
Hierarchical Conditional Random Fields for
GPS-based Activity Recognition

Lin Liao, Dieter Fox, and Henry Kautz

University of Washington, Department of Computer Science & Engineering, Seattle, WA

Summary. Learning patterns of human behavior from sensor data is extremely important
for high-level activity inference. We show how to extract a person’s activities and significant
places from traces of GPS data. Our system uses hierarchically structured conditional random
fields to generate a consistent model of a person’s activities and places. In contrast to existing
techniques, our approach takes high-level context into account in order to detect the significant
locations of a person. Our experiments show significant improvements over existing techniques.
Furthermore, they indicate that our system is able to robustly estimate a person’s activities
using a model that is trained from data collected by other persons.

1 Introduction
The problem of learning patterns of human behavior from sensor data arises in many
applications, including intelligent environments [4], surveillance [5], human robot in-
teraction [2], and assistive technology for the disabled [18]. A focus of recent interest
is the use of data from wearable sensors, and in particular, GPS (global positioning
system) location data, to learn to recognize the high-level activities in which a person
is engaged over a period of many weeks, and to further determine the relationship
between activities and locations that are important to the user [1, 12, 14]. The goal
of this research is to segment a user’s day into everyday activities such as “working,”
“visiting,” “travel,” and to recognize and label significant locations that are associated
with one or more activity, such as “workplace,” “friend’s house,” “user’s bus stop.”
Such activity logs can be used, for instance, for automated diaries or long-term health
monitoring. Previous approaches to location-based activity recognition suffer from
design decisions that limit their accuracy and flexibility.
Restricted activity models: Ashbrook and colleagues [1] only reason about moving
between places, without considering different types of places or different routes be-
tween places. In the context of indoor mobile robotics, Bennewitz et al. [2] showed
how to learn different motion paths between places. However, their approach does
not model different types of places and does not estimate the user’s activities when
moving between places. In our previous work [12, 19] we developed a hierarchical
dynamic Bayesian network model that can reason about different transportation rou-
tines between places. In separate work, we developed an approach that can learn to

distinguish between different types of places, such as work place, home, or restau-
rant [14]. However, this model is limited in that it is not able to consider information
about motion between places and about activities occurring at each point in time.
Inaccurate place detection: Virtually all previous approaches address the problem
of determining a person’s significant places by assuming that a geographic location
is significant if and only if the user spends at least θ minutes there, for some fixed
threshold θ [1, 12, 14, 2]. In practice, unfortunately, there is no threshold that leads to
a satisfying detection of all significant locations. For instance, locations such as the
place where the user drops off his children at school may be visited only briefly, and
so would be excluded when using a high threshold θ. A low threshold, on the other
hand, would include too many insignificant locations, for example, a place where the
user waited at a traffic light. Such detection errors can only be resolved by taking
additional context information into account, such as the user’s current activity.

In this paper we present a novel, unified approach to automated activity and place
labeling which overcomes these limitations. Key features of our system are:

• It achieves high accuracy in detecting significant places by taking a user’s con-
text into account when determining which places are significant. This is done
by simultaneously estimating a person’s activities over time, identifying places
that correspond to significant activities, and labeling these places by their type.
This estimation is performed in a unified, conditionally trained graphical model
(conditional random field). As a result, our approach does not rely on arbitrary
thresholds regarding the time spent at a location or on a pre-specified number of
significant places.

• It creates a rich interpretation of a user’s data, including transportation activities
as well as activities performed at particular places. It allows different kinds of
activities to be performed at the same location, and vice-versa.

• This complex estimation task requires efficient, approximate inference and learn-
ing algorithms. Our system performs inference using loopy belief propagation,
and parameter learning is done using pseudo-likelihood. In order to efficiently
reason about aggregations, such as how many different places are labeled as a per-
son’s home, we apply Fast Fourier Transforms to compute aggregation messages
within belief propagation.

This paper is organized as follows. We begin with a discussion of conditional random
fields (CRFs) and how to apply them to the problem of location-based activity
recognition. Then, we explain how to perform efficient inference and parameter
learning in CRFs. Finally, we present experimental results on real-world data that
demonstrate significant improvement in coverage and accuracy over previous work.

2 Hierarchical Activity Model
The basic concept underlying our activity model is shown in Figure 1. Each circle
indicates an object such as a GPS reading, a location in the map, or a significant
place. The edges illustrate probabilistic dependencies between these objects.

g 1 g Tg T−1g r+1g r g rg 2 g 3 g 4 g 5 g 6 g 7

a 1 a 2 a 3 a I−1 a I

p 1 p 2

......

walk, drive, visit, sleep, pickup, get on bus

home, work, bus stop, parking lot, friend
Significant places

Activity sequence

GPS trace
association to street map

...

Fig. 1. The concept hierarchy for location-based activity recognition. For each day of data
collection, the lowest level typically consists of several thousand GPS measurements.

GPS readings are the input to our model — a typical trace consists of approximately
one GPS reading per second; each reading is a point in 2D space. We segment a
GPS trace in order to generate a discrete sequence of activity nodes at the next
level of the model. This segmentation is done spatially, that is, each activity node
represents a set of consecutive GPS readings that are within a certain area. If a
street map is available, then we perform the segmentation by associating the GPS
readings to a discretized version of the streets in the map (in our experiments
we used 10m for discretization). This spatial segmentation is very compact and
convenient for estimating high-level activities. For instance, our model represents
a 12 hour stay at a location by a single node. Our model can also reason explicitly
about the duration of a stay, for which dynamic models such as standard dynamic
Bayesian networks or hidden Markov models have only limited support [6].

