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Abstract. BGLsim is a complete system simulator for parallel machines. It is
currently being used in hardware validation and software development for the
BlueGene/L cellular architecture machine. BGLsim is capable of functionally
simulating multiple nodes of this machine operating in parallel. It simulates in-
struction execution in each node and the communication that happens between
nodes. BGLsim allows us to develop, test, and run the exactly same code that
will be used in the real system. Using BGLsim, we can gather data that helps
us debug and enhance software (including parallel software) and evaluate hard-
ware. To illustrate the capabilities of BGLsim, we describe experiments running
the NAS Parallel Benchmark IS on a simulated BlueGene/L machine. BGLsim
is a parallel application that runs on Linux clusters. It executes fast enough to run
complete operating systems and complex MPI codes.

1 Introduction

Linux clusters have revolutionized high-performance computing by delivering large
amounts of compute cycles at a low price. This has enabled computing at a scale that
was previously not affordable to many people. In this paper, we report our experience in
leveraging the vast amount of computational power delivered by modern Linux clusters
to help us develop the system software for a new machine: The BlueGene/L supercom-
puter.

BlueGene/L [1] is a massively parallel cellular architecture system being developed
at the IBM T. J. Watson Research Center in cooperation with Lawrence Livermore
National Laboratory. This machine is based on a large number of PowerPC processors,
augmented with a novel floating-point unit, interconnected in a three-dimensional torus
network. The processors in BlueGene/L are organized into groups called processing
sets, or psets. Each pset is under control of one Linux operating system image, so the
machine looks like a large (1,024-way) Linux cluster.
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Early in the BlueGene/L project we realized the need for tools that would help us de-
velop and test the system software for BlueGene/L in advance of hardware availability.
Our experience in previous large system projects had shown that architectural simula-
tion of large machines was an effective exploratory tool. Therefore, we endeavored in
the development of an architecturally accurate, full system simulator of the BlueGene/L
supercomputer.

A logic level simulator of BlueGene/L was available as a side effect of our VHDL
hardware design methodology. VHDL simulations play an important role in the detailed
analysis and verification of the design, but they are too slow to be used for simulations
of large configurations executing real workloads. It was essential to provide a feasible
way to support the development of both system software and end user software, in
addition to hardware studies.

Our approach was to develop BGLsim, an architecturally accurate simulator at the
instruction-set level. BGLsim exposes all architected features of the hardware, includ-
ing processors, floating-point units, caches, memory, interconnection networks, and
other supporting devices. The simulator can run exactly the same software that will
run in the real machine. This approach allows running complete and unmodified code,
from simple self-contained executables to full Linux images. The simulator includes
interaction mechanisms for inspecting detailed machine state, providing more informa-
tion than what is possible with real hardware. By simulating at the instruction-set level,
BGLsim is several orders of magnitude faster than VHDL simulation at the logic design
level.

We have organized BGLsim as a parallel application that can run in multiple nodes
of a Linux cluster. Each task (process) of this parallel application simulates one Blue-
Gene/L node. The larger the Linux cluster we have access to, the larger the BlueGene/L
machine we can simulate. Since BlueGene/L itself is essentially a Linux cluster, we
have this situation in which a host (real) Linux cluster is used as the platform for a
simulated (virtual) Linux cluster.

To illustrate the capabilities of the BGLsim simulation environment, we present an
experiment with a parallel application on a multi-node BlueGene/L machine. The ap-
plication chosen is the NAS Parallel Benchmark IS, an MPI application [10]. We used
BGLsim to investigate the scalability characteristics of IS, regarding both its computa-
tion and communication components.

The rest of this paper is organized as follows. Section 2 compares our work to other
simulation efforts that already exist or are being developed. Section 3 provides a brief
overview of the BlueGene/L machine. Section 4 explains the structure of our single-
node simulator and its capabilities. Section 5 explains how we implement a multi-node
system simulator an how nodes communicate with each other. Practical experience with
BGLsim is described in Section 6. Finally, Section 7 summarizes our contributions.

