn the parameters of the hierarchical ac-
tivity model, and their domains, from data. Furthermore, our
low level estimation problem is more challenging than their
indoor tracking problem.

The task of detecting abnormal events in time series data
(callednovelty detection) has been studied extensively in the
data-mining community [Guralnik and Srivastava, 1999],

but remains an open and challenging research problem. We
present the results on abnormality and error detection in loca-
tion and transportation prediction using a simple and effective
approach based on comparing the likelihood of a learned hi-
erarchical model against that of a prior model.

3 Extracting and Labeling Places
In this section, we briefly discuss place extraction and activ-
ity labeling. For full technical details of the activity labeling
refer to[Liao et al., 2005].

3.1 Place Extraction
Similar to [Ashbrook and Starner, 2003; Hariharan and
Toyama, 2004], our current system considers significant
places to be those locations where a person typically spends
extended periods of time. From the GPS data, it first looks for
locations where the person stays for a given amount of time
(e.g., 10 minutes), and then these locations are clustered to
merge spatially similar points. An extension of the approach
that takes into account more complex features is discussed in
future work (Section 6).

3.2 Activity Labeling
We build our activity model based on the Relational Markov
Network (RMN) framework[Taskaret al., 2002]. RMNs de-
scribe specific relations between objects using clique tem-
plates specified by SQL queries: each queryC selects the
relevant objects and their attributes, and specifies apotential
function, or clique potential,φC , on the possible values of
these attributes. Intuitively, the clique potentials measure the
“compatibility” between values of the attributes. Clique po-
tentials are usually defined as a log-linear combinations of
featurefunctions,i.e., φC(vC) = exp{wT

C · fC(vC)}, where
vC are the attributes selected in the query,fC() is a feature
vector forC, andwT

C is the transpose of the corresponding
weight vector. For instance, a feature could be the number of
different homes defined using aggregations.

To perform inference, an RMN isunrolled into a Markov
network, in which the nodes correspond to the attributes of
objects. The connections among the nodes are built by apply-
ing the SQL templates to the data; each templateC can re-
sult in several cliques, which share the same feature weights.
Standard inference algorithms, such as belief propagation and
MCMC, can be used to estimate the conditional distribution
of hidden variables given all the observations.

Relational activity model
Because behavior patterns can be highly variable, a reliable
discrimination between activities must take several sources of
evidence into account. More specifically, our model defines
the following templates:

1. Temporalpatterns: Different activities often have differ-
ent temporal patterns, such as their duration or the time
of day. Such local patterns are modeled by clique tem-
plates that connect each attribute with the activity label.

2. Geographicevidence: Information about the types of
businesses close to a location can be extremely use-
ful to determine a user’s activity. Such informa-
tion can be extracted from geographic databases like
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Figure 1: An example of unrolled Markov network with six activ-
ities. Solid straight lines indicate the cliques generated by the tem-
plates of temporal, geographic, and transition features; bold solid
curves represent spatial constraints (activity 1 and 4 are associated
with the same place and so are 2 and 5); dashed curves stand for
global features, which are label-specific cliques (activity 1 and 4 are
both labeled as ’AtHome’ or ’AtWork’ at this moment).

http://www.microsoft.com/mappoint . Since lo-
cation information in such databases is not accurate
enough, we consider such information by checking
whether, for example, a restaurant is within a certain
range from the location.

3. Transitionrelations: First-order transitions between ac-
tivities can also be informative. For example, going from
home to work is very common while dining out twice in
a row is rare.

4. Spatialconstraints: Activities at the same place are often
similar. In other words, the number of different types of
activities in a place is often limited.

5. Global features: These are soft constraints on the activi-
ties of a person. The number of different home locations
is an example of the global constraints. Such a constraint
is modeled by a clique template that selects all places la-
beled as home and returns how many of them are differ-
ent.

Inference
In our application, the task of inference is to estimate the la-
bels of activities in theunrolledMarkov networks (see Fig. 1
for an example). Inference in our relational activity models
is complicated by the fact that the structure of the unrolled
Markov network can change during inference. This is due
to the fact that, in the templates of global features, the label
of an object determines to which cliques it belongs. We call
such cliqueslabel-specific cliques. Because the label values
are hidden during inference, such cliques potentially involve
all the labels, which makes exact inference intractable.

