
The user interface as an agent environment

Robert St. Amant
Department of Computer Science

North Carolina State University
EGRC-CSC Box 7534

Raleigh, NC 27695-7534

stamant@csc.ncsu.edu

Luke S. Zettlemoyer
Department of Computer Science

North Carolina State University
EGRC-CSC Box 7534

Raleigh, NC 27695-7534

lszettle@eos.ncsu.edu

ABSTRACT
Theoretically motivated planning systems often make as-
sumptions about their environments, in areas such as the

predictability of action e�ects, static behavior of the envi-
ronment, and access to state information. We �nd a striking
correspondence between these assumptions and the proper-
ties of graphical user interfaces. We have developed a novel
type of interface agent, called an ibot, to exploit these cor-

respondences. Ibots can interact with o�-the-shelf applica-
tions through the user interface rather than programmati-
cally, gaining access to functionality not readily available to
arti�cial agents by other means. In this paper we describe
the relationship between these agents and the theoretical
and heuristic properties of user interfaces. We demonstrate

the feasibility of our approach to interface agents with an
implemented prototype that interacts with an unmodi�ed
application for graphical illustration.

1. INTRODUCTION
As the sophistication of interactive applications has grown,
so has the complexity of problems we attempt to solve with
them. Enter agents. Interface agents are designed to help

with problems that are too large, complex, or mundane for
users to solve alone [22, 21]. This paper focuses on a class of
interface agent we call interface softbots, or ibots, [39, 40].
Unlike the current generation of interface agents, an ibot
controls an interactive system through its graphical user in-
terface, as human users do, without relying on an applica-

tion programming interface (API) or access to source code.
We have developed a programmable substrate that provides
sensors, e�ectors, and skeleton controllers for this interac-
tion. Sensor modules take pixel-level input from the display,
run the data through image processing algorithms, and build
a structured representation of visible interface objects. Ef-

fector modules generate mouse and keyboard gestures to
manipulate these objects. These sensors and e�ectors act as

the eyes and hands of an arti�cial user, controlled by a plan-
ning component. Together the sensor, e�ector and controller
components provide a general-purpose means of managing

interactive applications, through the same medium as a real
user.

We have two practical motivations for building ibots. First,
in modern graphical user interfaces we often encounter what
we might call \visually incompetent" interface agents: one

agent blinks and �dgets in the corner of the screen, drawing
attention away from the user's work; another raises dialog
boxes that obscure important information on the screen; an-
other o�ers suggestions for straightforward actions that it is
unable to carry out itself. It is clear that such agents have lit-
tle conception of the complex visual environment they share

with users, and their contribution to the interaction su�ers
for it. By working directly in this environment, an ibot
has no choice but to leverage its capabilities and respect
its limitations. The other point is a development issue for
agents that assist in the use of problem-solving tools. Com-
mercial applications are tailored to interaction with human

users, and often do not accommodate the activities of an
agent-based assistant through an application programming
interface. To provide a foundation for the contribution of
the assistant, developers commonly build research systems
that replicate much of the basic problem-solving functional-
ity of o�-the-shelf interactive software, simply because it is

otherwise inaccessible through programmatic means. Ibots
can solve this problem by integrating their behavior into
existing, familiar environments.

We also have strong research motivations for exploring the

possibilities of ibots. Cognitive modeling researchers have
long treated the user interface as a useful surrogate for the
real world. Their work has been hampered, however, by the
operational distance between cognitive simulations and real
user interfaces [5, 4]. We have recently developed a low-
level model based on ibot technology that bridges this gap.

The system contains a coarse computational model of vi-
sion, from low-level region segmentation to high-level object
recognition, and a rudimentary model of motor behavior. In
our current work the system is helping us to extend existing
cognitive models to di�erent interface domains and to test
their ecological validity on real-world applications.

The second research motivation provides the focus for this

paper. We have observed a striking similarity between the

assumptions planning systems commonly make about their
environments, on the one hand, and the properties imposed
on an environment by interface design guidelines, on the
other [32]. Control is one example. If the environment can
change only through an agent's actions, and remains static
otherwise, problem solving is facilitated signi�cantly. This

desirable environmental property is re
ected in the classi-
cal planning assumption of the absence of exogenous events,
those that can occur outside the agent's volition. It is sim-
ilarly re
ected in the HCI guideline that the conventional
interface must not initiate actions but rather respond to the
user's commands as a tool [6, 37]. This ideal of user/planner

control is so well-entrenched that in both HCI and plan-
ning the terms \action" and \event" are used interchange-
ably [15].