2 Related work

Augmint [13] is a multiprocessor simulator, intended for performance analysis of par-
allel architectures. It simulates the execution of multiple processes running on multiple
processors in parallel. Its target architecture is Intel x86, which is not appropriate for
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the processor we wanted to simulate. Augmint is not a complete machine simulator,
so we could not simulate specific BlueGene/L devices. Furthermore, Augmint works
by instrumenting code before execution. For our purposes, we needed a system that
would support running unmodified kernel and user code, making it easier to debug soft-
ware, correlate events with the source code, and validate results against detailed VHDL
simulations.

SimpleScalar [4] offers a set of various processor simulators, including PowerPC ar-
chitecture [12]. However, these simulators do not model all the devices in BlueGene/L.
Because we wanted to use a simulator to help in the development of kernel level soft-
ware, SimpleScalar was not appropriate. In contrast, BGLsim accurately models all
architected features of the BlueGene/L hardware at the instruction-set level. Thus, we
can run a complete software stack, including kernel and user level code.

MPI-SIM [11] is a library for execution-driven parallel simulation of task and data
parallel programs. It simulates only user level code and its main focus is evaluating
the performance of parallel programs. The parallel programs can be written directly
using MPI for message-passing, or in UC, a data parallel language, and then compiled
to use message-passing. MPI-SIM does not provide access to the underlying layers of
communication and interconnection devices. Since we wanted to develop several layers
of communication libraries for BlueGene/L, from the hardware layer to the message-
passing layer, MPI-SIM was not the complete solution we were looking for.

Some existing simulators, like SimOS [7, 8] and SimICS [6, 2, 9] are complete ma-
chine simulators, but do not model the specific processor and devices in our hardware
design. Furthermore, the inter-simulator communication scheme (for multi-node simu-
lation) in SimOS did not provide good performance and security. In BlueGene/L, we
implemented a different mechanism for inter-simulator communication (see Section 5),
which provides less overhead when the communication traffic is high.

We decided to develop our own simulator for BlueGene/L. This simulator is based
to a great extent on the Mambo single- and multi-processor simulator developed at
the IBM Austin Research Laboratory. Using concepts from other system simulators,
particularly SimOS, we have created a simulator that models all the architected features
of BlueGene/L, including multi-node operation.

3 BlueGene/L overview

BlueGene/L is a new high-performance parallel supercomputer. It is based on low cost
embedded PowerPC technology. The interested reader is referred to [1] for a more de-
tailed description of the architecture. This section presents an overview of the machine
as background for our discussion on BGLsim, one of its simulation environments.

3.1 Overall organization

The BlueGene/L machine is constructed based on a custom system-on-a-chip building
block. This BlueGene/L node is composed of processors, memory and communication
logic, all in the same piece of silicon. Every chip contains two standard 32-bit embedded
PowerPC 440 cores with a custom floating-point unit (described in the next paragraph),
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and a memory subsystem. The memory subsystem is composed by an L1 instruction
cache and an L1 data cache, as well as an L2 cache for each core, and a shared L3.
The L1 caches are 32KB, have 32-byte lines, and are not coherent. The L2 caches are
2KB, have 128-byte lines, are not inclusive (they are smaller than the L1 caches) and
are coherent. The L2 caches act as a prefetch buffer to the L1 caches. The two cores
share a 4MB L3 EDRAM cache, which is also included in the chip.

Each core is connected to a custom FPU, which is a 128-bit “double” FPU: its two
64-bit “subunits” are driven by the same double instructions, issued by the core and
extended from the standard PowerPC floating point instruction set. Each subunit is a
conventional FPU with a 64-bit register file of 32 registers. One of these subunits is
called primary and the other one is called secondary. The primary side can be used as a
standard 440 FPU, executing the complete PowerPC floating point standard instruction
set. The two subunits can be used together to perform SIMD-like floating point opera-
tions from the extended instruction set. Since each subunit is able to perform multiply-
and-add operations, the custom FPU can perform four double precision floating point
operations per cycle.

