A Procedural Model of
Language Understanding

Terry Winograd
Massachusetts Institute of Technology

Much of the research on language is based on an attempt to separate it into distinct
components—components that can then be sfiidied independently. Modern syn-
tactic theoreticians have been tremendously successful at setting up complex rules
which describe in detail the possible orderings of syntactic constituents; at the
same time other researchers are trying to define semantic relations and to model
the cognitive structures underlying language use.

Most attempts to model language understanding on the computer have followed
this strategy of dealing with a single component of language. They are constructed
primarily as a syntactic program (Kuno, 1965), a model of semantic connections
(Schank, 1971), or an attempt to model the memory structures (Quillian, 1967).

Question-answering systems have had to deal with the entire language process,
but they have been severely limited in the breadth of their language ability. The
only attempt to handle large portions of language data was the machine translation
effort, and it soon became obvious that the methods were not up to the requirements
of the task. Language translation could not be treated as a problem of rearranging
syntactic structures and words, because attention to meaning was required even to
achieve moderately acceptable results.

One basic limitation of those programs that have tried to handle the problems of
meaning is that they have dealt almost exclusively with the understanding of single

sentences, when in fact almost no human use of language takes place in such an
artificial setting. We are always in a context, and in that context we make use of
what has gone on to help interpret what is coming. Much of the structure of language
comes from its being a process of communication between an intelligent speaker
and hearer, occurring in a setting. The setting includes not only a physical situation
and a topic of discourse, but also the knowledge each participant has about the
world and the other’s ideas.

This paper describes an attempt to explore the interconnections between the
different types of knowledge required for language understanding. It is based on a
computer program that “understands” language in a limited domain by including
a model of the subject being talked about and a context of discourse. As an example
of the interactions between the different sorts of knowledge the system must have,
let us look first at the use of pronouns.

Our syntactic knowledge of English enables us to know that in the sentence
“Arthur wants to see him,” the word ‘him’ must refer to someone other than Arthur
(otherwise we would have used "himself”"). In “*Arthur wants somebody to see him,”
“him” might or might not refer to Arthur. The distribution of reflexive pronouns
like “himself”’ depends in a complex way on the syntactic structure of the sentences
in which they appear, and a language understander must have this knowledge. As a
semantic fact, we know that “him’’ must refer to something which the speaker is
characterizing as animate and male.

At another level, we know that the referent is likely to occur in the preceding
sentence, or earlier in the sentence being interpreted, that it is more likely to refer
to the topic or the subject of the previous sentence, and is much more likely to refer
to a major constituent than to one deeply embedded in the structure. This type of
heuristic. knowledge about the organization of discourse also plays a part in our
understanding.

Finally, there is a level based on knowledge of the world. In the sentence ““Sam
and Bill wanted to take the girls to the movies, but they didn‘t have any money,”
we understand “they” as referring to Sam and Bill. This doesn’t involve syntactic
or general semantic knowledge, but depends on our knowledge of our social culture.
When someone takes someone else to the movies, it is the inviter who pays, and it
is his or her financial situation that is relevant.

Whenever we look into realistic language use, these types of interaction play a
large role, not only with pronouns, but in deciding on the structures of sentences
and meanings of individual words as well. We assign different structures to sen-
tences like “He gave the house plants to charity,” and ‘‘He gave the boy plants to
water,” on the basis of our syntactic and semantic knowledge. Even the most com-
mon words have multiple meanings, and we must bring a variety of facts to bear in
deciding, for example, the meaning of “had” in “Mary had a little lamb, but I pre-
ferred the baked lobster.”

In discourse, people take advantage of a variety of mechanisms that depend on
the existence of an intelligent hearer who will use all sorts of knowledge to fill in
any necessary information.

6b7 Surpuejsidpun) aenSue jo [apopy [empadoxg

In making a computer model of language use, this presents a serious problem. On
the one hand, it is impossible to isolate one aspect of language from the others, or
to separate a person’s use of linguistic knowledge from his use of other knowledge.
On the other hand, it is clearly folly at this point to think of giving the program all
the knowledge a person brings into a conversation. In our program, we choose to
resolve the dilemme by picking a tiny bit of the world to talk about. Within this
mini-world, we can give the computer a deep kind of knowledge, including the
equivalent of “Who would pay for a movie?”

The subject chosen was the world of a toy robot with a simple arm. It can manip-
ulate toy blocks on a table containing simple objects like a box. In the course of a
dialogue, it can be asked to manipulate the objects, doing such things as building
stacks and putting things into the box. It can be questioned about the current con-
figurations of blocks on the table, about the events that have gone on during the
discussion, and to a limited extent ebout its reasoning. It can be told simple facts
which are added to its store of knowledge for use in later reasoning. The conversation
goes on within a dynamic framework —one in which the computer is an active par-
ticipant, doing things to change his toy world, and discussing them.

The program was written in LISP on the PDP-10 ITS time-sharing system of the
Artificial Intelligence Laboratory at MIT.* It displays a simulated robot world on a
television screen and converses with a human on a teletype. It was not written for
any particular use with a real robot and does not have a model of language based on
peculiarities of the robot environment. Rather, it is precisely by limiting the subject
matter to such a small area that we can address the general issues of how language
is used in a framework of physical objects, events, and a continuing discourse.

The programs can be roughly divided into the three domains mentioned above:
There is a syntactic parser which works with a large-scale grammar of English; there
is a collection of semantic routines that embody the kind of knowledge needed to
interpret the meanings of words and structures; and there is a cognitive deductive
system for exploring the consequences of facts, making plans to carry out commands
and finding the answers to questions. There is also a comparatively simple set of
programs for generating appropriate English responses.

In designing these pieces, the main emphasis was on the interaction of the three
domains. The form in which we want to state a syntactic theory or a type of deduc-
tion must take into account the fact that it is only & part of a larger system. One of
the most useful organizing principles was the representation of much of the knowl-
edge as procedures. Many other theories of language state their rules in a form
modelled on the equations of mathematics or the rules of symbolic logic. These are
static rules that do not explicitly describe the process involved in using them, but
are instead manipulated by some sort of uniform deduction procedure. By writing
special languages suited to the various types of knowledge (semantic, syntactic,
deductive), we are able to preserve the simplicity of these systems. This is accom-

“For more details on the entire system, see Winograd (1972). The actual program is written
in LISP, occupies about 100K of storage on the PDP-10, and operates in approximately real
time, responding to & sentence in an average of 10 or 15 seconds.

plished by putting the knowledge in the form of programs in which we can explicitly
express the connections between the different parts of the system's knowledge, thus
enriching their possibilities for interaction. ,

The rest of this chapter illustrates the capabilities of the system and explains in
some detail how it works. The second section presents a sample of a dialogue with
the program, along with comments describing some of the features being demon-
strated. The third section gives a closer view of the program itself, and the final
section discusses some of its basic limitations.