Activities are estimated for each node in the spatially segmented GPS trace, as
illustrated in Figure 1. In other words, our model labels a person’s activity
whenever she passes through or stays at a 10m patch of the environment. We
distinguish two main groups of activities, navigation activities and significant
activities. Activities related to navigation are walking, driving a car, or riding a
bus. Significant activities are typically performed while a user stays at a location,
such as work, leisure, sleep, visit, drop off / pickup, or when the user switches
transportation modes, such as getting on/off a bus, or getting in/out of a car.
To determine activities, our model relies heavily on temporal features, such as
duration or time of day, extracted from the GPS readings associated with each
activity node.

Significant places are those locations that play a significant role in the activities of a
person. Such places include a person’s home and work place, the bus stops and
parking lots the person typically uses, the homes of friends, stores the person
frequently shops in, and so on. Note that our model allows different activities
to occur at the same significant place. Furthermore, due to signal loss and noise
in the GPS readings, the same significant place can comprise multiple, different
locations.

Our activity model poses two key problems for probabilistic inference. First, the
model can become rather complex, including thousands of probabilistic nodes with
non-trivial probabilistic constraints between them. Second, a person’s significant
places depend on his activities and it is therefore not clear how to construct the model
deterministically from a GPS trace. As we will show in Section 3.3, we solve the
first problem by applying efficient, approximate inference algorithms for conditional

random fields. The second problem is solved by constructing the model as part of this
inference. We do this by generating the highest level of the activity model (significant
places) based on the outcome of inference in the lower level (activity sequence).
Inference is then repeated using both levels connected appropriately.

3 Conditional Random Fields for Activity Recognition
3.1 Preliminaries

Our goal is to develop a probabilistic temporal model that can extract high-level
activities from sequences of GPS readings. One possible approach is to use generative
models such as hidden Markov models (HMM) or dynamic Bayesian networks.
However, discriminative models such as conditional Random fields (CRF), have
recently been shown to outperform generative techniques in areas such as natural
language processing [10, 23], web page classification [24], and computer vision [9,
21]. We therefore decided to investigate the applicability of such models for activity
recognition.

CRFs are undirected graphical models that were developed for labeling sequence
data [10]. Instead of relying on Bayes rule to estimate the distribution over hidden
states from observations, CRFs directly represent the conditional distribution over
hidden states given the observations. Unlike HMMs, which assume that observa-
tions are independent given the hidden state, CRFs make no assumptions about the
dependency structure between observations. CRFs are thus especially suitable for
classification tasks with complex and overlapped observations.

Similar to HMMs and Markov random fields, the nodes in CRFs represent a
sequence of observations (e.g., GPS readings), denoted as x = 〈x1, x2, . . . , xT 〉, and
corresponding hidden states (e.g., activities), denoted as y = 〈y1, y2, . . . , yT 〉. These
nodes, along with the connectivity structure imposed by undirected edges between
them, define the conditional distribution p(y|x) over the hidden states y. The fully
connected sub-graphs of a CRF, called cliques, play a key role in the definition of
the conditional distribution represented by a CRF. Let C be the set of all cliques
in a given CRF. Then, a CRF factorizes the conditional distribution into a product
of clique potentials φc(xc,yc), where every c ∈ C is a clique of the graph and xc

and yc are the observed and hidden nodes in such a clique. Clique potentials are
functions that map variable configurations to non-negative numbers. Intuitively, a
potential captures the “compatibility” among the variables in the clique: the larger
the potential value, the more likely the configuration. Using clique potentials, the
conditional distribution over the hidden state is written as

p(y | x) =
1

Z(x)

∏
c∈C

φc(xc,yc), (1)

where Z(x) =
∑

y

∏
c∈C φc(xc,yc) is the normalizing partition function. The com-

putation of this partition function is exponential in the size of y since it requires
summation over all possible configurations of hidden states y. Hence, exact infer-
ence is possible for a limited class of CRF models only.

Without loss of generality, potentials φc(xc,yc) are described by log-linear com-
binations of feature functions fc(), i.e.,

φc(xc,yc) = exp(wT
c · fc(xc,yc)), (2)

where wT
c is the transpose of a weight vector wc, and fc(xc,yc) is a function that

extracts a vector of features from the variable values. The feature functions, which
are often binary or real valued, are typically designed by the user (combinations of
such functions can be learned from data [15]). As we will show in Section 3.3, the
weights are learned from labeled training data. Intuitively, the weights represent the
importance of different features for correctly identifying the hidden states. The log-
linear feature representation (2) is very compact and guarantees the non-negativeness
of potential values. We can write the conditional distribution (1) as

p(y | x) =
1

Z(x)

∏
c∈C

exp
{
wT

c · fc(xc,yc)
}

(3)

=
1

Z(x)
exp

{∑
c∈C

wT
c · fc(xc,yc)

}
(4)

(4) follows by moving the products into the exponent. Before we describe how to
perform efficient inference and learning in CRFs, we will now show how CRFs can
be used to implement our hierarchical activity model.

3.2 Application to Activity Recognition

GPS to street map association

As mentioned above, we segment GPS traces by grouping consecutive GPS readings
based on their spatial relationship. Without a street map, this segmentation can be
performed by simply combining all consecutive readings that are within a certain
distance from each other (10m in our implementation). However, it might be desirable
to associate GPS traces to a street map, for example, in order to relate locations to
addresses in the map. Street maps are represented by graph structures, where one edge
typically represents a city block section of a street, and a vertex is an intersection
between streets [12].

To jointly estimate the GPS to street association and the trace segmentation, we
associate each GPS measurement to a 10m patch on a street edge 1. As shown in
Fig. 5(a) in Section 4, GPS traces can deviate significantly from the street map, mostly
because of measurement errors and inaccuracies in street maps. One straightforward
way to perform this association is to snap each GPS reading to the nearest street patch.
However, such an approach would clearly give wrong results in situations such as
the one shown in Fig. 5(a). To generate a consistent association, we construct a CRF
1 In [12], we showed how to perform such an association using Rao-Blackwellised particle

filters with multiple Kalman filters moving through the street graph. Since the focus of this
work is on high level activities and places rather than accurate tracking, we use this more
straightforward and efficient approach to trace segmentation.

g 2 g 3 g Tg T−1g 1 g T−2

s 2 s 3 s Ts T−1s 1 s T−2

Street patches

GPS trace

....