We perform approximate inference using Markov Chain
Monte Carlo (MCMC)[Gilks et al., 1996]. We first imple-
mented MCMC using basic Gibbs sampling. Unfortunately,
this technique performs poorly in our model because of the
strong dependencies among labels. To make MCMC mix
faster, we developed a mixture of two transition kernels: the
first is a block Gibbs sampler and the second is a Metropo-
lis sampler (see[Liao et al., 2005] for details). The numbers
of different homes and workplaces are stored in the chains as
global variables. This allows us to compute theglobal fea-
tures locally in both kernels. In order to determine which
kernel to use at each step, we sample a random numberu
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Figure 2:Hierarchical activity model representing a person’s out-
door movements during everyday activities. The upper level esti-
mates the user mode, the middle layer represents goals and trip seg-
ments, and the lowest layer is the flat model, estimating the person’s
location, velocity, and transportation mode.

between0 and 1 uniformly, and compareu with the given
thresholdγ (γ = 0.5 in our experiments).

Learning
The parameters to be learned are the weightsw of the features
that define the clique potentials. To avoid overfitting, we per-
form maximum a posterior (MAP) parameter estimation and
impose an independent Gaussian prior with constant variance
for each component ofw. Since the objective function for
MAP estimation is convex, the global optimum can be found
using standard numerical optimization algorithms[Taskaret
al., 2002]. We apply the quasi-Newton methods to find the
optimal weights because they have been found to be very ef-
ficient for CRFs[Sha and Pereira, 2003]. Each iteration of
this technique requires the value and gradient of the objective
function computed at the weights returned in the previous it-
eration. In[Liao et al., 2005], we presented an algorithm that
simultaneouslyestimates at each iteration the value and its
gradient using MCMC.

Although parameter learning in RMNs requires manually
labeled training data, parameter sharing makes it easy to
transfer knowledge. For example, in our system, we can learn
agenericmodel from people who have manually labeled data,
and then apply the model to people who have no labeled data.
Generic models in our system can perform reasonably well,
as we will show in the experiments.

4 Learning and Inferring Transportation
Routines

We estimate a person’s activities using the three level dy-
namic Bayesian network model shown in Fig. 2. The indi-
vidual nodes in such a temporal graphical model represent
different parts of the state space and the arcs indicate depen-
dencies between the nodes[Murphy, 2002]. Temporal depen-
dencies are represented by arcs connecting the two time slices
k− 1 andk. The highest level of the model indicates the user



mode, which could be typical behavior, user error, or deliber-
ate novel behavior. The middle level represents the person’s
goal (i.e., next significant place) and trip segment ( defined
below). The lowest level is theflat model, which estimates
the person’s transportation mode, location and motion veloc-
ity from the GPS sensor measurements. In this section, we
explain the model from bottom up; refer to[Liao et al., 2004]
for more details.

4.1 Locations and Transportation Modes
We denote byxk = 〈lk, vk, ck〉 the location and motion ve-
locity of the person, and the location of the person’s car1

(subscriptsk indicate discrete time). In our DBN model, lo-
cations are estimated on a graph structure representing a street
map. GPS sensor measurements,zk, are generated by the per-
son carrying a GPS sensor. Since measurements are given in
continuousxy-coordinates, they have to be “snapped” to an
edge in the graph structure. The edge to which a specific mea-
surement is “snapped” is estimated by the association vari-
ableθk. The location of the person at timek depends on his
previous location,lk−1, the motion velocity,vk, and the ver-
tex transition,τk. Vertex transitionsτ model the decision a
person makes when moving over a vertex in the graph, for
example, to turn right when crossing a street intersection.