This is just one of many such correspondences. These rela-
tionships suggest that the user interface could play the role

of a general-purpose testbed for planning agents: planners
often abstract away the continuous, uncertain, dynamic,
and unobservable properties of an environment, such that
it becomes discrete, deterministic, static, and accessible|
properties associated with broad classes of modern graphical
user interfaces. Given the sensors and e�ectors provided by

ibot technology, and an appropriate set of domain-speci�c
operators, a planning agent might gain access to a great deal
of existing functionality now available to users but generally
not considered accessible to agents.

The goal of this paper is to make a detailed argument for
the feasibility and appropriateness of the user interface as
an agent environment. (For conciseness, throughout this
paper we refer to the interactive software environment of
an interface agent|operating system interface, applications,
utilities|generically as the user interface.) In past work

we have informally discussed the construction and applica-
tion of ibots; here we put a more detailed foundation under
this work. In the next section we describe the user inter-
face as an agent environment, giving an overview of formal
and heuristic models of user interfaces and their consistency
with environmental properties that simplify agent behav-

ior. The section that follows describes a simple hierarchical
planning architecture for ibot agents that relies on these ob-
servations, and an implemented prototype that uses an un-
modi�ed application, Adobe Illustrator, to create and ma-
nipulate formatted text and simple graphics. We end with a
brief discussion of connections between this paper and work

in interaction and agency.

2. THE USER INTERFACE AS AN AGENT
ENVIRONMENT

Human-computer interaction research and arti�cial intelli-
gence research have close historical ties, going back at least
as far as Newell and Simon's Human Problem Solving [25].
We see this relationship, for example, in HCI problem space
representations based on goals and actions [17], and the no-
tion of the user as a rational problem-solving agent [9]. Here

we lay out some of the core properties of modern user inter-
faces and show how they correspond to familiar constraints

P E
I

R

D

Figure 1: The red-pie model

on the search space of actions and plans for an agent in its
environment. Our discussion draws from a broad literature
on modeling user interaction, in particular taxonomies of de-

sign guidelines [6, 16, 30] and formal mathematical models
of user interaction [11, 12].

2.1 Formal models of the interface
One of the most extensively analyzed formal models of user
interfaces is Dix's pie model [11, 12]. A user interface is

modeled as a triple (P; I; E), where P is a set of sequences
(programs) whose elements are taken from some �nite set of
commands C; E is the e�ects space, the external results of
executing programs; I : P ! E is the interpretation func-
tion, which represents system computation. In other words,
the user's commands are viewed as a stream of discrete in-

puts to the model. Each input causes some internal state
change, or interpretation of the command, and the result
appears as the e�ect of this interpretation. The red-pie ex-
tends the basic pie model by separating the result R, which
may involve only internal state changes, from the external
display D, as shown in Figure 1.

In each of the paragraphs below we describe a speci�c prop-
erty or re�nement of the model and explain how it is re-

ected in real user interfaces and the design guidelines in-
tended to produce them. We then discuss the implications

for planning agents and their interaction with the interface.

It should be clear that the properties we describe do not
apply to all interactive systems. They are intended to fa-
cilitate human problem solving for speci�c types of tasks.
Games are a good example of applications that do not fall

into the same class of systems. Game design often intention-
ally imposes barriers to easy use: some information may be
hidden from the user; scenes may change too quickly for hu-
man reactions; even the goals of playing the game may not
be clear. These applications are beyond the scope of our
work. Nevertheless our observations will apply to a large

class of common productivity applications, and provide a
good starting point for agent behavior.

Discreteness. The pie model represents input to an in-
terface as a sequence of discrete values; in search terms we
can similarly represent interaction with an interface as the
traversal of a discrete state space.

This property is easy to see in real interfaces: keyboard and

mouse gestures are discrete, and mouse movements are usu-
ally to speci�c objects or locations. There are exceptions,

such as free-form drawing in graphics applications, but the

discreteness property applies to almost all common user ac-
tions in large classes of interactive applications.

The same observation extends to the visual properties of the
interface. Visual design guidelines promote a highly struc-
tured arrangement of discrete objects [23]. Window borders

partition information. Interactive objects almost always
have distinct borders, setting them apart from the back-
ground and each other. By design, interfaces support the
e�cient recovery of information through their visual struc-
ture [36]. Discrete, easily recognized objects are a large part
of this e�ciency.