The typical usage scenario for the two processors in a node is to allocate only one of
the 440 cores to run user applications; the other core is destined to drive the networks.
The target frequency of the machine is currently 700MHz. At this frequency, each core
achieves 2.8GFlop/s of peak performance. If both cores are used for user applications,
the peak performance per node reaches 5.6GFlop/s.

Multiprocessor support is not provided by the standard PPC440 cores. As described
in the beginning of this section, the L1 caches are not coherent. Besides, the standard
PPC440 instruction set does not provide any atomic memory operations. In order to
provide synchronization and communication capabilities between the two cores, some
devices were added to the chip: lockbox, shared SRAM, L3 scratchpad, and the blind
device. All devices are configured via registers and used via memory mapped locations.
The lockbox unit provides fast atomic test-and-sets and barriers to a limited number
of memory locations. The shared SRAM has 16KB and can be used to exchange data
between the two cores. The EDRAM L3 cache can have some regions reserved as an ad-
dressable scratchpad. The blind device provides explicit cache management. A special
interrupt controller is designed and connected in such a way that the cores can interrupt
each other.

The BlueGene/L packaging, depicted in Figure 1, is very dense, due to the low
power characteristics of the architecture. A compute card contains two of the nodes
described above (each node is a chip with two cores) and SDRAM-DDR memory. An
external memory of 2GB can be supported by each node, but in the current configuration
each node has 256MB of main memory, accessible at a bandwidth of 5.6GB/s and 75-
cycle latency. A node board can hold up to 16 compute cards (32 nodes). A cabinet
can hold two midplanes, each containing 16 node boards for a total of 1024 compute
nodes (2048 processors), with a peak performance of 2.9/5.7TFlop/s per cabinet. The
BlueGene/L complete system is composed by 64 cabinets and 16TB of memory.

Besides the 64K compute nodes, the BlueGene/L machine also has 1024 I/O nodes.
I/O nodes and compute nodes are very similar and built out of the same chip. One of the
differences is that the I/O nodes have larger memory (512MB). The enabled networks
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for each type of node also varies: in our current implementation, an I/O node has its
tree and Ethernet devices active while a compute node has its torus and tree devices
active. These networks will be further explained in section 3.2. Each group of 1 I/O
node and 64 compute nodes is called a processing set (pset), and it behaves as one
Linux machine. The Linux operating system runs on the I/O node, which controls and
distributes applications to the compute nodes of the pset.

Fig. 1. High-level organization of the BlueGene/Lsupercomputer. All 65,536 compute nodes are
organized in a ���������	�
��� three-dimensional torus.

3.2 BlueGene/L communications hardware

A PowerPC processor in a compute (or I/O) node can only address the node’s local
memory. To communicate with other nodes, a node needs to send inter-node messages.
Therefore, all inter-node communication is based on message exchange. The Blue-
Gene/L system-on-a-chip supports five different networks: torus, tree, Ethernet, JTAG
and global interrupts. The three-dimensional torus is the main communication network
for point-to-point messages. Each node has six links for this network, which are con-
nected to its nearest neighbors. The 64K compute nodes are organized in a 64x32x32
three-dimensional torus, which can be partitioned in smaller units. I/O nodes are not
part of this network. The variable length torus packets (up to 256B) have guaranteed
reliable, unordered, deadlock-free delivery by a minimal adaptive routing algorithm. It
is also possible to use this network to send simple broadcast packets that deposit the
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contents of the packet in every node along a route. The bandwidth in each direction of
a torus link is 1.4Gb/s, and the bisection bandwidth of a 64K node system is 360GB/s
(each direction).

The tree network provides point-to-point, broadcast and reduction operations with
packets, with low hardware latency. Incoming packets in a node can be combined using
bitwise and integer operations, and the result is forwarded in a new combined packet
along the tree. Floating point operations can be performed in two steps (the first to
combine the exponents and the second to combine the mantissas). Both I/O and compute
nodes participate in this network, which is used for communication between the two
types of nodes. The global interrupts are supported by a different set of links that run
in parallel with the tree links and provide global AND/OR operations with low latency.
This feature was designed to support fast barrier synchronization.