The mode of transportation can take on four different
valuesmk ∈ {BUS, FOOT, CAR, BUILDING}. Similar
to [Pattersonet al., 2003], these modes influence the motion
velocity, which is picked from a Gaussian mixture model. For
example, the walking mode draws velocities only from the
Gaussian representing slow motion.BUILDING is a special
mode that occurs only when the GPS signal is lost for signifi-
cantly long time. Finally, the location of the car only changes
when the person is in theCARmode, in which the car location
is set to the person’s location.

An efficient algorithm based on Rao-Blackwellised parti-
cle filters (RBPFs)[Doucetet al., 2000] has been developed
to perform online inference for the flat model. In a nutshell,
the RBPF samples transportation modemk

(i), transportation
mode switchfm

k
(i), data associationθk

(i), edge transition
τk

(i), and velocityvk
(i), then it updates the Gaussian distrib-

ution of locationlk
(i) using a one-dimensional Kalman filter.

After all components of each particle are generated, the im-
portance weights of the particles are updated. This is done
by computing the likelihood of the GPS measurementzk,
which is provided by the update innovations of the Kalman
filters [Doucetet al., 2000].

We apply expectation maximization (EM) to learn the
model parameters. Before learning, the model has no pref-
erence for when a person switches mode of transportation, or
which edge a person transits to when crossing a vertex on the
graph. However, information about bus routes, and the fact
that the car is either parked or moves with the person, already
provide important constraints on mode transitions. At each
iteration of EM, the location, velocity, and mode of trans-
portation are estimated using the Rao-Blackwellised particle
filter of the flat model. In the E-step, transition counts of a

1We include the car location because it strongly affects whether
the person can switch to the car mode.

AtHome AtWork Shopping
DiningOut Visiting Others

Figure 3:Part of the locations contained in the data set of a single
person, collected over a period of four months (x-axis is 8 miles
long).

forward and a backward filtering pass through the data log
are combined, based on which we update the model parame-
ters in the M-step. In our Rao-Blackwellised model, edge
transitions are counted whenever themeanof a Kalman filter
transits the edge. The learned flat model encodes informa-
tion about typical motion patterns and significant locations
by edge and mode transition probabilities.

After we estimate the mode transition probabilities for each
edge, we findmode transfer locations, i.e., usual bus stops
and parking lots, by looking for those locations at which the
mode switching exceeds a certain threshold.

4.2 Goals and Trip Segments
A trip segment is defined by its start location,tsk, end location,
tek, and the mode of transportation,tmk , the person uses during
the segment. For example, a trip segment models information
such as “she gets on the bus at locationtsk and takes the bus
up to locationtek, where she gets off the bus”. In addition
to transportation mode, a trip segment predicts the route on
which the person gets fromtsk to tek. This route is not specified
through a deterministic sequence of edges on the graph but
rather through transition probabilities on the graph. These
probabilities determine the prediction of the person’s motion
direction when crossing a vertex in the graph, as indicated by
the arc fromtk to τk.

A goal represents the current target location of the per-
son. Goals include the significant locations extracted using
our discriminative model. The transfer between trip segments
and goals is handled by the boolean switching nodesf t

k and
fg

k , respectively.
To estimate a person’s goal and trip segment, we apply

the inference algorithm used for the abstract hidden Markov
memory models[Bui, 2003]. More specifically, we use a
Rao-Blackwellised particle filter both at the low level and at
the higher levels. Each sample of the resulting particle filter
contains the discrete and continuous states described in the
previous section, and a joint distribution over the goals and
trip segments. These additional distributions are updated us-
ing exact inference.

Because we have learned the set of goals using the dis-
criminative model and the set of trip segments using the flat
model, we only need to estimate the transition matrices at all
levels: between the goals, between the trip segments given the
goal, and between the adjacent streets given the trip segment.
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Figure 4: (a) Error rates of cross-validation of the generic models
and customized models using different feature sets; (b) Zero-mean
prior vs. learned model as prior mean (shown the error rates over the
new places only).

Again, we use EM in the hierarchical model, which is simi-
lar to that in the flat model. During the E-steps, smoothing is
performed by tracking the states both forward and backward
in time. The M-steps update the model parameters using the
frequency counts generated in the E-step. All transition para-
meters are smoothed using Dirichlet priors.