Accessibility. In an accessible system, state information
is directly available to the user. In the pie formalism, this

is managed by de�ning a function transparent between the
display D and the result R, such that in a fully transpar-
ent system, a user can obtain all information about the the
e�ect of an action by applying the transparency function
(through some hypothetical mental activity) to the display.
Full transparency is feasible, however, only for extremely

simple applications, such as a desk calculator without mem-
ory. Even in the simplest word processor, for example, not
all the text in a document of moderate size can be viewed at
once, nor can it be inferred. This problem is addressed by
observation strategies. User interfaces are not fully trans-
parent; instead they provide mechanisms for making infor-

mation observable or inferrable. Scrolling makes o�screen
text visible; a paste action (followed by an undo) shows the
contents of the cut/paste bu�er; preference settings become
visible with a menu selection.

One of the basic design guidelines for direct manipulation

systems is to make relevant objects and actions continuously
visible [30]. In other words, a good interface makes available
all information relevant to the decision-making process.

The implication for agent behavior is that information rele-
vant to a given decision will almost always be accessible in

the current state in a well-designed user interface. If it is not
immediately acessible it will be available through the appli-
cation of one of a small number of observation strategies.
This limits the amount of inference required of an agent to
build an internal model of its environment.

Stasis. A static interactive system does not change simply
with the passage of time, but instead only when the user
takes a non-null action in it [29]. The pie model is de�ned

such that the only changes to the interface are responses
to input from P , and that input consists only of actions
initiated by the user. After taking an action, the user waits
until the system reaches quiescence before taking another.
This leads to Dix's description of modern user interfaces as
\event in, status out" [11, p. 242].

Two design guidelines promote the steady state interface:
perceived stability and user control. The perceived stabil-
ity guideline entails that the user should be able to depend
on stability (e.g., visual layout) as time passes [6]. Further,

many designers hold that users should exercise nearly com-

plete control over the user interface; this is one of the de�n-
ing characteristics of direct manipulation [30]. In practice,
this degree of control and stability is not always present.
Exogenous events may occur in some circumstances. For
example, some interfaces will dynamically produce a noti-
�cation on the arrival of mail or the change in the status

of a network connection. (In applications for collaborative
work, as with games, exogenous events are integral to their
functionality.) Nevertheless in many applications event oc-
currences are of well-de�ned types and can be dealt with by
simple, �xed strategies, as with accessing state information;
often such events can be safely ignored.

In planning terms, this simply means that the agent controls
state transitions. Exogenous events are rare and can be
handled in a straightforward way.

Determinism. pies are explicitly deterministic; I is de-
�ned to return a single value for each input from P . Dix
identi�es a number of scenarios for which a non-deterministic
function IND may be appropriate (e.g., to model unpre-

dictable system timing in returning results), but yet again
these can be abstracted away by simple strategies (e.g., wait-
ing and polling the system until a response occurs to account
for timing variation.) From a design perspective, this issue is
re
ected in a variety of guidelines, most clearly in the prop-
erty of consistency, especially procedural consistency [6].

Consistency can be described in terms of matching users'
expectations: the same action taken under a well-de�ned
set of conditions should always produce the same e�ect.

The implication for agent behavior is that actions with de-
terministic e�ects can be e�ective in this environment. Tied

to the accessibility and stasis properties of interfaces, an in-
terface agent can expect to have full state information at the
execution of an action, and that its e�ect will be predictable.

2.2 Heuristic design guidelines
In addition to mathematical models of the interface, a large
number of less formal approaches attempt to capture prop-
erties of the interaction of users with the interface. HCI re-

searchers, most notably those who build task analysis mod-
els, have worked with practitioners to produce a rich set of
guidelines that impose structure on user interaction. These
guidelines can also inform the design of an interface agent
in signi�cant ways.

Hierarchical problem decomposition. User interfaces
rely heavily on a divide and conquer approach to problem
solving. For example, in a graphical application of any com-

plexity, the user will activate menu items to create informa-
tion structures, manipulate their properties, and so forth.
Some of these menu selections will not result in an imme-
diate e�ect. Instead the user will be shown a dialog box
with more information about the desired option. The user
completes the task, relying on local information and actions,

and then returns to the main interface. One guideline asso-
ciated with this style of problem solving is that tasks should

be separated to allow their independent execution [16]. This

facilitates incremental problem solving in which one task is
brought to completion before the next is begun.