Sample Dialogue

This section contains a sample dialogue with the Hm:wcmmm.csmmamﬁm:awcm system.
This system carries out actions and answers questions about a simple scene con-
taining a table, hand, and box, and several blocks and pyramids. The numbered
lines in lower case were typed in by & person, and the lines in upper case are the
computer’s response. Other lines are comments describing some of the features
being exhibited. a

The dialogue was carried out in real time with the response of the “robot” dis-
played on a television screen. Figures are included to show the state of the scene
at various points.

1. pick up a big red block.

0K.

The system answers “OK” when it carries out a command. In order to pick up
the red block, it had to clear it off by finding a space for the green one and moving
the green one away. The initial situation is shown in Figure 4.1, and the result in
Figure 4.2,

2. grasp the pyramid.

I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

There are three pyramids in the scene, and the program knows that phrases be-
ginning with “the” are intended to refer to a specific object the speaker has in mind.

3. find a block which is taller than the one you are holding and put it into the box.

The system has to figure out what is meant by “one” and “it,” as well as using
deduction to decide which block it is holding.

uonejardiaguy oppuewag g6z

red

Figure 4.1 The Physical Environment of the Robot.

=
BY "IT," I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN
THE ONE I AM HOLDING.

There were two possible referents for *'it”: the one selected, and *‘the one you are
holding.” The program has heuristics for choosing between them.

0K.

The hand has to set down the red block to pick up the taller blue one. Figure 4.3
shows the result of the system’s manipulations so far.

4. what does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

.

|

Figure 4.2 “Pick up a big red block.”

5. what is the pyramid supported by?

Earlier the system responded to *‘the pyramid by saying**I DON' T UNDERSTAND
WHICH PYRAMID YOU MEAN. " Now, it assumes that we mean the one just mentioned.

THE BOX.

1Sz Surpueisiapup aden3ue jo japoy [empadorg

Figure 4.3 “Find a block which is taller than the one you are holding and put it
into the box."”

6. how many blocks are not in the box?

Negatives such as “*not” and “no” are handled whether they appear in clauses
or noun groups {such as “no boxes").

FOUR OF THEM.

7. Is at least one of them narrower then the one which i told you to pick up?

The phrase “at least one of them” must be analyzed to refer back to the previous
question, and “the one which . . .” must also refer to blocks. Noun groups can have

complicated numbers such as “at least one,” “more than three,” “exactly seven,”
etc. The memory of past events is used to deduce which block is “the one which I
told you to pick up.” Notice the complicated syntactic structure in which “the one”
is actually the object of a clause embedded two levels deeper. The parser incorpo-
rates a grammar that handles this kind of complexity in a general way.

YES, THE RED CUBE.
8. is it supported?

YES, BY THE TABLE.

The system has heuristics about what information is relevant to a person who
asks a question, even if he does not request that information specifically.

9. can the table pick up blocks?
3

NO.

The semantic rules include the knowledge that “picking up” must be done by
an animate object, and that the table is not animate.

10. can a pyramid be supported by a block?

YES.
The deductive system finds an actual example, so it knows this is possible.

11. can a pyramid support a pyramid?

I DON'T KNOW.

The question makes sense, but there is no example in the scene. The system has
no way of looking into the details of its programs, even though these ultimately
define its capabilities.

12. stack up two pyramids.

I CAN'T.

The robot tries and fails.

uonejndidyug opyuewag zgy

13. the blue pyramid is mine.

I UNDERSTAND.

All of the information about colors, shapes, sizes and locations of the objects is
known to the program initially. Possession is left as an unknown property of objects
about which it can be told. It stores this information in its data base.

14. i own all blocks which are not red, but i don’t own anything which supports
a pyramid.

I UNDERSTAND.

The result of understanding these sentences is the creation of new procedures
within the robot for deducing whether 1 own something,.

15. do i own the box?

NO.
The box supports whatever it contains, including a pyramid.

16. do i own anything in the box?
X

YES, TWO THINGS: THE BLUE BLOCK AND THE BLUE PYRAMID.

17. will you please stack up both of the red blocks and either a green cube or a
pyramid?

OK.

Logical connectives, such as ““and,” *“‘or,” “‘either,” etc., are handled in both the
grammar and semantics. A command is executed even if it looks like a question. The
command is carried out by the following series of steps: It puts a green cube on the
large red block (it chooses the green cube with nothing on it), then removes the small
pyramid from the little red cube, so that it can use that cube to complete the stack
as specified, resulting in what is described in Figure 4.4.

18. which cube is sitting on the table?

THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

Figure 4.4 "Will you please stack up both of the red blocks and either a green cube
or a pyramid.”

Ordinarily the system would be satisfied with calling this “a big green cube,”
but since we asked “which cube” it has to be more specific in naming it. It has
procedures for using substitute nouns (such as “one’’) and pronouns in answers
to make the discourse more natural.

19. is there a large block behind a pyramid?

YES, THREE OF THEM! A LARGE RED ONE, A LARGE GREEN CUBE AND
THE BLUE ORE.

€67 Surpuesiapup) a8enSue jo [9pOIN [eMMPIdOI]

20. put a small one onto the green cube which supports @ pyramid.

“A small one” must contrast with the person's earlier phrase "“a large block,”
so this means “a small block.”

0K.

21. put the littlest pyramid on top of it.

Words like “littlest” are not in the dictionary but are interpreted from the root
forms like “little.” The program compares the sizes of all the pyramids to carry out
the action.

OK.
22. how many things are on top of green cubes?

I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF" IN THE PHRASE
"ON TOP OF GREEN CUBES"

DO YOU MEAN:

1 - DIRECTLY ON THE SURFACE

2 - ANWHERE ON TOP OF?

In the previous sentence, the phrase “on top of” was interpreted without trouble
because the context made it clear what was meant. In this one, the heuristics for
disambiguation do not come up with a clearcut decision, so the system has to ask
the user for more information. The paraphrases were included with the dictionary
definition of “on.” A request like this can also occur when the meaning of a pronoun
such as “it"” or “they” is unclear.

23. had you touched any pyramid before you put the green one on the little cube?

YES, THE GREEN ONE.

The system deduces from its memory what event is being referred to, and can
relate other events to it in time. The analysis includes complex tenses of verb groups,
and there are special facilities for keeping track of the various forms of irregular
verbs like ““have.”

24. when did you pick it up?

WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK
AND A LARGE GREEN CUBE.

A time is described by naming the main goal which was being worked on.
25. why?

The system remembers immediately previous sentences to understand questions
like this and the following ones.

TO GET RID OF IT.

By keeping track of selected parts of the original subgoal tree, the system has
some understanding of its own-*notives.

26. why did you do that?

TO CLEAN OFF THE RED CUBE.

“That” refers to the action mentioned in the system’s last answer.
27. why did you clear off that cube?

Here, “that” means the one just referred to.

TO PUT IT ON A LARGE GREEN CUBE.
28. why did you do that?

TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE GREEN
CUBE.