4.3 User Modes
To detect user errors or novel behavior, we add the variable
uk to the highest level, which indicates the user’s behavior
mode∈ {Normal,Novel, Erroneous}. Different values
of uk instantiate different parameters for the lower part of the
model. When user mode is typical behavior, the model is
instantiated using the parameters learned from training data.
When a user’s behavior isErroneous, the goal remains the
same, but the trip segment is set to a distinguished value “un-
known” and as a consequence the parameters of the flat model
(i.e., transportation mode transitions and edge transitions) are
switched to their a priori values: An “unknown” trip seg-
ment cannot provide any information for the low level pa-
rameters. When a user’s behavior isNovel, the goal is set to
“unknown,” the trip segment is set to “unknown,” and the pa-
rameters of the flat model are again set to their a priori values.

To infer the distribution ofuk, we run two trackers simul-
taneously and at each time their relative likelihood is used to
update the distribution. The first tracker uses the hierarchical
model with learned parameters and second tracker uses the
flat model with a priori parameters. When a user is following
her ordinary routine, the first tracker has higher likelihoods,
but when the user makes error or does something novel, the
second tracker becomes more likely. Unless the true goal is
observed, the system cannot distinguish errors from novel be-
havior, so the precise ratio between the two is determined by
hand selected prior probabilities. In some situations, how-
ever, the system knows where the user is going,e.g., if the
user asks for directions to a destination, or if a caregiver in-
dicates the “correct” destination, and thus the goal is fixed,
treated as an observed, and thereforeclamped. After we have
clamped the goal, the probability of novel behavior becomes
zero and the second tracker just determines the probabilities
of an error.

5 Experiments
To evaluate our system, we collected two sets of location data
using wearable GPS units. The first data set contains location
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Parking lot
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Figure 5: Learned model zoomed into the area around the work
place and the very likely transitions (probability above 0.75).
Dashed lines indicate car mode, solid lines bus, and dashed-dotted
lines foot. (a) Given that the goal is the work place. (b) Given that
the goal is home.

traces from a single person over a time period of four months
(see Fig. 3). It includes about 400 activities at 50 different
places. The second data set consists of one-week of data from
five different people. Each person has 25 to 30 activities and
10 to 15 different significant places. We extracted from the
logs each instance of a subject spending more than10 minutes
at one place. Each instance corresponds to an activity. We
then clustered the nearby activity locations into places.

5.1 Evaluating the RMN Model
For training and evaluation, the subjects manually labeled the
data with their activities from the following set:{AtHome,
AtWork, Shopping, DiningOut, Visiting, Other }. Then,
we constructed the unrolled Markov networks using the tem-
plates described above, trained the models, and tested their
accuracy. Accuracy was determined by the activities for
which the most likely labeling was correct.

In practice, it is of great value to learn agenericactivity
model that can be immediately applied to new users with-
out additional training. In the first experiment, we used the
data set of multiple users and performed leave-one-subject-
out cross-validation: we trained using data from four subjects,
and tested on the remaining one. The average error rates are
indicated by the white bars in Fig. 4(a). By using all the fea-
tures, the generic model achieved an error rate of20%. Note
that the global features and the spatial constraints are very
useful. To gauge the impact of different habits on the results,
we also performed the same evaluation using the data set of
single subject. In this case, we used one-month data for train-
ing and the other three-month data for test, and we repeated
the validation process for each month. The results are shown
by the gray bars in Fig. 4(a). In this case, the model achieved
an error rate of only7%. This experiment shows that it is
possible to learn good activity models from groups of people.
It also shows that if the model is learned from more “similar”
people, then higher accuracy can be achieved. This indicates
that models can be improved by grouping people based on
their activity patterns.