The BlueGene/L machine can be divided into partitions. Each partition is allocated
to execute a single job. Partitions are subsets of the machine that are self-contained and
electrically isolated from each other. The interconnection of the networks described
above between midplanes are routed through “link chips” which are custom chips that
can be configured dynamically to go around faulty midplanes while maintaining the
networks functional. The “link chips” can also be used to partition the torus network
into independent tori, that can be as small as a midplane (512 nodes). It is possible to
create smaller meshes (128 compute nodes and 2 I/O nodes in the current packaging)
by disabling some of the links on the boundary chips of a partition.

Each node also contains a 1Gb/s Ethernet device for external connectivity, but only
I/O nodes are actually connected to an Ethernet network. Therefore, the BlueGene/L
machine has ���������	� Gb/s links to outside world, used primarily to communicate with
file servers.

Finally, each node has a serial JTAG interface to support booting, control and mon-
itoring of the system through a separate control network. The JTAG network is part
of this control network, which also includes a control Ethernet network (not the same
network that is directly connected to the I/O nodes). This control Ethernet network is
connected to one or a cluster of service nodes, and IDo chips, which act as gateways
between the control Ethernet network and the JTAG network. The service nodes are
commercially available computers that control the rest of the BlueGene/L machine via
the control network. Each node board and each midplane contains an IDo chip that
receives commands, encapsulated in UDP packets, from the service nodes over the Eth-
ernet control network. The IDo chips can interface with the machine components via
a number of serial protocols. The 


���
network is used to control power supplies, tem-

perature sensors and fans. A small EPROM containing the serial number of each core
can be read using the SPI protocol. Each chip has 16KB of SRAM, which can be read
and written using the JTAG protocol. The JTAG protocol can also be used to read and
write registers, and to suspend and reset the cores. The IDo chips have direct access to
the hardware and do not rely on any software support in the nodes they control.
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4 Single-node simulation

This section describes how a single BlueGene/L node is simulated. Each BlueGene/L
node is simulated by one BGLsim process. Several communicating BGLsim processes
compose a virtual BlueGene/L machine. Multi-node simulation will be addressed in
Section 5.

BGLsim was developed to run in a Linux/x86 environment. Each BGLsim process
implements a virtual BlueGene/L node that, in turn, can run a custom Linux/PPC op-
erating system image. Figure 2 shows the simulation stack for a single node BGLsim
running Linux/PPC. At the bottom of the stack we have the host hardware, an x86
machine. We run an image of the Linux operating system in this host hardware and
BGLsim is an application process on top of this Linux platform. The BGLsim process
implements a (virtual) instance of the BlueGene/L node hardware. We run an image of
the Linux operating system on this BlueGene/L node and test applications are run as
processes on top of this second Linux platform.

Application

BG/L hardware

BGLsim

x86 Linux

x86 hardware

BG/L Linux

Fig. 2. Stack when BGLsim is running Linux-PPC

4.1 BGLsim internals

Figure 3 shows in more detail what is being simulated by a BGLsim process. That is,
the internals of a BlueGene/L node. The simulation of the processors and the devices
exposes to the software running on the simulator an architecturally accurate view of
the hardware. This allows the execution of unmodified operating system and applica-
tion images. The devices are memory mapped and are also accessible for configuration
through DCRs (device control registers). When a memory address associated with a de-
vice is accessed, the corresponding device model is activated and takes the appropriate
actions, like sending a packet to the network or reading the console input buffer.

The JTAG control port (a device in the real hardware) provides a set of basic low-
level operations, like read/write of SRAM and DCRs, and stopping/resuming/resetting
a processor core. Using this port is possible to precisely control and inspect the state
of a BGLsim node. Using the functionality of the simulated JTAG control port, it is
possible to use the same exact control software infrastructure that will be used in the
real machine.
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Fig. 3. The internals of a BlueGene/L node.

BGLsim includes models for all the cache levels of the memory subsystem. By
using these models, it is possible to analyze cache behavior of applications and the OS.
The BlueGene/L node has incoherent (between the two processors) L1 caches and we
correctly model that cache behavior. This is important to support testing of software
that manages the cache coherence explicitly.