29. why did you do that?

BECAUSE YOU ASKED ME TO.

It remembers what it did, not how the request was worded.

uonejardidju] dyurwag HSg

30. how did you do it?
“It" refers to the action mentioned in the last question, rather than the answer.

BY PUTTING A LARGE RED BLOCK ON THE TABLE; THEN LETTING GO

OF IT; THEN PUTTING A LARGE GREEN CUBE ON IT; THEN LETTING GO
OF THAT CUBE; THEN PUTTING THE RED CUBE ON THAT CUBE; THEN
LETTING GO OF THAT CUBE.

This is a description of the top-level subgoals used to achieve the goal.
31. how many objects did you touch while you were doing it?
Time references can refer to a time span, using words like “while.”

FOUR OF THEM.
32. what did the red cube support before you started to clean it off?

THE GREEN PYRAMID.

By remembering what has been moved, it is possible to deduce things about
earlier states of the scene. We can use complex nestings of clauses like ““before you
started to clean it off.”

33. there were five blocks to the left of the box then.
*“Then” must refer to the time mentioned in the last sentence.

NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES
AND A LARGE RED BLOCK.

Earlier in the dialogue, information about “owning” was accepted at face value.
But the system knows that it has complete information about the basic properties
of objects, including location. It checks any statements about these to see whether
it agrees or disagrees.

34. put the blue pyramid on the block in the box.

This is syntactically ambiguous, but is understood without ambiguity since the
parsing corresponding to “put the blue pyramid which is on the block into the box”
does not make sense in the current scene, whereas “put the blue pyramid onto the
block which is in the box" does.

OK.

35. is there anything which is bigger than every pyramid but is not as wide as the
thing that supports it?

[”

The system understands quantifiers such as “every,” “any,” “some,” etc., and
structures such as “‘bigger than”, “as wide as,” etc. Here “it" refers to a noun group
within the same sentence but two levels up in the parsing tree.

YES, THE BLUE BLOCK.

36. does a steeple

SORRY, I DON'T KNOW THE WORD "STEEPLE".

The system interrupts immediately when it sees a word it doesn't know.

37. a“steeple” is a stack which contains two green cubes and a pyramid.

The quote marks indicate that we are defining a new word. The definition is
added to the dictionary in a form compatible with all the words it already knows.

I UNDERSTAND.

38. are there any steeples now?

NO.

The new definition is used as a description to recognize steeples.

39. build one.

OK.

66z Surpuejsiapup) adenSue Jo [PPoN [empadorg

The description given in the definition is enough to deduce a plan for building
new objects as well as recognizing them. The word “one’’ means ““a steeple,” and
the plan is carried out. First, one of the large green cubes is cleared off by removing
the red cube and two pyramids. Then the two green cubes and the tall red pyramid
are stacked up to fit the description.

40. call the biggest block “superblock.”

OK.

We can also give objects names.

41. have you picked up superblock since we began?
YES.
42. why did you drop it?

BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.
I CAN'T EXPLAIN A NON-EXISTENT EVENT.

There is no record in memory of any block being dropped. The answer routines
have special checks for this type of “loaded question” which presupposes things
which aren’t true.

43. is there anything to the right of the red pyramid?

YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE PYRAMID
AND THE BLOCK NAMED SUPERBLOCK.

Once an object has a name, the name is used to help identify it in responses.

44. thank you.

YOU'RE WELCOME!

The grammar is written as a procedure, which gives it the capability to carry out
special sorts of parsing for idioms.

Details of the Model

In this section we go into some detail about the various parts of the language un-
derstanding program and its operation. This type of analysis is important for under-
standing any computer model, since the surface appearance of its output can be
deceptive. A program may succeed by carefully choosing the problem it will attack,
so that some simple special-purpose solution will work. ELIZA (Weizenbaum, 1964)
and STUDENT (Bobrow, 1967) are examples of programs which give impressive
performances owing to a severe and careful restriction of the kind of understanding
they try to achieve. If a model is to be of broader significance, it must be designed
to cover a large range of the things we mean when we talk of understanding. The
principles should derive from an attempt to deal with the basic cognitive structures.

On the other hand, it is possible to devise abstract ideas of the logical structure of
language—ideas which seem in theory to be applicable. Often, such systems, al-
though interesting mathematically, are not valid as psychological models of human
language, since they have not concerned themselves with the operational problems
of a mental procedure. They often include types of representation and processes
which are highly implausible, and which may be totally inapplicable in complex
situations because their very nhture implies astronomically large amounts of pro-
cessing for certain kinds of computations. Transformational grammar and resolution
theorem proving (Green, 1968) are examples of such approaches.

The Representation of Meaning

Our program makes use of a detailed world model, describing both the current state
of the blocks world environment and its knowledge of procedures for changing that
state and making deductions about it. This model is not in spatial or analog terms,
but is a symbolic description, abstracting those aspects of the world which are rele-
vant to the operations used in working with it and discussing it. First there is a data
base of simple facts like those shown in Box 4.1, describing what is true at any
particular time. There we see, for example, that Bl is a block, Bl is red, B2 supports
B3, blue is a color, EVENT27 caused EVENT29, etc. The notation simply involves
indicating relationships between objects by listing the name of the relation (such as
IS or SUPPORT) followed by the things being related.* These include both concepts
(like BLOCK or BLUE) and proper names of individual objects and events {indicated

*The fact that Bl is a block could be represented in more usual predicate notation as (BLOCK
B1). We have chosen to associate with each object or concept & property describing its most
relevant category for the purpose of generating an English phrase for it. Thus (IS B1 BLOCK]) is
used to describe Bl as a block. Similarly, properties like colors are represented (COLOR Bl
BLUE) instead of (BLUE B1). This allows for more efficiency in the operation of the deduction
system, without changing its logical characteristics.

uope;a.ld.xa;ul muewiag 997

Box 4.1 Typical Data Expressions.

(IS Bl BLOCK)

(IS B2 PYRAMID)

(AT Bl (LOCATION 100 100 0))
(SUPPORT Bl B2)
{CLEARTOP B2)
(MANIPULABLE B1)
{CONTAIN BOX1 B4)
{COLOR-OF Bl RED)
(SHAPE-OF B2 POINTED)
(IS BLUE COLOR)

(CAUSE EVENTZ27 EVENTZ29)

with numbers, like B1 and TABLE2}.t The symbols used in these expressions repre-
sent the concepts (or conceptual categories) that form the vocabulary of the language
user’s cognitive model. A concept corresponds vaguely to what we might call a
single meaning of a word, but the connection is more complex. Underlying the
organization is a belief that meanings cannot be reduced to any set of pure “ele-
ments’’ or components from which everything else is built. Rather, a person catego-
rizes his experience along lines which are relevant to the thought processes he will
use, and his categorization is generally neither consistent, nor parsimonious, nor
complete. A person may categorize a set of objects in his experience into, for exam-
ple “chair,” “stool,” “bench,” etc. If pushed, he cannot give an exact definition for
any of these, and in naming some objects he will not be certain how to make the
choice between them. This is even clearer if we consider words like **truth,” “ vir-
tue.” and “democracy.” The meaning of any concept depends on its interconnection
with all of the other concepts in the model.