....

Fig. 2. CRF for associating GPS measurements to street patches. The shaded areas indicate
different types of cliques.

that takes into account the spatial relationship between GPS readings. The structure
of this CRF is shown in Figure 2. The observed, solid nodes correspond to GPS
readings gt, and the white nodes represent the street patches st, which correspond to
the hidden state y in Section 3.1. The values of each st range over the street patches
in the map that are within a certain distance of the GPS reading gt. The lines in
Figure 2 define the clique structure of the CRF. We distinguish three types of cliques,
for which potentials are defined via the following feature functions:

• Measurement cliques (dark grey in Figure 2): GPS noise and map uncertainty
are considered by cliques whose features measure the squared distance between
a GPS measurement and the center of the patch it is associated with:

fmeas(gt, st) =
||gt − st||2

σ2

where gt is the location of the t-th GPS reading. With slight abuse of notation,
we denote by st the center of one of the street patches in the vicinity of gt (st

and gt are instantiated to a value). σ is used to control the scale of the distance
(note that this feature function corresponds to a Gaussian noise model for GPS
measurements). Obviously, when combined with a negative weight, this feature
prefers associations in which GPS readings are snapped to nearby patches. The
feature fmeas is used for the potential of all cliques connecting GPS readings and
their street patches.

• Consistency cliques (light grey): Temporal consistency is ensured by four node
cliques that compare the spatial relationship between consecutive GPS readings
and the spatial relationship between their associated patches. The more similar
these relationships, the more consistent the association. This comparison is done
via a feature function that compares the vectors between GPS readings and
associated patches:

ftemp(gt, gt+1, st, st+1) =
||(gt+1 − gt)− (st+1 − st)||2

σ2

Here, st and st+1 are the centers of street patches associated at two consecutive
times.

• Smoothness cliques (medium grey): These cliques prefer traces that do not
switch frequently between different streets. For instance, it is very unlikely that a
person drives down a street and switches for two seconds to another street at an

....

N−2 aN−1 aN

....

a1

....

2a

p 1 p 2 p K

Activity

Place type

Local evidence
e 1

1 e 1
E e 1

N e N
E

....
a

Fig. 3. CRF for labeling activities and places. Activity nodes ai range over activities, and
place nodes pi range over types of places. Each activity node is connected to E observed local
evidence nodes e1

i to eE
i . Local evidence comprises information such as time of day, duration,

and motion velocity. Place nodes are generated based on the activities inferred at the activity
level. Each place is connected to all activity nodes that are within a certain range.

intersection. To model this information, we use binary features that test whether
consecutive patches are on the same street, on neighboring streets, or in the same
direction. For example, the following binary feature examines if both street and
direction are identical:

fsmooth(st, st+1) = δ(st.street, st+1.street) · δ(st.dir, st+1.dir) (5)

where δ(u, v) is the indicator function which equals 1 if u = v and 0 otherwise.

Using the feature functions defined above, the conditional distribution of the CRF
shown in Figure 2 can be written as

p(s|g) =
1

Z(x)
exp

(
TX

t=1

wm ·fmeas(gt, st) +

T−1X
t=1

“
wt ·ftemp(gt, gt+1, st, st+1) + ws ·fsmooth(st, st+1)

”)
(6)

where wm,wt and ws are the corresponding feature function weights. The reader
may notice that the weights and feature functions are independent of the time index. In
the context of parameter learning, this independence is often referred to as parameter
sharing, which we will discuss briefly in Section 3.4. Figure 5(a) illustrates the
maximum a posteriori association of a GPS trace to a map. Intuitively, this sequence
corresponds to the MAP sequence that results from tracking a person’s location on
the discretized street map. Such an association also provides a unique segmentation
of the GPS trace. This is done by combining consecutive GPS readings that are
associated to the same street patch.

Inferring activities and types of significant places
Once a GPS trace is segmented, our system estimates the activity performed at each
segment and a person’s significant places. To do so, it generates a new CRF that
contains a hidden activity node for every segment extracted from the GPS trace. This
CRF consists of the two lower levels of the one shown in Figure 3. Each activity node
is connected to various features, summarizing information resulting from the GPS
segmentation. These features include:

• Temporal information such as time of day, day of week, and duration of the stay.
These measures are discretized in order to allow more flexible feature functions.
For example, time of day can be Morning, Noon, Afternoon, Evening, or Night.
The feature functions for the cliques connecting each activity node to one of the
solid nodes in the CRF shown in Figure 3 are binary indicator functions, one
for each possible combination of temporal feature and activity. For instance, one
such function returns 1 if the activity is work and the time of day is morning, and
0 otherwise.

• Average speed through a segment, which is important for discriminating different
transportation modes. The speed value is also discretized and indicator features
are used, just as with temporal information. This discretization has the advantage
over a linear feature function that it is straightforward to model multi-modal
velocity distributions.

• Information extracted from geographic databases, such as whether a patch is on
a bus route, whether it is close to a bus stop, and whether it is near a restaurant or
grocery store. Again, we use indicator features to incorporate this information.

• Additionally, each activity node is connected to its neighbors. These features
measure compatibility between types of activities at neighboring nodes in the
trace. For instance, it is extremely unlikely that a person will get on the bus at
one location and drive a car at the neighboring location right afterwards. The
corresponding feature function is f(ai, ai+1) = δ(ai, OnBus) · δ(ai+1, Car),
where ai and ai+1 are specific activities at two consecutive activity nodes. The
weight of this feature should be a negative value after supervised learning, thereby
giving a labeling that contains this combination a lower probability.