Besides providing full system functionality, our simulator also provides network-
ing connectivity. Each simulated node has its own Ethernet MAC address and, when
running Linux, its own IP stack. This makes it possible to telnet or ftp into a simu-
lated node either from a real machine or from another simulated node. The torus and
tree interconnect devices have also been implemented. We give more details about the
interconnection scheme in Section 5.

BGLsim is centered around the instruction simulator. This instruction simulator is
organized as an infinite loop, shown in Figure 4, with each iteration performing the
following steps: instruction fetching, instruction decoding, instruction executing (may
include memory operation and register updating), asynchronous devices polling, and
timer update. A memory operation is composed by the following sub-steps: address
translation, permission checking, and memory access (read or write). When the memory
operation accesses a memory mapped device, simulation of that device is activated.
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For each instruction executed, BGLsim can generate trace information which provides
detailed information of the operation performed. That trace information can be passed
to on- or off-line analysis programs, such as the IBM SIGMA tool chain [5].

Fetch

Decode

Execute

Poll Devices

Update Timer

Translate Address

Check Permissions

Access Memory

Update Registers

Fig. 4. Main simulation loop of BGLsim.

4.2 Running code with BGLsim

A version of the Linux operating system has been ported to BlueGene/L using BGLsim.
This allows executing unmodified applications, collecting statistics, debugging new ap-
plications and validating design choices before building the actual hardware. At this
time, we have successfully run database applications (eDB2), linear algebra kernels,
and codes from the Splash-2, Spec, and NAS Parallel Benchmarks suite.

When modeling a single-node machine with 256MB of memory, BGLsim can sim-
ulate up to 2 million BlueGene/L instructions per second when running on a 1GHz
Pentium III machine with 512MB of RAM. (Even in multi-node simulation, this speed
is still maintained if each node in the host cluster is simulating one BlueGene/L node.
More information about multi-node simulation is given in Section 5.) The simulation
rate drops to about half when tracing is enabled. In order to reduce the overhead and
the trace file size imposed by the trace functionality, we have devised a scheme that
allows selective trace acquisition. It is possible to gather trace information selectively
for a given process in the Linux image, ignoring activity related to other processes.
This selective tracing facility relies on the call-through scheme of BGLsim, explained
below.

The simulator provides additional services to executing code through a call-through
instruction that is not part of the processor instruction set. When the simulator finds this
instruction during execution, it invokes its call-through handler. Parameters are passed
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to the simulator through registers of the simulated machine and, depending on those
parameters, specific actions are performed by the call-through handler. This instruction
can be called by any type of program that runs on the simulated machine. Some of the
services provided through this mechanism are described below.

– Host real time clock: this information is useful when evaluating the simulator itself.
It is possible to use this information to measure the time an application takes to run
in the simulated environment.

– Instruction counter: if an operating system is running on the simulated hardware,
this call-through returns the number of instructions already executed in the current
process, otherwise it returns the global instruction counter.

– Trace on/off : turns tracing information generation on and off. It is possible to spec-
ify it to be either global trace or per-process trace.

– Histogram on/off : same as above except that the trace information is dynamically
summarized into an instruction histogram.

– Stop/suspend simulation: the program being run has the ability to stop the simula-
tion, either going to the simulator command line or completely exiting the simula-
tor.

– Message output to trace: the program can send strings to be included in the trace
file.

– Environment variables from host: the program being run can read the value of en-
vironment variables from the host. This is useful to parametrize the workload when
running several instances of the simulator.

– Task operation: informs the simulator that the operating system has switched to a
different process, created a new process, or terminated an existing process.

In order to support OS dependent information, we instrumented Linux to inform
the simulator about events like context switching and termination of a process. This
was done using single instruction call-throughs, in order to have the least interference
possible. The parameters of these call-throughs inform the simulator about the action
being performed (process creation, context switching, process termination), and the
processes involved.