Most formal approaches to language have avoided this characterization of mean-
ing even though it seems close to our intuitions about how language is used. This is
because the usual techniques of logic and mathematics are not easily applicable to
such “holistic” models. With such a complex notion of *concept,” we are unable to
prove anything about meaning in the usual mathematical notion of proof. One im-
portant aspect of computational approaches to modelling cognitive processes is their
ability to deal with this sort of formalism. Rather than trying to prove things about
meaning we can design procedures which can operate with the model and simulate
the processes involved in human use of meaning. The justification for the formalism
is the degree to which succeeds in providing a model of understanding.

What is important then, is the part of the system’s knowledge which involves the
interconnections between the concepts. In our model, these are in the form of pro-

tThe notation does not correspond exactly to that in the original program. as mnemonics
have been used here to increase readability.

cedures written in the PLANNER language (Hewitt, 1971). For example, the concept
CLEARTOP (which might be expressed in English by a phrase like “clear off ") can
be described by the procedure diagrammed in Figure 4.5. The model tells us that to
clear off an object X, we start by checking to see whether X supports an object Y..If
50, we GET-RID-OF Y, and go check again. When X does not support any object, we
can assert that it is CLEARTOP. In this operational definition, we call on other con-
cepts like GET-RID-OF and SUPPORT. Each of these in turn is a procedure, involving
other concepts like PICKUP and GRASP. This representation is oriented to a model
of deduction in which we try to satisfy some goal by setting up successive subgoals,
which must be achieved in order to eventually satisfy the main goal. Looking at the
flow chart for GRASP in Figure 4.6, we can see the steps the program would take if
asked to grasp an object B1 while holding a different object B2. It would be called
by setting up a goal of the form (GRASP Bl), so when the GRASP program ran, X
would represent the object B1. First it checks to see whether Bl is a manipulable
object, since if not the effort must fail. Next it sees if it is already grasping B1, since
this would satisfy the goal immediately. Then, it checks to see if it is holding an
object other than B1, and if so tries to GET-RID-OF it. The program for GET~RID-0F
tries to put the designated object on the table by calling a program for PUTON, which
in turn looks for an empty location and calls PUT. PUT deduces where the hand must
be moved and calls MOVEHAND. If we look at the set of currently active goals at this
point, we get the stack in Box 4.2.

Notice that this subgoal structure provides the basis for asking “ why"' questions,
as in sentences 25 through 29 of the dialog in Section 2. If asked “Why did you put
B2 on the table?,” the program would look to the goal that called PUTON, and say
“To get rid of it.” If asked *Why did you get rid of it?”” it would go up one more step
to get “To grasp B1.” (Actually, it would generate an English phrase describing the
object B1 in terms of its shape, size, and color.) “How" questions are answered by
looking at the set of subgoals called directly in achieving a goal, and generating
descriptions of the actions involved.

To cleartop X

Does X
Support an object
Y?

Assert that
X is cleartop

Get-rid-of Y

Figure 4.5 Procedural Description for the Concept CLEARTOP.

LS Surpueisiapup) a8enSue jo [apoy [enpadorg

To grasp X

Is X

manipulable i
A Fail
Are you
already grasping D Succeed
X?
Are you
grasping another Get-rid-of Y
object Y? ad
Move to the top center .
of X Assert (grasping X)

Figure 4.6 Procedural Description of GRASP.

These examples illustrate the use of procedural descriptions of concepts for carry-
ing out commands, but they can also be applied to other aspects of language, such as
questions and statements. One of the basic viewpoints underlying the model is that
all language use can be thought of as a way of activating procedures within the
hearer. We can think of any utterance as a program — one that indirectly causes a set
of operations to be carried out within the hearer’s cognitive system. This * program
writing” is indirect in the sense that we are dealing with an intelligent interpreter,
who may take a set of actions which are quite different from those the speaker in-
tended. The exact form is determined by his knowledge of the world, his expecta-
tions about the person talking to him, his goals, etc. In this program we have a simple
version of this process of interpretation as it takes place in the robot. Each sentence
interpreted by the robot is converted to a set of instructions in PLANNER. The pro-
gram that is created is then executed to achieve the desired effect. In some cases the

Box 4.2 Goal Stack.

(GRASP B1)
{GET-RID-OF B2)
(PUTON B2 TABLEl)
(PUT B2 (453 201 0))
(MOVEHAND (553 301 100))

procedure invoked requires direct physical actions like the aforementioned. In
others, it may be a search for some sort of information (perhaps to answer a ques-
tion), whereas in others it is a procedure which stores away a new piece of knowl-
edge or uses it to modify the knowledge it already has. Let us look at what the system
would do with a simple description like “‘a red cube which supports a pyramid.”
The description will use concepts like BLOCK, RED, PYRAMID, and EQUIDIMEN—
SIONAL—all parts of the system’s underlying categorization of the world. The result
can be represented in a flow chart like that of Figure 4.7. Note that this is a program
for finding an object fitting the description. It would then be incorporated into a
command for doing something with the object, a question asking something about
it, or, if it appeared in a statement, it would become part of the program which was
generated to represent the meaning for later use. Note that this bit of program could
also be used as a test to see whether an object fit the description, if the first FIND
instruction were told in advance to lock only at that particular object.

At first glance, it seems that there is too much structure in this program, as we
don’t like to think of the meaning of a simple phrase as explicitly containing loops,
conditional tests, and other programming details. The solution is to provide an
infernal language that contains the appropriate looping and checking as its primi-
tives, and in which the representation of the process is as simple as the description.
PLANNER provides these primitives in our system. The program described in Figure
4.7 would be written in PLANNER looking something like Box 4.3.* The loops of the
flow chart are implicit in PLANNER’s backtrack control structure. The description
is evaluated by proceeding down the list until some goal fails, at which time the sys-
tem backs up automatically to the last point where a decision was made, trying a
different possibility. A decision can be made whenever a new object name or vari-
able (indicated by the prefix ?} such as ?X1 or ?X2 appears. The variables are used
by a pattern matcher. If they have already been assigned to a particular item, it
checks to see whether the GOAL is true for that item. If not, it checks for all possible
items which satisfy the GOAL, by choosing one, and then taking successive ones
whenever backtracking occurs to that point. Thus, even the distinction between test-
ing and choosing is implicit. Using other primitives of PLANNER, such as NOT and

*The system actually uses Micro-Planner, (Sussman et. al., 1970) a partial implementa-
tion of PLANNER. In this presentation we have slightly simplified the details of its syntax.

uoneardidyu] >yyuewag gez

Find a block X1

Figure 4.7 Procedural Representation of “a red cube which supports a pyramid.”