Our model also aims to determine those places that play a significant role in the activi-
ties of a person, such as home, workplace, friends’ home, grocery stores, restaurants,
and bus stops. The nodes representing such significant places comprise the upper
level of the CRF shown in Figure 3. However, since these places are not known a
priori, we must additionally detect a person’s significant places. To incorporate place
detection into our system, we use an iterative algorithm that re-estimates activities
and places. Before we describe this algorithm, let us first look at the features that
are used to determine the types of significant places under the assumption that the
location and number of these places is known. In order to infer place types, we use
the following features for the cliques connected to the place nodes pi in the CRF:

• The activities that occur at a place strongly indicate the type of the place. For
example, at grocery stores people mainly do shopping, and at a friends’ home
people either visit or pick up / drop off someone. Our features consider the
frequency of the different activities occurring at a place. This is done by generating
a clique for each place that contains all activity nodes in its vicinity. For example,
the nodes p1, a1, and aN−2 in Figure 3 form such a clique. The model then counts
the different activities occurring at each place. In our experiments, we discretize
the counts into four categories: count = 0, count = 1, 2 ≤ count ≤ 3, and count
≥ 4. Then for each combination of type of place, type of activity, and frequency
category, we have an indicator feature.

1. Input: GPS trace 〈g1, g2, . . . , gT 〉
2. i := 0

3. // Generate activity segments and evidence by grouping GPS readings`
〈a1, . . . , aN 〉, 〈e1

1, . . . , e
E
1 , e1

2, . . . , e
E
N 〉

´
:= spatial segmentation(〈g1, . . . , gT 〉)

4. // Generate CRF containing activity and local evidence nodes
CRF0 := instantiate crf

`
〈 〉, 〈a1, . . . , aN 〉, 〈e1

1, . . . , e
E
N 〉

´
5. // Determine MAP sequence of activities

a∗0 := MAP inference(CRF0)

6. do

7. i := i + 1

8. // Generate places by clustering significant activities
〈p1, . . . , pK〉i := generate places(a∗i−1)

9. // Generate complete CRF with instantiated places
CRFi := instantiate crf

`
〈p1, . . . , pK〉i, 〈a1, . . . , aN 〉, 〈e1

1, . . . , e
E
N 〉

´
10. // Perform MAP inference in complete CRF

〈a∗i ,p∗i 〉 := MAP inference(CRFi)

11. until a∗i = a∗i−1

12. return 〈a∗i ,p∗i 〉

Table 1: Algorithm for jointly inferring significant places and activities.

• A person usually has only a limited number of different homes or work places. To
use this knowledge to improve labeling places, we add two additional summation
cliques that count the number of different homes and work places. These counts
provide soft constraints that bias the system to generate interpretations that result
in reasonable numbers of different homes and work places. The features are
simply the counts, which make the likelihood of labelings decrease exponentially
as the counts increase.

Note that the above two types of features can generate very large cliques in the CRF.
This is because we must build a clique for all the activities at a place to count the
frequencies of activities, and connect all the place nodes to count the number of homes
or workplaces. In [13] we show how such features can be computed efficiently, even
for large cliques.

Place Detection and Labelling Algorithm

The CRF discussed so far assumes that the location and number of a person’s signif-
icant places is known in advance. Since these places are not known, it is necessary
to additionally infer the structure of the hierarchical CRF shown in Figure 3. Table 1
summarizes our algorithm for efficiently constructing this CRF. The algorithm takes
as input a GPS trace. In Step 3, this trace is segmented into activity nodes ai. Each
such node is characterized by local evidence ej

i , which is extracted from the GPS
readings associated to it. As discussed above, segmentation of a trace is performed
by either clustering consecutive GPS readings that are nearby or associating the GPS

trace to a discretized street map using the CRF shown in Figure 2. The activity nodes
and their evidence are then used in Step 4 to generate a CRF such as the one shown
in Figure 3. However, since significant places are not yet known at this stage, CRF0

contains no place nodes. Maximum a posteriori inference is then performed in this
restricted CRF so as to determine the MAP activity sequence a∗0, which consists of
a sequence of locations and the activity performed at that location (Step 5). Within
each iteration of the loop starting at Step 6, such an activity sequence is used to
extract a set of significant places. This is done by classifying individual activities in
the sequence according to whether or not they belong to a significant place. For in-
stance, while walking, driving a car, or riding a bus are not associated with significant
places, working or getting on or off the bus indicate a significant place. All instances
at which a significant activity occurs generate a place node. Because a place can be
visited multiple times within a sequence, we perform clustering and merge duplicate
places into the same place node. This classification and clustering is performed by
the algorithm generate places(), which returns a set of K place nodes pk in Step 8.
These places, along with the activity nodes ai and their local evidence ej

i are used to
generate a complete CRF. Step 10 performs MAP estimation in this new CRF. Since
this CRF has a different structure than the initial CRF0, it might generate a different
MAP activity sequence. If this is the case, then the algorithm returns to Step 6 and
re-generates the set of places using this improved activity sequence. This process
is repeated until the activity sequence does not change, which is tested in Step 11.
Finally, the algorithm returns the MAP activity sequence along with the set of places
and their MAP types. In our experiments we observed that this algorithm converges
very quickly, typically after three or four iterations. Our experiments also show that
this algorithm is extremely efficient and robust.