4.3 Debugging support in BGLsim

Since the focus of BGLsim is on assisting with software development, we have pro-
vided extensive debugging support in it. The debugging scenarios possible with this
simulator are:

– Single-instruction step: It is possible to run a program instruction by instruction and
see it disassembled, along with machine state information. This feature is useful for
debugging code generation tools, such as compilers and assemblers.

– Running gdb on simulated machine: Because the simulator is capable of running
unmodified code, it is possible to run gdb on the simulated machine. However, the
overhead caused by this process costs time on a simulated machine.
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– Running gdb on a separate machine, with TCP stubs on the simulated machine: In
this case, only a simple stub runs on the simulated machine and an external gdb pro-
cess that runs on a real machine can connect to this stub through the network. This
reduces the overhead caused by the debugging process running on the simulated
machine and is appropriate for debugging user code.

– Kernel debugging: Kernel debugging can be provided by direct communication be-
tween the simulator and debugging tools running on the host machine. We have
implemented our own debugging client, that communicates directly with the sim-
ulator through a non-architected back door. This same debugger can also be used
with user code.

4.4 Validating BGLsim

We verify the correctness of our simulator using VHDL simulations. We run the same
test cases in both simulators. Both of them give us the same result, differing only in their
timing accuracy. Our simulator is functionally accurate, has some timing information,
and runs faster. The VHDL simulator is cycle accurate and runs slower. Because our
simulator runs much faster than the VHDL simulator, it is appropriate for software de-
velopment. If we need to get more detailed performance measurements, then the VHDL
simulator is used.

5 Multi-node simulation

BlueGene/L is an inherently parallel machine. Therefore, it is vital that BGLsim be
capable of simulating multi-node configurations, interconnected in the same way that
they will be in the real machine. In this section we describe how we implemented multi-
node simulation in BGLsim.

BGLsim runs on a Linux/x86 platform. A multi-node configuration of BGLsim
is an MPI application, running on an Linux/x86 cluster, simulating a cluster of Blue-
Gene/L nodes (a virtual BlueGene/L machine). Thus, if the BGLsim instances are run-
ning Linux/PPC, we have a virtual Linux/PPC cluster running on top of a Linux/x86
cluster. When an MPI application is running in BlueGene/L, the simulation stack would
look like Figure 5. Again, at the bottom of the stack we have the host hardware, which
is an x86 cluster. Each node of that cluster runs an image of the Linux operating system.
BGLsim is an MPI application that implements a (virtual) BlueGene/L machine. We
run an image of the Linux operating system on each simulated node and then run an
MPI test application.

As described in Section 3, BlueGene/L provides several ways of exchanging data
among nodes and also between nodes and external entities, like the control system and
a file server. This section describes the approach for providing a scalable and robust
mechanism of supporting a multi-node simulation.

5.1 Organization of multi-node BGLsim

When running a multi-node simulation, BGLsim is an asymmetric parallel application.
Several, not necessarily identical processes run in different host cluster nodes and com-
municate with each other to implement the multi-node simulation. All the processes in
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BG/L MPI

Application

BG/L Linux

BG/L hardware

BGLsim

x86 MPI

x86 Linux

x86 hardware

Fig. 5. Stack when BGLsimis running an MPI application

BGLsim use a common library called CommFabric for all the communication services
involved in the simulation. Figure 6 shows the general architecture of a multi-node sim-
ulation. Note that although torus and tree appear in the figure as clouds, their simulation
is done in the bglsim process. The clouds appear in the figure to represent how simulator
messages are routed in each simulated network.

JTAG

JTAG

library
control

ethernet
control

idochip ethernet

ethgw
to outside world
(DHCP, NFS...)

bglsim bglsim
Compute

bglsim
Compute

bglsim bglsim bglsim
Compute Compute
node node

nodenode
I/O
node

I/O
node

tree torus

control
system

Fig. 6. BGLsim multi-node simulation architecture.