No more

Is X1
equidimensional

Find a pyramid X2

No more

Box 4.3 PLANNER Program for Description of
“a red cube which supports a pyramid.”

(GOAL
(GOAL
{GOAL
(GOAL
(GOAL

{IS ?X1 BLOCK))
(COLOR-OF ?X1 RED})

{EQUIDIMENSIONAL ?X1})

(IS ?X2 PYRAMID))
(SUPPORT 7X1 ?X2})

Fail

FIND (which looks for a given number of objects fitting a description), we can write
procedural representations for a variety of descriptions, as shown in Box 4.4.

Semantic Analysis

When we have decided how the system will represent meanings internally, we must
deal with the way in which it creates a program when it is given an English input.
There must be ways to interpret the meanings of individual words and the syntactic
structures in which they occur. First, let us look at how we can define simple words
like “cube”, and “contain.” The definitions in Box 4.5 are completely equivalent to
those used in the program with a straightforward interpretation.* The first says that

Box 4.4 PLANNER Programs for some Quantified Modifiers
describing the Object X1.

(GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2))
“which supports a pyramid”

3k sk 3k ok ok ok s ok ok 3k ok ok ok k ok

(GOAL (SUPPORT ?X1 B3))
“which supports the pyramid’
B3 is the name of the object referred to by ““the pyramid™
which is determined earlier in the analysis

3k ok 3k ok ok %k ok ok o 3k ok ok ok ok ok

(FIND 3 9X2 (GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?X2)))
“which supports three pyramids”

ok ok ok 3k ok 2 3k 3k ok 3k sk Kk ok k ok

{NOT (FIND ?X2 (GOAL (IS ?X2 PYRAMID))
(GOAL (SUPPORT ?X1 ?7X2)}))
“which supports no pyramids”

ok 3k 3k sk ok 3k ok ok %k ok ok k ok ok ok

(NOT (FIND 7X2 (GOAL (IS ?X2 PYRAMID)})
(NOT (GOAL {SUPPORT ?X1 ?X2))))}))
»which supports every pyramid”

3k 3k 3k ok ok ok ok sk ok ok ok ok ok ok ok

*Again, in comparing this with the details in Winograd (1972). note that some of the symbels
have been replaced with more understandable mnemonic versions.

657 Surpuejsiapur) aSenSue jo [3po [eINpadoI]

Box 4.5 Dictionary Definitions for “cube’ and *contain.”

(CUBE
((NOUN (OBJECT
{ (MANIPULABLE RECTANGULAR)
((IS ? BLOCK)
(EQUIDIMENSIONAL 7))})))))

(CONTAIN
({VERB (({TRANSITIVE (RELATION
(((CONTAINER)) ((PHYSICAL-OBJECT))
(CONTAIN £1 #2))
(({(CONSTRUCT)) ((PHYSICAL-OBJECT))
(PART-OF #2 #1})))))))

a cube is an object that is RECTANGULAR and MANIPULABLE, and can be recognized
by the fact that it is a BLOCK and EQUIDIMENSIONAL. The first part of this definition
is based on the use of semantic markers and provides for efficiency in choosing
interpretations. By making a rough categorization of the objects in the model, the
system can make quick checks to see whether certain combinations #re ruled out by
simple tests like *this meaning of the adjective applies only to words which repre-
sent physical objects.” Chomsky’s famous sentence *Colorless green ideas sleep
furiously” would be eliminated easily by such markers. The system uses this infor-
mation, for example, in answering question 9 in the dialogue, ‘‘Can the table pick
up blocks?,” as “pick up” demands a subject that is ANIMATE, whereas “table” has
the marker INANIMATE. These markers are a useful but rough approximation to
human deductions.

The definition for *‘contain” shows how they might be used to choose between
possible word meanings. If applied to a CONTAINER and a PHYSICAL-OBJECT, as
in * The box contains three pyramids,” the word implies the usual relationship we
mean by CONTAIN. If instead, it applies to a CONSTRUCT (like “‘stack”, “pile”, or
“row’’) and an object, the meaning is different. “ The stack contains a cube” really
means that a cube is PART of the stack, and the system will choose this meaning by
noting that CONSTRUCT is one of the semantic markers of the word **stack” when it
applies the definition.

One important aspect of these definitions is that although they look like static rule
statements, they are actually calls to programs {OBJECT and RELATION) which do
the appropriate checks and build the semantic structures. Once we get away from
the simplest words, these programs need to be more flexible in what they look at. For
example, in the robot world, the phrase *pick up” has different meanings depending
on whether it refers to a single object or several. In sentence 1, the system interprets
*“Pick up the big red block,” by grasping it and raising the hand. If we said “Pick up
all of your toys,” it would interpret “pick up” as meaning “put away,” and would

pack them all into the box. The program for checking to see whether the object is
singular or plural is simple, and any semantic system must have the flexibility to
incorporate such things in the word definitions. We do this by having the definition
of every word be a program which is called at an appropriate point in the analysis,
and which can do arbitrary computations involving the sentence and the present
physical situation.

This flexibility is even more important once we get beyond simple words. In
defining words like “the,” or ““of,” or ““one’" in “Pick up a green one,” we can hardly
make a simple list of properties and descriptors as in Figure 4.12. The presence of
“one” in a noun group must trigger a program which looks into the previous dis-
course to see what objects have been mentioned, and can apply various rules and
heuristics to determine the appropriate reference. For example it must know that in
the phrase “a big red block and a little one,” we are referring to “‘a little red block,”
not “a little big red block’ or simply “a little block.” This sort of knowledge is part
of a semantic procedure attached to the word “one” in the dictionary.

Words like “"the" are more complex. When we use a definite article like ““the” or
“that” in English, we have in mind a particular object or objects which we expect
the hearer to know about. I can talk about ‘“the moon"’ since there is only one moon
we usually talk about. In the context of this article, I can talk about ““the dialogue”,
and the reader will understand from the context which dialogue I mean. If am begin-
ning a conversation, | will say * Yesterday I met a strange man" even though I have
a particular man in mind, since saying * Yesterday I met the strange man” would
imply that the hearer already knows of him. Elsewhere, ““the” is used to convey the
information that the object being referred to is unique. If I write “The reason I wrote
this paper was . . .”, it implies that there was a single reason, whereas " A reason 1
wrote this paper was . . .” implies that there were others. In generic statements,
“the” may be used to refer to a whole class, as in “ The albatross is a strange bird.”
This is a quite different use from the single referent of ** The albatross just ate your
lunch.”

A model of language use must be able to account for the role this type of knowl-
edge plays in understanding. In the procedural model, it is a part of the process of
interpretation for the structure in which the relevant word is embedded. The differ-
ent possibilities for the meaning of “‘the’ are procedures which check various facts
about the context, then prescribe actions such as *'Look for a unique object in the
data base which fits this description.” or “Assert that the object being described is
unique as far as the speaker is concerned.” The program incorporates a variety of
heuristics for deciding what part of the context is relevant. For example, it keeps
track of when in the dialogue something has been mentioned. In sentence 2 of the
dialogue, “Grasp the pyramid” is rejected since there is no particular pyramid which
the system can see as distinguished. However, in sentence 5 it accepts the question
“What is the pyramid supported by?"” since in the answer to sentence 4 it mentioned
a particular pyramid.