Bottom-up problem solving. Hix and Hartson, in their

discussion of designing interactive systems that support hier-
archical task execution, advocate that goals be satis�able in
bottom-up fashion, with intermediate solutions constructed
and combined opportunistically at higher levels [16]. This
can be seen in the prescription of non-modal behavior for
user interfaces. For example, in a drawing application graph-

ical objects can be selected in any order for a group opera-
tion, and in a word processor the typeface and size properties
of text can be modi�ed independently, in either order. In
most applications that allow wide user latitute in selecting
operations (wizards and some drawing applications being

notable exceptions), the system does not enter into states
that require a strict sequential ordering of solution compo-
nents.

Short solution length. Hix and Hartson further em-
phasize the importance of giving users frequent closure on
tasks [16]. This means that users should never encounter
long sequences of actions toward a goal without some indi-
cations of progress along the way.

These design guidelines have useful and interrelated impli-
cations for agent interaction. Planning will be e�ective, es-
pecially hierarchical planning, if the plans of the agent can
map to the behavior of the interface environment. Subgoal
interactions will be minimal. The downward solution prop-

erty will generally hold: solutions generated at an abstract
level will decompose to solutions at the primitive level; goals
in the interface will be independent, or at least block serial-
izable [20]. All of these points, along with those in the pre-
vious section, suggest that the user interface is a tractable

environment for a planning agent. Even given the strong
restrictions on plan representation in planning research to-
day [34, 35], and the recognized complexities of modern user
interfaces, we might expect an agent to be able to solve prob-
lems in such an environment.

3. AN IBOT ARCHITECTURE
We have developed an interface agent architecture that ex-

ploits the properties of the user interface environment, in
two parts. At the higher level we have a controller based on
a hierarchical planning extension to UCPOP, a conventional
partial-order planner [26].1 The lower level comprises a set
of image processing and event management modules that

support direct interaction between plan operators and user
interface widgets. We call this latter subsystem VisMap,
for \visual manipulation." The architecture is shown in Fig-
ure 2.

1Using UCPOP was a matter of programming convenience;
we needed a Lisp-based planner that could reliably handle
universal quanti�cation in preconditions and e�ects. Unfor-
tunately, no Graphplan-based system [7], such as SGP [3],
currently meets these requirements.

Sensors Effectors

Image
processing

Controller Interface

User interface

User Controller

Event
management

DataControl

Figure 2: An ibot architecture

3.1 The controller level
UCPOP acts as the core planner in a very simple hierar-

chical plan generation/execution system; it is di�cult to
think of a simpler (or more limited) extension of partial or-
der planning to hierarchical planning. The extended planner
processes decomposition operators in addition to standard
planning operators. A decomposition speci�es an action to

be decomposed, its parameters, a goal form, and a domain.

In plan generation, the core planner is invoked as usual to
generate a \
at" plan to satisfy a top level goal. When a
plan has been generated, its actions are executed in the in-
terface, and its e�ects are used to update an internally main-

tained state representation that tracks the interface. The
execution of actions in the interface is governed by procedu-
ral methods. For example, one common interface action is
moving to a menu header icon, such as the Edit menu. The
action (move-to-action Edit-header) is tied to a proce-
dure that looks up the symbol Edit-header in a table to

retrieve the string \Edit", then searches for that string in
an internally maintained representation of text visible on
the screen. Screen locations and other data are retrieved
similarly.

Some actions are associated with decomposition operators.

When such an action is encountered during plan execution,
the core planner is reinvoked with the goal and domain speci-
�ed by the decomposition. The system recursively generates
and executes plans across abstraction levels (and domains)
until the planning process is complete. Thus, for example,

the selection of interface actions, such as the Edit menu icon
or the Cut menu item, is distinct from the selection of ob-
jects, such as a box in a drawing package, each task associ-
ated with di�erent properties. More than one object can be
selected at one time, but only one action; action selection is
not persistent. In the top level domain, only abstract object

and action selection operators are represented. The execu-
tion of each such operator results in a recursive call to the

(define (domain UI-top-level-domain)
(:action select-object

:parameters (?object)
:precondition (screen-object ?object)
:effect
(and (:forall (?other)

(when (neq ?other ?object)
(not (object-selected ?other))))

(object-selected ?object)))
(:decomposition select-object-decomposition

:action select-object
:parameters (?object)
:goal (object-selected ?object)
:domain UI-object-domain)

(:action select-action
:parameters (?action)
:precondition (action ?action)
:effect
(:forall (?object)

(when (object-selected ?object)
(action-on-object ?action ?object))))

. . .)