3.3 Inference

In this section we will provide an overview of inference techniques for CRFs. We will
use x to denote observations and y to denote hidden states. Given a set of observations,
inference in a CRF can have two tasks: to estimate the marginal distribution of each
hidden variable, or to estimate the most likely configuration of the hidden variables
(i.e., the maximum a posteriori, or MAP, estimation). Both tasks can be solved under
a framework called belief propagation (BP), which works by sending local messages
through the graph structure of the model. The BP algorithm was originally proposed
in the context of Bayesian networks [20], and was formulated equivalently in models
such as factor graphs [8] and Markov networks (including CRFs) [25]. BP generates
provably correct results if the graph has no loops, such as trees or polytrees [20]. If
the graph contains loops, in which case BP is called loopy BP, then the algorithm is
only approximate and might not converge to the correct probability distribution [16].

Without loss of generality, we only describe the BP algorithm for pairwise CRFs,
which are CRFs that only contain cliques of size two. We will briefly discuss how
to use BP in non-pairwise CRFs in the last paragraph of this section. Before running
the inference algorithm in a pair-wise CRF, it is possible to remove all observed
nodes x by merging their values into the corresponding potentials; that is, a potential
φ(x,y) can be written as φ(y) because x is fixed to one value. Therefore, the only

potentials in a pair-wise CRF are local potentials, φ(yi), and pair-wise potentials,
φ(yi, yj). Corresponding to the two types of inference problems, there are two types
of BP algorithms: sum-product for marginal estimation and max-product for MAP
estimation.

Sum-product for marginal estimation
In the BP algorithm, we introduce a “message” mij(yj) for each pair of neighbors
yi and yj , which is a distribution (not necessarily normalized) sent from node i to
its neighbor j about which state variable yj should be in. The messages propagate
through the CRF graph until they (possibly) converge, and the marginal distributions
can be estimated from the stable messages. A complete BP algorithm defines how to
initialize messages, how to update messages, how to schedule the message updates,
and when to stop passing messages.

• Message initialization: All messages mij(yj) are initialized as uniform distri-
butions over yj .

• Message update rule: The message mij(yj) sent from node i to its neighbor j is
updated based on local potentials φ(yi), the pair-wise potential φ(yi, yj), and all
the messages to i received from i’s neighbors other than j (denoted as n(i) \ j).
More specifically, for sum-product, we have

mij(yj) =
∑
yi

φ(yi)φ(yi, yj)
∏

k∈n(i)\j

mki(yi) (7)

• Message update order: The algorithm iterates the message update rule until it
(possibly) converges. At each iteration, it usually updates each message once,
where the update order might affect the convergence speed.

• Convergence conditions: To test whether the algorithm converged, BP measures
the difference between the previous messages and the updated ones. The con-
vergence condition is met when all the differences are below a given threshold
ε.

In the sum-product algorithm, after all messages are converged, it is easy to calculate
the marginals of each node and each pair of neighboring nodes as

b(yi) ∝ φ(yi)
∏

j∈n(i)

mji(yi) (8)

b(yi, yj) ∝ φ(yi)φ(yj)φ(yi, yj)
∏

k∈n(i)\j

mki(yi)
∏

l∈n(j)\i

mlj(yj) (9)

The above algorithm can be applied to any topology of pair-wise CRFs. When the
network structure does not have a loop (for example, when it is a tree), the obtained
marginals are guaranteed to be exact. When the structure has loops, the BP algorithm
usually cannot obtain exact marginals, or it may even not converge. Fortunately,
empirical experiments show that loopy belief propagation often converges to a good
approximation of the correct posterior.

Max-product for MAP estimation
We denote the messages sent in the max-product algorithm as mmax

ij (yj). The whole
algorithm of max-product is very similar to sum-product, except that in the message
update rule summation is replaced by maximization. The new rule becomes

mmax
ij (yj) = max

yi

φ(yi)φ(yi, yj)
∏

k∈n(i)\j

mmax
ki (yi). (10)

We run the max-product algorithm in the same way as for sum-product. After the
algorithm converges, we calculate the MAP belief at each node yi as

b(yi) ∝ φ(yi)
∏

j∈n(i)

mmax
ji (yi). (11)

If there is a unique MAP configuration y∗, then the components of y∗ are simply the
most likely values according to the MAP belief (11).
So far, we explained the two BP algorithms in the context of pairwise CRFs. For
non-pairwise CRFs, there is a standard way to convert them to pairwise ones [25].
Intuitively, this conversion generates a new node for each clique of size greater than
two. The state space of the new node consists of the joint state of the nodes it was
generated from. Thus, the complexity of belief propagation is exponential in the
number of nodes in the largest clique of the CRF.

In our application, the summation (or counting) features could introduce large
cliques containing up to 30 nodes. Standard belief propagation would be intractable
for such cliques. Fortunately, it is posbbile to convert cliques generated for summation
features to tree-structured CRFs. In such structures, BP inference can be done in
polynomial time, and for sum-product it is even possible to apply the Fast Fourier
Transform (FFT) to further speed up message passing (see [13] for details).

3.4 Parameter Learning

The goal of parameter learning is to determine the weights of the feature functions
used in the conditional likelihood (4). CRFs learn these weights discriminatively, that
is, the weights are determined so as to maximize the conditional likelihood p(y|x) of
labeled training data. This is in contrast to generative learning, which aims to learn
a model of the joint probability p(y,x). Ng and Jordan [17] present a discussion
and comparison of these two learning regimes, concluding that discriminative learn-
ing asymptotically reaches superior performance but might require more training
examples until its performance converges.