This type of knowledge plays a large part in understanding the things that hold a
discourse together, such as pronouns, adverbs like “then”, and *“‘there”, substitute

uoneja1dIdu] dRULWIS (9T

nouns such as “one”, phrases beginning with “that”, and ellipses. The system is
structured in such a way that the heuristics for handling mechanisms like these can
be expressed as procedures in a straightforward way.

The Role of Syntax

In describing the process of semantic interpretation, we stated that part of the rele-
vant input was the syntactic structure of the sentence. In order to provide this, the
program contains a parser and a fairly comprehensive grammar of English.* The
approach to syntax is based on a belief that the form of syntactic analysis must be
useable by a realistic semantic system, and the emphasis of the resulting grammar
differs in several ways from traditional transformational approaches.

First, it is organized around looking for syntactic units which play a primary role
in determining meaning. A sentence such as * The three big red dogs ate a raw steak”
will be parsed to generate the structure in Figure 4.8. The noun groups {NG) corre-
spond to descriptions of objects, whereas the clause is a description of a relation or
event. The semantic programs are organized into groups of procedures, each of which
is used for interpreting a certain type of unit.

For each unit, there is a syntactic program [written in a language called PRO-
GRAMMAR, especially designed for the purpose) which operates on the input string
to see whether it could represent a unit of that type. In doing this, it will call on
other such syntactic programs (and possibly on itself recursively). It embodies a
description of the possible orderings of words and other units, for example, the
scheme for a noun group, as shown in Figure 4.9. The presence of an asterisk after a
symbol means that that function can be filled more than once. The figure shows that
we have a determiner {such as “the”} followed Yy an ordinal (such as “first”’), then
a number (“three’) followed by one or more adjectives (*big,” “‘red”) followed by
one or more nouns being used as classifiers (“fire hydrant”) followed by & noun
(“covers”) followed by qualifying phrases which are preposition groups or clauses

CLAUSE
N

NG VG G
R | VAN
DET NUM AD] AD}] NOUN VB DET AD] NOUN
|] (I | | I]
the three big red dogs ate a raw steak

Figure 4.8 Syntactic Parse Tree.

*1t is of course impossible to provide a complete grammar of English, and often difficult to
evaluate a partial one. The dialogue of Section 2 gives a sample of the constructions which can
be handled, and does not make use of specially included patterns. Winograd {1972) gives a full
description of the grammar used.

T T T T T 1

DET ORD NUM AD}* CLASF* NOUN Q*
Figure 4.9 Structure of Noun Groups.

{**without handles” “which you can find"). Of course many of the elements are
optional, and there are restriction relations between the various possibilities. If we
choose an indefinite determiner such as ‘a,” we cannot have an ordinal and number,
as in the illegal string “a first three big red fire hydrant covers without handles you
can find.” The grammar must be able to express these rules in a way which is not
simply an ad hoc set of statements. Qur grammar takes advantage of some of the
ideas of Systemic Grammar {Halliday, 1971).

Systemic theory views a syntactic structure as being made up of units, each of
which can be characterized in terms of the features describing its form, and the func-
tions it fills in a larger structure or discourse. In the sentence in Figure 4.8, the noun
group “three big red dogs” can be described as exhibiting features such as DETER-
MINED, INDEFINITE, PLURAL, etc. It serves the function SUBJECT in the clause of
which it is a part, and various discourse functions, such as THEME as well. It in turn
is made up of other units—the individual words — which fill functions in the noun
group, such as DETERMINER and HEAD. A grammar must include a specification of
the possible features a unit can have, and the relation of these to both the functions
it can play, and the functions and constituents it controls.

These features are not haphazard bits of information we might choose to notice
about unifs, but form a highly structured system (hence the name Systemic Gram-
mar). As an example, we can look at a few of the features for the CLAUSE in Figure
4.10. The vertical lines represent sets from which a single feature must be selected
and horizontal lines indicate logical dependency. Thus, we must first choose
whether the clause is MAJOR — which corresponds to the function of serving as an
independent sentence—or SECONDARY, which corresponds to the various func-
tions a clause can serve as a constituent of another unit (for example as a QUALIFIER
in the noun group “the ball which is on the table’"). If a clause is MAJOR, it is either
DECLARATIVE {“She went”), IMPERATIVE (“Go”), or INTERROGATIVE (“Did
she go?”). If it is INTERROGATIVE, there is a further choice between YES-NO (*Did
she go?") and WH- (*Where did she go?").

DECLARATIVE
MAJOR IMPERATIVE YES-NO
CLAUSE INTERROGATIVE |._
WH-
SECONDARY

Figure 4.10 Simple System Network for Clauses.

197 Surpuejsiapup) aSenSue Jo [apo [emMpadoiy

It is important to note that these features are syntactic, not semantic. They do not
represent the use of a sentence as a question, statement, or command, but are rather
a characterization of its internal structure —which words follow in what order. A
DECLARATIVE can be used as a question by giving it a rising intonation, or even as a
command, as in * You're going to give that to me,” spoken in an appropriate tone. A
question may be used as a polite form of a command, as in “Can you give me a
match?,” and so on. Any language understander must know the conventions of the
language for interpreting such utterances in addition to its simpler forms of syntactic
knowledge. To do this, it must have a way to state things like “If something is syn-
tactically a question but involves an event which the hearer could cause in the
immediate future, it may be intended as a request.” Syntactic features are therefore
basic to the description of the semantic rules. The actual features in a comprehensive
grammar are related in a more complex way than the simple example of Figure 4.10,
but the basic ideas of logical dependency are the same.

In the foregoing we stated that there is a choice between certain features, and
that depending on the selection made from one set, we must then choose between
certain others. In doing this we are not postulating a psychological model for the
order of making choices. The networks are an abstract characterization of the possi-
bilities, and form only a part of a grammar. In addition we need realization and
interpretation rules. Realization rules describe how a given set of choices would be
expressed in the form of surface syntactic structures, whereas interpretation rules
describe how a string of words is analyzed to find its constituents and their features.