(define (problem create-header)
(:domain UI-top-level-domain)
(:goal (and (action-on-object Font... text)

(action-on-object Size-24pt text)))
;; Symbol bindings within controller interface
(:init ((application application)

(object-selected NULL-OBJECT)
(pointer-over START-POSITION)
(text text)
(position text-position)
(visible Type)
(control-object TEXT-MODE)

(cascaded Type Size)
(cascaded Size Size-24pt)
(action Size-24pt)
(cascaded Type Font)
(cascaded Font Font-Braggadocio)
(action Font-Braggadocio)
. . .)))

Figure 3: Interface domain and problem statement

core planner with the appropriate domain. At each of these
recursive calls, the system reprocesses the information on
the screen. Because of the static and deterministic proper-
ties of the interface, this turns out to be the only time (aside
from ubiquitous menu selection operations) that the system
needs to resynchronize its internal representation with the

interface.

A small number of critics locally re�ne the plan as it exe-
cutes. In the current system, the only action possible to a
critic is a mouse movement, to restore a state after a subgoal

has been satis�ed and the hierarchical process returns.

Let's consider an actual example, for concreteness. Part of
our top-level domain for action in the user interface is shown
in Figure 3. This domain is one of several; the operators in
all domains include the following (decomposition operators

marked with an asterisk): raise application, select object*,
drag object, grow object*, add select object, select action*,

> (hierarchical-plan :problem 'create-header)
. . . enter-text

move-to-position ((190 . 100))
select-mode

move-to-object (text-mode)
select-control-object (text-mode)

move-to-position ((190 . 100)) *
activate-text-entry ((190 . 100))
type-string ("The Ibot Report")
deactivate-text-entry ("The Ibot Report")

select-action
move-to-action ("Type")
cascade ("Type" "Size")
move-to-action ("Size")
cascade ("Size" "24pt")
move-to-action ("24pt")
select-visible-action ("24pt")

select-action
move-to-action ("Type")
cascade ("Type" "Font")
move-to-action ("Font")
cascade ("Font" "Braggadocio")
move-to-action ("Braggadocio")
select-visible-action ("Braggadocio")

Figure 4: Solution trace

enter text*, move to object, move object handle, select visi-
ble object, select control object, move to action, move to po-
sition, select visible action, cascade, select mode*, activate
text entry, type string, deactivate text entry, set parameter,

complete dialog.

The sequence of events is as follows. Given the goal of gener-
ating a string of text, \The Ibot Report," in a speci�c loca-
tion on a page within Adobe Illustrator, the system identi�es
the drawing region and the starting point for the text. It

moves the mouse pointer to the text toolbar icon and se-
lects it; it then moves to the starting point and enters the
string. The goal also includes a speci�c typeface and and
font size for the text. This is accomplished by appropriate
selections from the \Type" menu. The solution generated
by the planner is given in Figure 4.

At this point the system stops. The user examines the re-
sult, decides that the look is not exactly right, and changes
both the typeface and the size of the text. The system is
reactivated at this point with a new goal, that of putting an
appropriately sized box to the left of the text. By analyzing

the altered text, the system can make the desired change;
the system is able to both control the application and ob-
serve its state to make incremental changes (e.g., growing
objects or moving them around.) The �nal result is shown
in Figure 5.

As can be seen from the solution trace, these are straightfor-
ward procedures, though not trivial. The planner can carry
out a variety of larger tasks with comparable complexity
in this interface. The approach we have outlined, however,
would be extremely naive for problem solving in general, in

the real world. In many ways the controller is similar to
and perhaps even less sophisticated than microworld prob-

Figure 5: Illustrator results

lem solvers. As we have argued, however, there is strong
evidence that current planning technology will be adequate
for problem solving in the user interface. Deterministic oper-
ators are not a di�culty because of the predictability of the
environment. Uncertainty about state information is not an
issue because of the environment's accessibility properties.

The constrained hierarchical structure of action in the in-
terface means that the planner can solve problems without
considering complex subgoal interactions. Finally, we are
incorporating a modern planner into the system to replace
the current core planner. Modern planners outpace UCPOP
by one or two orders of magnitude [35], and thus we expect

scalability not to be an issue.

3.2 The interface manipulation level
The VisMap substrate is responsible for handling mouse
and keyboard manipulations as well as image processing
of screen information, at the programmatic interface with
primitive plan operators.