Maximum Likelihood (ML) Estimation
As can be seen in (4), given labeled training data (x,y), the conditional likelihood
p(y|x) only depends on the feature weights wc. In the derivation of the learning
algorithm it will be convenient to re-write (4) as

p(y | x,w) =
1

Z(x)
exp

{∑
c∈C

wT
c · fc(xc,yc)

}
(12)

=
1

Z(x,w)
exp{wT · f(x,y)), (13)

where w and f are the vectors resulting from “stacking” the weights and the feature
functions for all cliques in the CRF, respectively. In order to make the dependency
on w more explicit, we write the conditional likelihood as p(y|x,w). A common
parameter estimation method is to search for the w that maximizes this likelihood, or
equivalently, that minimizes the negative log-likelihood,− log p(y|x,w) [10, 24, 14].
To avoid overfitting, one typically imposes a so-called shrinkage prior on the weights
to keep them from getting too large. More specifically, we define the objective function
to minimize as follows:

L(w) ≡ − log p(y | x,w) +
wT w
2σ2

(14)

= −wT · f(x,y) + log Z(x,w) +
wT w
2σ2

(15)

The rightmost term in (14) serves as a zero-mean, Gaussian prior with variance σ2

on each component of the weight vector. (15) follows directly from (14) and (13).
While there is no closed-form solution for maximizing (15), it can be shown that (15)
is convex relative to w. Thus, L has a global optimum which can be found using
numerical gradient algorithms. It can be shown that the gradient of the objective
function L(w) is given by

∇L(w) = −f(x,y) + EP (y′|x,w)[f(x,y′)] +
w
σ2

(16)

where the second term is the expectation over the distribution P (y′ | x,w). There-
fore, the gradient is the difference between the empirical feature values f(x,y) and
the expected feature values EP (y′|x,w)[f(x,y′)], plus a prior term. To compute the
expectation over the feature values it is necessary to run inference in the CRF us-
ing the current weights w. This can be done via belief propagation as discussed in
the previous section. Sha and Pereira [23] showed that numerical optimization algo-
rithms, such as conjugate gradient or quasi-Newton techniques, typically converge
reasonably fast to the global optimum.

Maximum Pseudo-Likelihood (MPL) Estimation
Maximizing the likelihood requires running an inference procedure at each iteration
of the optimization, which can be very expensive. An alternative is to maximize the
pseudo-likelihood of the training data [3], which is the sum of all the local likelihoods,
p(yi | MB(yi)), where MB(yi) is the Markov blanket of variable yi containing the
immediate neighbors of yi in the CRF graph (note that the value of each node is
known during learning). The pseudo-likelihood can be written as

n∑
i=1

p(yi | MB(yi),w) =
n∑

i=1

1
Z(MB(yi),w)

exp{wT · f(yi, MB(yi))}, (17)

where f(yi, MB(yi)) are the local feature values involving variable yi, and
Z(MB(yi),w) =

∑
y′

i
exp{wT · f(y′

i, MB(y′
i))} is the local normalizing func-

tion. Computing pseudo-likelihood is much more efficient than computing likelihood

p(y|x,w), because pseudo-likelihood only requires computing local normalizing
functions and avoids computing the global partition function Z(x,w).

As with ML, in practice we minimize the negative log-pseudo-likelihood and a
shrinkage prior, and the objective function becomes

PL(w) ≡ −
n∑

i=1

log p(yi | MB(yi),w) +
wT w
2σ2

(18)

=
n∑

i=1

(−wT · f(yi, MB(yi)) + Z(MB(yi),w)) +
wT w
2σ2

(19)

Again, PL(w) is a convex function and it is possible to use gradient-based
algorithms to find the w that minimizes PL(w). The gradient can be computed as

∇PL(w)=
n∑

i=1

(
−f(yi, MB(yi)) + EP (y′

i|MB(yi),w)[f(y
′
i, MB(yi))]

)
+

w
σ2

. (20)

As we can see, (20) can be expressed as the difference between empirical feature
values and expected feature values, similar to (16). However, the key difference is
that (20) can be evaluated very efficiently without running a complete inference
procedure. Learning by maximizing pseudo likelihood has been shown to perform
very well in several domains [9, 22]. In our experiments we found that this type
of learning is extremely efficient and consistently achieves good results. The reader
may notice that this technique cannot be used for inference, since it assumes that the
hidden states y are known.

Parameter Sharing
The definition of the weight vector and its gradient described above does not support
parameter sharing, which requires the learning algorithm to learn the same parameter
values (weights) for different cliques in the CRF. For instance, the conditional like-
lihood (5) of the CRF described in Section 3.2 only contains three different weights,
one for each type of feature. The same weight wm is used for each clique containing
a street patch node st and a GPS reading node gt. To learn such kinds of models,
one has to make sure that all the weights belonging to a certain type of feature are
identical. As it turns out, the gradients with respect to such shared weights are almost
identical to the gradients (16) and (20). The only difference lies in the fact that the
gradient for a shared weight is given by the sum of all the gradients computed for the
individual cliques in which this weight occurs [24, 14].

Parameter sharing can be modeled conveniently using probabilistic relational
models such as relational Markov networks [24, 14]. These techniques allow the
automatic specification and construction of CRF models using so-called clique tem-
plates, which enable the specification of parameter sharing for inference and learning.

4 Experimental Results
In our experiments we evaluate how well our system can extract and label a person’s
activities and significant places. We also demonstrate that it is feasible to learn models
from data collected by a set of people and to apply this model to another person.

We collected GPS data traces from four different persons, approximately six
days of data per person. The data from each person consisted of roughly 40,000
GPS measurements, resulting in about 10,000 10m segments per person. We then
manually labeled all activities and significant places in these traces. We used leave-
one-out cross-validation for evaluation, that is, learning was performed based on the
data collected by three persons and the learned model was evaluated on the fourth
person. We used pseudo-likelihood for learning, which took (on a 1.5 GHz PC) about
one minute to converge on the training data. Pseudo-likelihood converged in all our
experiments. We did not use loopy belief propagation for learning since it did not
always converge (even after several hours). This is most likely due to the fact that
the approximation of this algorithm is not good enough to provide accurate gradients
for learning. However, we successfully used loopy BP as inference approach in all
our evaluation runs. For each evaluation, we used the algorithm described in Table 1,
which typically extracted the MAP activities and places from one week’s trace within
one minute of computation. When a street map was used, the association between
GPS trace and street map performed in Step 3 of the algorithm took additional four
minutes (see also Section 3.2).