Our grammar is an interpretation grammar for accepting grammatical sentences.
It differs from more usual grammars by being written explicitly in the form of a pro-
gram. Ordinarily, grammars are stated in the form of rules, which are applied in the
framework of a special interpretation process. This may be very complex in some
cases (such as transformational grammars) with separate phases, special “traffic
rules” for applying the other rules in the right order, cycles of application, and other
sorts of constraints. In our system, the sequence of the actions is represented ex-
plicitly in the set of rules. The process of understanding an utterance is basic to
the organization of the grammar.*

In saying that grammars are programs, it is important to separate the procedural
aspect from the details usually associated with programming. If we say to a linguist
“Here is a grammar of English,” he can rightfully object if it begins “Take the con-
tents of location 177 and put them into register 2, adding the index . . .” The for-
malization of the syntax should include only those operations and concepts that
are relevant to linguistic analysis, and should not be burdened with paraphernalia
needed for programming details. Our model is based on the belief that the basic
ideas of programming such as procedure and subprocedure, iteration, recursion, etc.
are central to all cognitive processes, and in particular to the theory of language.
What is needed is a formalism for describing syntactic processes. Our grammar is
written in a language which was designed specifically for the purpose. It is a system

*For a discussion of the psycholinguistic relevance of such interpretive grammars see
Kaplan (1971). He describes a similar formulation of procedural grammar, represented as a
transition network.

built in LISP, called PROGRAMMAR, and its primitive operations are those involving
the building of syntactic structures, and the generation of systemic descriptions of
their parts.

The set of typical grammar rules shown in Box 4.6 would be expressed in PRO~
GRAMMAR by the program diagrammed in Figure 4.11. For such a simplified bit
of grammar, there isn't much difference between the two formulations, except
that the PROGRAMMAR representation is more explicit in describing the flow of con-
trol. When we try to deal with more complex parts of syntax, the ability to specify
procedures becomes more important. For example the word ““and” can be associated
with a program that can be diagrammed as shown in Figure 4.12. Given the sentence
“The giraffe ate the apples and peaches”, it would first encounter “and” after
parsing the noun “apples.” It would then try to parse a second noun, and would
succeed, resulting in the structure shown in Figure 4.13. If we had the sentence
“The giraffe ate the apples and drank the vodka,” the parser would have to try several
different things. The “and” appears at a point which represents boundaries between
several units. It is after the noun “apples,” and the NP, “the apples.” It is also after
the entire VP “‘ate the apples.” The parser, however, cannot find a noun or NP be-

ginning with the following word “drank”. It therefore tries to parse a VP and would

successfully find *“drank the vadka’”. A CONJOINED VP would be created, producing
the final result shown in Figure 4.14. Of course the use of conjunctions is more
complex than this, and the actual program must take into account such things as
lists and branched structures in addition to the problems of backing up if a wrong
possibility has been tried. But the basic operation of “look for another one like the
one you just found” seems both practical and intuitively plausible as a description
of how conjunction works. The ability to write the rules as procedures leaves us the
flexibility to extend and refine it.

Viewing “and” as a special program that interrupts the normal parsing sequence
also gives us a sort of explapation for some puzzling syntactic facts. The statement
“I saw Ed with Steve" has a corresponding question, “Whom did you see Ed with?”
But “I saw Ed and Steve” cannot be turned into “Whom did you see Ed and?” The
“and” program cannot be called when there is no input for it to work with,

Program Organization

So far, we have described how three different types of knowledge are represented
and used. There is the data base of assertions and PLANNER procedures which repre-
sent the knowledge of the physical world; there are semantic analysis programs

Box 4.6 Simple Grammar in Replacement Rule Form.

S — NP VP

NP — DETERMINER NOUN

VP — VERB/TRANSITIVE NP
VP — VERB/INTRANSITIVE

uonrardisu] onyuewag g9z

which know about such problems as reference; and there is a grammar which de-
termines the syntactic structure. The most important element, however, is the
interaction between these components. Language cannot be reduced into separate
areas such as “syntax, semantics, and pragmatics” in hopes that by understanding
each of them separately, we have understood the whole. The key to the function of
language as a means of communication is in the way these areas interact.

DEFINE program SENTENCE

No

RETURN failure

r 3
No
Yes
RETURN success
%t

No

RETURN failure
No

RETURN success

Figure 4.11 PROGRAMMAR Grammar From Winograd, T,
“Understanding Natural Language.’ Cognitive
Psychology, 3:1-191. Copyright © by Academic
Press.

RETURN failure

RETURN success

Figure 411 (continued)

Parse a

unit of the same
type as the currently
active node

RETURN failure

Replace the node with &
new node combining the
old one and the one you
have just found

l

RETURN success

Figure 4.12 Conjunction Program. From Winograd, T., “Understanding Natural
Language.” Cognitive Psychology, 3:1-191. Copyright © by Academic
Press.

€97 Surpueiszopun) afenSue jo [9poN [eINPIO0IG

SENTENCE

/%
/Zv
T Noun
N \ VAR

DETERMINER NOUN VERB DETERMINER NOUN NOUN
| i I [i I
the giraffe ate the apples and peaches
Figure 4.13 Conjoined Noun Structure. From Winograd, T., “Understanding
Natural Language.” Cognitive Psychology, 3:1-191. Copyright ©
by Academic Press.

SENTENCE
/ o
\% 3 ~
NP S np NP
DET NOUN VERB DET NOUN VERB DET NOUN
I | | | | | | I
the giraffe ate the apples and drank the vodka

Figure 4.14 Conjoined VP Structure. From Winograd, T., ""Understanding
Natural Language.” Cognitive Psychology, 3:1-191. Copyright ©
by Academic Press.

Our program does not operate by first parsing a sentence, then doing semantic
analysis, and finally by using deduction to produce a response. These three activi-
ties go on concurrently throughout the understanding of a sentence. As soon as a
piece of syntactic structure begins to take shape, a semantic program is called to
see whether it might make sense, and the resultant answer can direct the parsing.
In deciding whether it makes sense, the .semantic routine may call deductive pro-
cesses and ask questions about the real world. As an example, in sentence 36 of the
dialogue (*“Put the biue pyramid on the block in the box"), the parser first comes
up with “the blue pyramid on the block” as a candidate for a noun group. At this
point, semantic analysis is begun, and since “the” is definite, a check is made in
the data base for the object being referred to. When no such object is found, the
parsing is redirected to find the noun group “the blue pyramid.” It will then go on
to find “on the block in the box” as a single phrase indicating a location. In other
examples the system of semantic markers may reject a possible interpretation on the

basis of conflicting category information. Thus, there is a continuing interplay be-
tween the different sorts of analysis, with the results of one affecting the others.

The procedure as a whole operates in a left to right direction through the sen-
tence. It does not carry along multiple possibilities for the syntactic analysis, but
instead has ways of going back and doing something different if it runs into trouble.
It does not use the general backup mechanism of PLANNER, but decides what to do
on the basis of exactly what sort of problem arose. In the sentences like those of the
dialogue, very little backup is ever used, since the combination of syntactic and
semantic information usually guides the parser quite efficiently.

Limitations of the Approach

The program we are describing does not purport to be a point by point model of
psychological processes at a detailed level. Rather, it is an attempt to show how a
general view of language can really be filled in with enough detail to provide a
working model. The importance from a psychological point of view is the approach
to language as a process which£an be modeled within the context of a procedural
description of cognitive processes. Rather than trying to attach psychological mean-
ing to isolated components inte which language has been divided for abstract study,
it attempts to relate the various types of knowledge and procedures involved in
intelligent language use.