VisMap contains an event management module that acts as
a simple motor system. It inserts events into the operating
system's event queue, the result being indistinguishable from
the actions of the user. These events include move-mouse,
mouse-down, mouse-up, key-down, and key-up. By combin-
ing sequences of these events and focusing their locations to

speci�c visual instances, the module realizes the primitive
operators passed to it by the planner, for selecting icons,
clicking buttons, pulling down menus, and so forth.

Complementing the e�ector module is an image processing
module, which acts as a coarse, three-level model of vision.

In the low-level stage, the module performs edge detection
and a degenerate form of motion analysis to segment the
screen into regions. In the intermediate stage, feature de-
scriptions are attached to each region that describe its in-
ternal structure and relationships with other regions. In the

high-level stage, a restricted form of object recognition is
performed. This stage identi�es sets of segmented regions
based on their feature descriptions as high-level objects or
speci�c visual patterns. These provide state information for
the planner and necessary guidance for event management.

The image processing module contains 29 feature computa-
tion functions and 80 interpretation rules of the types shown

Operation GetArea()
MaxPixels = GetWidth() * GetHeight()
Area = ActualPixels()/MaxPixels
Return Area

If object Obj is a downArrow()
and Obj is containedIn() object RB

such that RB is a raisedButton()
and RB is toTheRightOf() object RTA

such that RTA is a rectangularTextArea()
and RTA is recessed()

and has width() > height()
Then Obj is a component of a dropBox

Figure 6: A feature computation and an interpreta-

tion rule

in Figure 6. The system recognizes all the common user
interface controls in the Windows user interface: buttons,
scroll bars (including the scroll box, scroll arrows, and back-

ground regions), list boxes, menu items, check boxes, radio
buttons and application windows. The system also performs
a simple pattern matching form of optical character recog-
nition for the standard Windows typeface, which allows for
text processing.

4. RELATED WORK
Our approach to agent/interface interaction can be some-
what unintuitive; a software engineer might ask, \Why do

you bother with the visual interface|screen scraping|when
you could go through an API?" Several answers are possi-
ble [33, 39], but the most important is that we are inter-
ested in understanding the complexities of the interaction
of an agent with an environment, including motor, percep-
tual, and cognitive issues. Working at the user interface level

instead of with APIs, we we can directly address interaction
issues, we gain signi�cant generality across applications, and
many of our �ndings will have practical and theoretical im-
plications for both interface agents and human users [32].
The user interface acts as a rich and yet manageable labora-
tory in which we can examine realistic problems identical to

those faced by human users. This has made it an attractive
domain for other researchers in intelligent user interfaces,
agent-based systems, and cognitive modeling.

In programming by demonstration, or PBD, a system records
actions performed by the user and infers a generalized pro-

gram that can be later used in analogous situations [10].
triggers was an early PBD e�ort that explored the possi-
bility of using the visible user interface for input [27]. The
user de�nes condition/action pairs, called triggers, by step-
ping through a sequence of actions in an application, adding

annotations when necessary. At each step triggers per-
forms pattern matching on screen pixels to infer informa-
tion that is otherwise unavailable to a non-embedded agent.
By generalizing from visible changes to the state of the in-
terface, the system creates programs that can perform such
visually-oriented tasks as adding converting text to a bold

typeface, surrounding a text �eld with a rounded rectangle
in a drawing program, and comparable activities.

While triggers concentrated on taking input from the in-

terface, other agents have tackled the complementary prob-
lem of controlling their external environment. Lieberman's
agents, for example, control applications with operating sys-
tem events that act as metaphorical marionette strings [21].
Lieberman's work has also identi�ed some of the important
design issues involved in this approach, which include the

granularity of event protocols, appropriate styles of interac-
tion with the user, and user/agent control considerations.

triggers and related systems embody the idea that the vis-
ible interface is a powerful source of information for an agent,
if it can be properly interpreted [33]. Cognitive modeling re-

searchers have adopted the same idea, but from a di�erent
perspective, in the form of programmable user models [28,
38]. PUMs are engineering models of human users; they
can generate empirical data on how visual information is
processed in simulated and real application interfaces. This
concentration on the interaction of a PUM (a cognitively

plausible agent) with the visual properties of a user inter-
face has driven a number of recent advances in computa-
tional cognitive modeling [4, 19].