Example analysis
The different steps involved in the analysis of a GPS trace are illustrated in Figure 4.
The second panel (b) shows the GPS trace snapped to 10m patches on the street map.
This association is performed by Step 3 of the algorithm given in Table 1, using the
CRF shown in Figure 2. The visited patches, along with local information such as
time of day or duration, are used to generate the activity CRF. This is done by Step
4 in Table 1, generating the activity level of Figure 3. MAP inference in this CRF
determines one activity for each patch visit, as shown in panel (c) of Figure 4 (Step 5
of the algorithm). Note that this example analysis misses the get-off-bus activity at the
left end of the bus trip. The significant activities in the MAP sequence are clustered
and generate additional place nodes in a new CRF (Steps 8 and 9 in Table 1). MAP
inference in this CRF provides labels for the detected places, as shown in Figure 4(d).
The algorithm repeats generation of the CRFs until the MAP activity sequence does
not change any more. In all experiments, this happens within four iterations.

Figure 5(a) provides another example of the quality achieved by our approach
to snapping GPS traces to street maps. Note how the complete trace is snapped
consistently to the street map. Table 2 shows a typical summary of a person’s day
provided by the MAP sequence of activities and visited places. Note that the system
determines where the significant places are, how the personx moves between them,
and what role the different places play for this person.

Extracting significant places
In this experiment we compare our system’s ability to detect significant places to
the results achieved with a widely-used approach that applies a time threshold to
determine whether or not a location is significant [1, 7, 12, 14]. Our approach was
trained on data collected by three people and tested on the fourth person. For the
threshold method, we generated results for different thresholds from 1 minute to 10

(a)

(b)

(c)

(d)

Fig. 4. Illustration of inference on part of a GPS trace, which visited this 4km x 2km area
several times. (a) The raw GPS data has substantial variability due to sensor noise. (b) GPS
trace snapped to 10m street patches, multiple visits to the same patch are plotted on top of each
other. (c) Activities estimated for each patch. (d) Places generated by clustering significant
activities, followed by a determination of place types.

Time Activity and transportation

8:15am - 8:34am Drive from home1 to parking lot2, walk to workplace1;
8:34am - 5:44pm Work at workplace1;
5:44pm - 6:54pm Walk from workplace1 to parking lot2, drive to friend3’s place;
6:54pm - 6:56pm Pick up/drop off at friend3’s place;
6:56pm - 7:15pm Drive from friend3’s place to other place2;
7:15pm - 9:01pm Other activity at other place2;
9:01pm - 9:20pm Drive from other place2 to friend1’s place;
9:20pm - 9:21pm Pick up/drop off at friend1’s place;
9:21pm - 9:50pm Drive from friend1’s place to home1;
9:50pm - 8:22am Sleep at home1.

Table 2. Summary of a typical day based on the inference results.

(a)
0 10 20 30 400

2

4

6

8

10

Fa
ls

e
ne

ga
tiv

e

False positive

1 min

3 min
5 min

10 min Threshold method
Our model

(b)

Fig. 5. (a) GPS trace (gray circles) and the associated grid cells (black circles) on the street
map (lines). (b) Accuracy of extracting significant places.

minutes. The data contained 51 different significant places. Figure 5(b) shows the
false positive and false negative rates achieved with the two approaches. As can seen,
our approach clearly outperforms the threshold method. Any fixed threshold is not
satisfactory: low thresholds have many false negatives, and high thresholds result in
many false positives. In contrast, our model performs much better: it only generates
4 false positives and 3 false negatives.

Labeling places and activities using models learned form others
Table 3 and Table 4 summarize the results achieved with our system on the cross-
validation data. Table 3 shows activity estimation results on the significant activities
only. An instance was considered a false positive (FP) if a significant activity was
detected when none occurred, and was considered false negative (FN) if a significant
activity occurred but was labeled as non-significant such as walking. The results are
given for models with and without taking the detected places into account. More
specifically, without places are results achieved by CRF0 generated by Step 5 of
the algorithm in Table 1, and results with places are those achieved after model
convergence. When the results of both approaches are identical, only one number is
given; otherwise, the first number gives results achieved with the complete model.
The table shows two main results. First, the accuracy of our approach is quite high,
especially when considering that the system was evaluated on only one week of

Inferred labels
Truth Work Sleep Leisure Visit Pickup On/off car Other FN

Work 12 / 11 0 0 / 1 0 0 0 1 0
Sleep 0 21 1 2 0 0 0 0

Leisure 2 0 20 / 17 1 / 4 0 0 3 0
Visiting 0 0 0 / 2 7 / 5 0 0 2 0
Pickup 0 0 0 0 1 0 0 2

On/Off car 0 0 0 0 1 13 / 12 0 2 / 3
Other 0 0 0 0 0 0 37 1

FP 0 0 0 0 2 2 3 -

Table 3. Activity confusion matrix of cross-validation data with (left values) and without (right
values) considering places for activity inference.

data and was trained on only three weeks of data collected by different persons.
Second, performing joint inference over activities and places increases the quality of
inference. The reason for this is that a place node connects all the activities occurring
in its spatial area so that these activities can be labeled in a more consistent way.

These results were generated when taking a street map into account. We also
performed an analysis of the system without using the street map. In this case, the
GPS trace was segmented into 10m segments solely based on the raw GPS values.
We found that the results achieved without the street map were consistently almost
identical to those achieved when a street map is available. In both cases, our system
achieved above 90% accuracy for navigation activities such as car, walk, or bus, and
above 85% accuracy in estimating significant activities.