Looking into the specific capabilities of the system, we can find many places
where the details seem inadequate, or whole areas are missing. The program does
not attempt to handle hypothetical or counterfactual statements; it only accepts
a limited range of declarative information, it cannot talk about verbal acts, and the
treatment of “the” is not as general as the description above, and so on. These de-
ficiencies, however, seem to be more a matter of what has been tackled so far, rather
than calling into question the underlying model. Looking deeper, we can find two
basic ways in which it seems an inadequate model of human language use. The first
is the way in which the process is directed, and the second is concerned with the
interaction of the context of the conversation and the understanding of its content.

We can think of a program for understanding a sentence as having two kinds of
operations —-coming up with possible interpretations, and choosing between them.
Of course, these are not separate psychologically, but in the organization of com-
puter programs, the work is divided up.

In our program, the syntactic analysis is in charge of coming up with possibilities.
The basic operation requires that we find a syntactically acceptable phrase, and then
do a semantic interpretation on it to decide whether to continue along that line of
parsing. Other programs such as Schank (1971) and Quillian {1967) use the semantic
information contained in the definitions of the words to provide an initial set of
possibilities, then use syntactic information in a secondary way to check whether
the hypothesized underlying semantic structure is in accord with the arrangement
of the words.

uoyejrdisju] opuewag y9z7

Y T IR — e aice —nrY

By observing human language use, it seems clear that no single approach is really
correct. On the one hand, people are able to interpret utterances which are not
syntactically well formed, and can even assign meanings to collections of words
without use of syntax. The list “skid, crash, hospital” presents a certain image,
even though two of the words are both nouns and verbs and there are no explicit
syntactic connections. It is therefore wrong to insist that some sort of complete
parsing is a prerequisite to semantic analysis.

On the other hand, people are able to interpret sentences syntactically even when
they do not know the meanings of the individual words. Most of our vocabulary
{beyond a certain age) is learned by hearing sentences in which unfamiliar words
appear in syntactically well-defined positions. We process the sentence without
knowing any category information for the words, and in fact use the results of that
processing to discover the semantic meaning. In addition, much of our normal con-
versation is made up of sentences like *“Then the other one did the same thing to it”
in which the words taken individually do not provide clues to enable us to determine
the conceptual structure without a complete syntactic analysis.

What really seems to be going on is a coordinated process in which a variety of
syntactic and semantic information can be relevant, and in which the hearer takes
advantage of whatever is more useful in understanding a given part of a sentence.
Qur system models this coordination in its order of doing things, by carrying on all
of the different levels of analysis concurrently, although it does not model it in' the
control structure.

Much remains to be done in understanding how to write computer programs in
which a number of concurrent processes are working in a coordinated fashion with-
out being under the primary hierarchical control of one of them. A language model
able to implement the sort of “heterarchy” found in biological systems (like the
coordination between different systems of an organism) will be much closer to a
valid psychological theory.

The second basic shortcoming is in not dealing with all the implications of view-
ing language as a process of communication between two intelligent people. A
human language user is always engaged in a process of trying to understand the
world around him, including the person he is talking to. He is actively constructing
models and hypotheses, and he makes use of them in the process of language under-
standing. As an example, let us consider again the use of pronouns. In Section 1,
we described some of the knowledge involved in choosing referents. It included
syntax, semantic categories, and heuristics about the structure of discourse.

But all of these heuristics are really only a rough approximation to what is really
going on. The reason that the focus of the previous sentence is more likely to be the
referent of “it” is because a person generally has a continuity in his conversation,
which comes from talking about a particular object or event. The focus (or subject)
is more likely just because that is the thing he is talking about, and he is likely to
go on talking about it. Certain combinations of conceptual category markers are
more plausible than others because the speaker is probably talking about the real

world, where certain types of events are more sensible than others. If we prefix

almost any sentence with “I just had the craziest dream .
plausible conceptual relations is turned topsy-turvy.

If someone says “I dropped a bottle of Coke on the table and it broke,” there are
two obvious interpretations. The semantic categories and the syntactic heuristics
make it slightly more plausible that it was the bottle that broke. But consider what
would happen if we heard “Where is the tool box? I dropped a bottle of coke on the
table and it broke” or, “Where is the furniture polish? I dropped a bottle of coke
on the table and it broke.” The referent is now perfectly clear—only because we
have a model of what is reasonable in the world, and what a person is likely to say.
We know that there is nothing in the tool box to help fix a broken coke bottle and
that nobody would be likely to try fixing one. It would be silly to polish a table that
just got broken, while it would be logical to polish one that just had a strong cor-
rosive spilled on it. Of course, all this must be combined with deductions based on
other common sense knowledge, such as the fact that when a bottle containing a
liquid breaks, the liquid in it spills.

Even more important, we try to understand what the speaker is “getting at.” We
assume that there is a meaningful connection between his sentences, and that his
description of what happened is probably intended as an explanation for why he
wants the polish or toolbox. More subtle deductions are implied here as well. It
is possible that he broke the table and fixed it, and now wants the polish to cover
the repair marks. If this were the case, he would almost surely have mentioned the
repair to allow us to follow that chain of logic.

Our system makes only the most primitive use of this sort of deduction. Since it
keeps track of when things have been mentioned, it can check a possible interpreta-
tion of a question to see whether the asker could answer it himself from his previous
sentences. If 50, it assumes that he probably means something else. We could char-
acterize this as containing two sorts of knowledge. First, it assumes that a person
asks questions for the purpose of getting information he doesn’t already have, and
second, it has a very primitive model of what information he has on the basis of
what he has said. A realistic view of language must have a complex model of this
type, and the heuristics in our system touch only the tiniest bit of the relevant
knowledge.

It is important to recognize that this sort of interaction does not occur only with
pronouns and explicit discourse features, but in every part of the understanding
process. In choosing between alternative syntactic structures for a sentence, or
picking between multiple meanings of words, we continually use this sort of higher
level deduction. We are always basing our understanding on the answer to questions
like “Which interpretation would make sense given what 1 already know?” and
“What is he trying to communicate?”

Any attempt to model human language with simple semantic rules and heuristics
like those described above is a bit like an attempt to model the behavior of a com-
plex system by using unrelated mathematical formulas whose results are a general

. .” the whole system of

69z Surpueisiapun) 38enJue] jo [2POJA [RINPID0I]

approximation to its output. The results may be of interest, and the resulting equa-
tions may have a high correlation with what is going on, but it is not a model in the
true sense of reflecting the underlying process.

1t seems likely that more advanced computational models will move towards
overcoming these deficiencies. As we learn more about the organization of large
complex systems, we may well be able to model language in ways which are more
complete, clearer, and closer to psychological reality.

N
A
o
:
=8
N
)
®

3
2
!
=
]