Perhaps the most interesting connection is to work on inter-
action and agency [1]. One of our central concerns is with

what Agre calls the convergence method for agent design, a
concentration on the mutual relationship between the agent
and its environment rather than only on its internal process-
ing [2]. Our exploitation of the properties of the interface is
reminiscent of Kirsh's observations about how the e�cient

use of space can reduce search [18], and especially Hammond
et al.'s techniques for environment stabilization [14]. Rather
than relying on extensive memory and processing capabili-
ties, an agent might actively modify (stabilize) the environ-
ment such that its properties facilitate problem solving. In
the case of the user interface, some of the techniques dis-

cussed above could be considered forms of pre-stabilization.
Of course, the key to stabilization is the agent's direct ac-
tions at runtime, rather than the environment designer's
e�orts; more of the
avor of stabilization is captured by the
layer-by-layer artifact construction and customizable tool-
bars supported by some software. Ibots are not yet able to

use interactive applications as cognitive tools in this way, as
people do, but this is an important direction for our work.

5. CONCLUSION
To recap, we have described a type of agent that interacts
directly with the user interface, and identi�ed a number
of ways that constraints on agent processing are accommo-
dated by theoretical and practical properties of the interface.
We have implemented a planner that exploits this relation-

ship and demonstrated its feasibility with a small example in
an unmodi�ed commercial application. Other ibot domains
include an agent that plays a competent game of Microsoft
Solitaire, an application with non-standard icons, inaccessi-
ble source code, and no API [39]. We have also developed
a simple tool for usability analysis [40], a research tool for

novel interface gestures [13], and an assistant for graphical
design.

Our planner and substrate are works in progress and still

have signi�cant limitations. The substrate can only pro-
cess characters in a single typeface, for example, which lim-
its its breadth. While it recognizes all standard interface
widget types, actually using them is another issue. Those
that require tight feedback, such as for scrolling through a
document, are not yet handled well. The recognition and

manipulation of application-speci�c objects (e.g., imported
images in a drawing package) is limited, and the system has
no ability to learn new patterns.

Two other important limitations, at the planner level, deal
with user interaction and the development of domains to

match complex applications. There is no shared control with
the user, strictly speaking, in this framework; the planner is
invoked with some goal, runs to completion, and can then
be reinvoked. An ideal system would operate in a mixed-
initiative fashion, with control shifting
exibly between the
user and the planner [8, 24, 31]. Domain development is

another important point: the planner is only as e�ective as
its operators, and these are limited in the current system
to symbol manipulations. For more sophisticated behavior,
especially in drawing applications, some form of spatial rea-
soning will be necessary.

Addressing all of these concerns is part of our current work.

6. ACKNOWLEDGMENTS
This paper bene�ted greatly from the comments of two anony-
mous reviewers.

7. REFERENCES
[1] P. Agre and S. Rosenschein, editors. Computational

Theories of Interaction and Agency. MIT Press, 1996.

[2] P. E. Agre. Computational research on interaction and
agency. Arti�cial Intelligence, 73(1{52), 1995.

[3] C. Anderson, D. Weld, and D. Smith. Conditional
e�ects in graphplan. In Proceedings of the Fourth
International Conference on Arti�cial Intelligence
Planning Systems, 1998.

[4] J. Anderson and C. Lebiere. The Atomic Components
of Thought. Lawrence Erlbaum, 1998.

[5] J. R. Anderson, M. Matessa, and S. Douglass. The

ACT-R theory and visual attention. In Proceedings of
the Seventeenth Anual Conference of the Cognitive
Science Society, pages 61{65, Hillsdale, NJ, 1995.
Lawrence Erlbaum Associates.

[6] Apple Computer. Macintosh Human Interface
Guidelines. Apple Computer, Inc., 1992.

[7] A. Blum and M. Furst. Fast planning through

planning graph analysis. Arti�cial Intelligence,
90:281{300, 1997.

[8] M. H. Burstein and D. V. McDermott. Issues in the

development of human-computer mixed initiative
planning. In B. Gorayska and J. L. Mey, editors,

Cognitive Technology: In Search of a Humane
Interface, pages 285{303. Elsevier Science, 1996.

[9] S. K. Card, T. P. Moran, and A. Newell. The
psychology of human-computer interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1983.

[10] A. Cypher, editor. Watch What I Do: Programming
by Demonstration. MIT Press, 1993.

[11] A. J. Dix. Formal Methods for Interactive Systems.
Academic Press, San Diego, 1993.

[12] A. J. Dix, J. E. Finlay, G. D. Abowd, and R. Beale.
Human-Computer Interaction. Prentice Hall, 2nd
edition, 1998.

[13] M. S. Dulberg, R. St. Amant, and L. Zettlemoyer. An

imprecise mouse gesture for the fast activation of
controls. In INTERACT '99, pages 375{382, 1999.