When estimating the weights of RMNs, a prior is imposed
in order to avoid overfitting. Without additional information,
a zero mean Gaussian is typically used as the prior[Taskaret
al., 2002]. Here we show that performance can also be im-
proved by estimating thehyper-parametersfor the means of
the weights using data collected from other people. Similar
to the first experiment, we want to learn a customized model
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Figure 6: The probabilities of user mode in two experiments (when goal is unclamped, the prior ratio of typical behavior, user error and
novel behavior is 3:1:2; when goal is clamped, the probabilities of novel behavior are always zero): (a) Bus experiment with goal clamped;
(b) Bus experiment with goal unclamped; (c) Foot experiment with goal clamped; (d) Foot experiment with goal unclamped.

for a personA, but this time we also have labeled data from
others. We could simply ignore the others’ data and use the
labeled data fromA with a zero-mean prior. Or we can first
learn the weights from the other people and use that as the
mean of the Gaussian prior forA. We evaluate the perfor-
mance of the two approaches for different amounts of train-
ing data from personA. The results are shown in Fig. 4(b).
We can see that using data from others to generate a prior
boosts the accuracy significantly, especially when only small
amounts of training data are available.

Using the Bayesian prior smoothly shifts from generic to
customized models: on one end, when no data from the given
subject is available, the approach returns the generic (prior)
model; on the other end, as more labeled data become avail-
able, the model adjusts more and more to the specific patterns
of the user and we get a customized model.

5.2 Evaluating the DBN Model
The learning of the generative model was done completely
unsupervised without any manual labeling. Fig. 5 show the
learned trip segments and street transitions zoomed into the
workplace. The model successfully discovered the most fre-
quent trajectories for traveling from home to the workplace
and vice-versa, as well as other common trips, such as to the
homes of friends.

As we described, an important feature of our model is the
capability to capture user errors and novel behavior using a
parallel tracking approach. To demonstrate the performance
of this technique, we did the following two experiments:

In the first experiment, a user took the wrong bus home.
For the first 700 seconds, the wrong bus route coincided with
the correct one and the system believed that the user was in
{uk = Normal} mode. But when the bus took a turn that
the user had never taken to get home, the probability of errors
in the clamped model dramatically jumped (see Fig. 6(a)). In
contrast, the unclamped model cannot determine a user error
because the user, while on the wrong bus route, was on a bus
route consistent with other previous goals (see Fig. 6(b)).

The second experiment was a walking experiment in which
the user left his office and proceeded to walk away from his
normal parking spot. When the destination was not specified,
the tracker had a steady level of confidence in the user’s path
(see Fig. 6(d), there are lots of previously observed paths
from his office), but when the goal was specified, the sys-
tem initially saw behavior consistent with walking toward the
parking spot, and then as the user turned away at time 125,

the tracker’s confidence in the user’s success dropped (see
Fig. 6(c)).

6 Conclusions and Future Work

In this paper we have described a system that can build per-
sonal maps automatically from GPS sensors. More specifi-
cally, the system is able to: recognize significant locations of
a user and activities associated with those places, infer trans-
portation modes and goals, and detect user errors or novel
behavior. The system uses a Relational Markov Network for
place classification and a hierarchical Dynamic Bayesian Net-
work for online tracking and error detection. This technique
has been used as the basis for both experimentation and for
real context-aware applications including an automated trans-
portation routing system that ensures the efficiency, safety,
and independence of individuals with mild cognitive disabil-
ities (see[Pattersonet al., 2004]).

In our future work we plan to improve the place extrac-
tion. The current approach only relies on measuring the time
periods a person stays at each place and uses a fixed thresh-
old to distinguish significant places from insignificant ones.
However, it is hard to find a fixed threshold that works for
all significant places. If we set the threshold too big (say
10 minutes, as in our experiments), some places could be
missed (e.g., places a user stops by to get coffee or pick up
his kids); if we set the value too small (e.g., 1 minute), some
trivial places (such as traffic lights) may be considered signif-
icant. Therefore, to extract more places accurately, we will
take into account more features besides stay duration. For ex-
ample, transportation mode is a very useful indicator: if a user
switches tofoot at some place during acar trip, that place is
likely to be significant. Since transportation mode itself has
to be inferred, we must design a model that considers all these
uncertainties comprehensively. In order to do that, we plan to
extend the existing relational probabilistic languages so that
we can model complex relations and still perform efficient
inference and learning.
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