Inferred labels
Truth Work Home Friend Parking Other FN

Work 5 0 0 0 0 0
Home 0 4 0 0 0 0
Friend 0 0 3 0 2 0
Parking 0 0 0 8 0 2
Other 0 0 0 0 28 1

FP 0 0 1 1 2 -

Table 4. Place confusion matrix.

The confusion matrix shown in Table 4 summarizes the results achieved on
detecting and labeling significant places. As can be seen, the approach commits zero
errors in labeling the home and work locations of the persons (one person had two
work places). The overall accuracy in place detection and labeling is 90.6%. The
place detection results were identical with and without using a street map.

5 Conclusions
We provided a novel approach to performing location-based activity recognition.
In contrast to existing techniques, our approach uses one consistent framework for

both low-level inference and the extraction of a person’s significant places. This is
done by iteratively constructing a hierarchical conditional random field, where the
upper level is generated based on MAP inference on the lower level. Once a complete
model is constructed, we perform joint inference in the complete CRF. Discriminative
learning using pseudo-likelihood and inference using loopy belief propagation can be
performed extremely efficiently in our model: The analysis of a GPS trace collected
over a week takes approximately one minute on a standard desktop PC.

Our experiments based on traces of GPS data show that our system significantly
outperforms existing approaches. In addition to being able to learn a person’s signif-
icant locations, it can infer low level activities such as walking, working, or getting
into a bus. We demonstrate that the model can be trained from a group of persons and
then applied successfully to a different person, achieving more than 85% accuracy in
determining low-level activities and above 90% accuracy in detecting and labeling
significant places. Our model achieves virtually identical accuracy both with and
without a street map. The output of our system can also be used to generate textual
summaries of a person’s daily activities.

The system described here opens up various research directions. For instance, our
algorithm constructs the hierarchical CRF using MAP estimation. We are currently
investigating a technique that generates multiple models using an MCMC or a k-best
approach. The different models can then be evaluated based on their overall data
likelihood. We expect this more flexible model searching approach to generate better
results especially in more complex scenarios. We are currently adding more types of
sensors to our model, including data collected by a wearable multi-sensor board [11].
This sensor device collects measurements such as 3-axis acceleration, audio signals,
barometric pressure, and light. Using the additional information provided by these
sensors, we will be able to perform extremely fine-grained activity recognition.

Acknowledgments
The authors would like to thank Jeff Bilmes for useful comments. This work has partly been
supported by DARPA’s ASSIST and CALO Programme (contract numbers: NBCH-C-05-0137,
SRI subcontract 27-000968) and by the NSF under grant number IIS-0093406.

References

1. D. Ashbrook and T. Starner. Using GPS to learn significant locations and predict movement
across multiple users. Personal and Ubiquitous Computing, 7(5), 2003.

2. M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion patterns of people
for compliant robot motion. International Journal of Robotics Research, 24(1), 2005.

3. J. Besag. Statistical analysis of non-lattice data. The Statistician, 24, 1975.
4. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Easyliving: Technologies for

intelligent environments. Handheld and Ubiquitous Computing, 2000.
5. H.H. Bui, S. Venkatesh, and G. West. Tracking and surveillance in wide-area spatial

environments using the abstract hidden markov model. International Journal of Pattern
Recognition and Artificial Intelligence, 15(1), 2001.

6. K. Gopalratnam, H. Kautz, and D. Weld. Extending continuous time bayesian networks.
In Proc. of the National Conference on Artificial Intelligence (AAAI), 2005.

7. R. Hariharan and K. Toyama. Project Lachesis: parsing and modeling location histories.
In Geographic Information Science, 2004.

8. F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 2001.

9. S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework
for contextual interaction in classification. In Proc. of the International Conference on
Computer Vision (ICCV), 2003.

10. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. of the International Conference on
Machine Learning (ICML), 2001.

11. J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discriminative-
generative approach for modeling human activities. In Proc. of the International Joint
Conference on Artificial Intelligence, 2005.

12. L. Liao, D. Fox, and H. Kautz. Learning and inferring transportation routines. In Proc. of
the National Conference on Artificial Intelligence (AAAI), 2004.

13. L. Liao, D. Fox, and H. Kautz. Location-based activity recognition. In Advances in Neural
Information Processing Systems, 2005.

14. L. Liao, D. Fox, and H. Kautz. Location-based activity recognition using relational Markov
networks. In Proc. of the International Joint Conference on Artificial Intelligence, 2005.

15. A. McCallum. Efficiently inducing features of conditional random fields. In Proc. of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2003.

16. K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proc. of the Conference on Uncertainty in Artificial Intelligence
(UAI), 1999.

17. A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes. In Advances in Neural Information Processing Systems, 2002.

18. D. Patterson, O. Etzioni, D. Fox, and H. Kautz. Intelligent ubiquitous computing to
support Alzheimer’s patients: Enabling the cognitively disabled. In UbiCog ’02: First
International Workshop on Ubiquitous Computing for Cognitive Aids, 2002.

19. D. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson, S. Wang, D. Fox, and
H. Kautz. Opportunity Knocks: a system to provide cognitive assistance with transporta-
tion services. In International Conference on Ubiquitous Computing, 2004.

20. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., 1988.

21. A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object recognition.
In Advances in Neural Information Processing Systems, 2004.

22. M. Richardson and P. Domingos. Markov logic networks. Technical report, Department
of Computer Science and Engineering, University of Washington, Seattle, WA, 2004.
Conditionally accepted for publication in Machine Learning.

23. F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc. of Human
Language Technology-NAACL, 2003.

24. B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational
data. In Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI), 2002.

25. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Exploring Artificial Intelligence in the New
Millennium, chapter Understanding Belief Propagation and Its Generalizations. Morgan
Kaufmann Pub, 2001.