[14] K. J. Hammond, T. M. Converse, and J. W. Grass.

The stabilization of environments. Arti�cial
Intelligence, 72(305{327), 1995.

[15] J. Hendler, A. Tate, and M. Drummond. Ai planning:
Systems and techniques. AI Magazine, pages 61{77,
Summer 1990.

[16] D. Hix and H. R. Hartson. Developing User Interfaces.
John Wiley & Sons, New York, 1993.

[17] D. E. Kieras. Towards a practical GOMS model
methodology for user interface design. In M. Helander,
editor, Handbook of Human-Computer Interaction,
pages 135{157. North-Holland, 1988.

[18] D. Kirsh. The intelligent use of space. Arti�cial
Intelligence, 73(31{68), 1995.

[19] M. Kitajima and P. G. Polson. A
comprehension-based model of exploration.
Human-Computer Interaction, 12(4):345{389, 1997.

[20] R. E. Korf. Planning as search: A quantitative
approach. Arti�cial Intelligence, 33:65{88, 1987.

[21] H. Lieberman. Integrating user interface agents with
conventional applications. In Proceedings of the Fourth
International Conference on Intelligent User
Interfaces, 1998.

[22] P. Maes. Agents that reduce work and information
overload. Communications of the ACM, 37(7):31{40,
July 1994.

[23] K. Mullet and D. Sano. Designing Visual Interfaces:
Communication Oriented Techniques. Sunsoft Press,
1995.

[24] K. L. Myers. Abductive completion of plan sketches.

In Proceedings of the Fifteenth National Conference on
Arti�cial Intelligence, pages 867{893. AAAI Press,
1997.

[25] A. Newell and H. Simon. Human Problem Solving.
Prentice Hall, 1972.

[26] J. Penberthy and D. S. Weld. UCPOP: A sound,

complete, partial order planner for ADL. In
Proceedings of the Third International Conference on
Knowledge Representation and Reasoning, pages
103{114. Morgan Kaufmann Publishers, Inc., 1992.

[27] R. Potter. Triggers: Guiding automation with pixels
to achieve data access. In A. Cypher, editor, Watch
What I Do: Programming by Demonstration, pages
361{382. MIT Press, 1993.

[28] C. Runciman and N. Hammond. User programs: A

way to match computer systems and human cognition.
In Proceedings of the HCI'86 Conference on People
and Computers II, pages 464{481, 1986.

[29] S. Russell and P. Norvig. Arti�cial Intelligence: A
Modern Approach. Prentice-Hall, Inc., 1995.

[30] B. Shneiderman. Designing the user interface:
strategies for e�ective human-computer interaction.
Addison-Wesley Publishing Company, 1998.

[31] R. St. Amant. Navigation and planning in a

mixed-initiative user interface. In Proceedings of the
Fifteenth National Conference on Arti�cial
Intelligence, pages 64{69. AAAI Press, 1997.

[32] R. St. Amant. User interface a�ordances in a planning
representation. Human Computer Interaction,
14(3):317{354, 1999.

[33] R. St. Amant, H. Lieberman, R. Potter, and L. S.
Zettlemoyer. Visual generalization in programming by
example. Communications of the ACM, March 2000.

To appear.

[34] D. S. Weld. An introduction to least commitment
planning. AI Magazine, 15(4):27{61, Winter 1994.

[35] D. S. Weld. Recent advances in ai planning. AI
Magazine, 1999. To appear.

[36] D. D. Woods. The cognitive engineering of problem
representations. In G. R. S. Weir and J. L. Alty,
editors, Human Computer Interaction and Complex
Systems, pages 169{188. Academic Press, 1991.

[37] D. D. Woods and E. M. Roth. Cognitive systems
engineering. In M. Helander, editor, Handbook of
Human-Computer Interaction, pages 3{43.
North-Holland, 1988.

[38] R. M. Young, T. R. G. Green, and T. Simon.
Programmable user models for predictive evaluation of
interface designs. In Proceedings of the CHI'89
Conference, pages 15{19, 1989.

[39] L. Zettlemoyer and R. St. Amant. A visual medium
for programmatic control of interactive applications.

In CHI '99 (ACM Conference on Human Factors in
Computing), pages 199{206, 1999.

[40] L. Zettlemoyer, R. St. Amant, and M. S. Dulberg.
Ibots: Agent control through the user interface. In
Proceedings of the Fifth International Conference on
Intelligent User Interfaces, pages 31{37, 1999.