There are three different types of processes involved in a BGLsim multi-node sim-
ulation:

bglsim This process is a single BlueGene/L node simulator. The simulation environ-
ment will have as manyBGLsim processes as the number of nodes being simulated.
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ethgw This process provides connectivity services between the virtual Ethernet net-
work in the multi-node simulation environment and the external network. This gate-
way makes the real external network visible to the simulated BlueGene/L nodes.
This allows, for instance, one BGLsim node running Linux to mount volumes
served by a real NFS server.

idochip This process makes the interface between the external control system and the
nodes involved in the simulation. It translates commands encapsulated in IP packets
to JTAG transactions. Using its services, the control system, external to the simula-
tion environment, can send low level commands to specific nodes.

When a program running on top of BGLsim sends a message through any of the
interconnection devices, the corresponding device model sends a message to the simu-
lated destination node. This node then gets the message and puts it in the corresponding
device model’s incoming buffer, that is then read by the device driver.

In order to have an organized way to describe a simulated machine, a data structure
called bglmachine was created. This data structure holds information for each node
in the simulated machine, like memory and cache sizes, network addresses, and torus
coordinates. In addition to information about nodes, bglmachine also holds informa-
tion about the topology of the interconnection networks, which is essential for a proper
simulation of the routing process.

Since there are many processes involved in a multi-node simulation, it can get com-
plicated to start a simulation. In order to solve this problem, we created a simulation
launcher called simboot. When simboot is executed, it reads an XML file with
the description of the simulated machine, and builds an instance of bglmachine that
holds this information, the processes are then launched among the available nodes in
the host Linux/x86 cluster.

5.2 Communication services

As mentioned before, BGLsim supports inter-process communication through a library
called CommFabric. CommFabric exposes an abstraction API to BGLsim for the com-
munication services. For instance if a message is sent through the Ethernet network,
the device model calls send ethernet(void *packet), and CommFabric then
takes care of mapping the destination MAC address present in the header of the Ether-
net frame to the right BGLsim node. CommFabric provides similar services for sending
data through the simulated torus, tree, and JTAG networks. CommFabric uses MPI as
its transport layer, so it maps addresses for the various networks to MPI ranks of the
corresponding processes. BGLsim processes have separate threads for communication
and simulation.

It would be simpler to make CommFabric send packets directly from the source
to the destination node when transporting packets through the virtual torus interconnect
and the virtual tree interconnect. However, we decided to make packets follow the actual
route they will take in the real machine. In the torus interconnect, there is a deposit
option that leaves a copy of the packet in each node that the packet traverses in a given
direction. To simulate this feature we need to do the routing. Correspondingly, the tree
network is a class routing network, and the routing depends on routing tables present in
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each node. Therefore, to properly simulate the communication and validate the routing
tables, we had to implement actual routing.

BGLsim multi-node simulation supports the following interconnection networks:

torus This is the main interconnection network between compute nodes. As described
in section 3, this is a three-dimensional torus interconnect. When a message is
sent through the torus interconnection device, the CommFabric library performs
the actual routing through the simulated torus based on the �����������
	 address of the
destination node.

tree This interconnection network is organized as a tree of nodes. It is intended mainly
for I/O operations and global reduction operations. In this case, when a message is
sent, CommFabric implements the routing of messages by following a tree routing
table in each node.

global interrupts This interconnection network is also organized as a tree, and pro-
vides global AND/OR operations. CommFabric implements the routing of signals
in this network.

ethernet This interconnection network is an Ethernet network that involves all the I/O
nodes in the simulation. When a packet is sent through this network, CommFabric
maps the MAC address of the destination node to the MPI rank of the node and
sends the message directly. If the destination MAC address is not part of the local
network, this message is sent to the Ethernet gateway (ethgw) and the message is
then relayed to the real Ethernet network.

jtag This service, implemented by the idochip process, provides communication be-
tween the control system network and individual nodes. The kind of messages it
transports are low-level control messages (JTAG). When a message arrives in the
idochip from the control network, it uses the CommFabric to send the message to
the corresponding BGLsim node.

6 Practical experience with BGLsim

Examples of successful use of BGLsim include: Porting of Linux to the BlueGene/L
I/O nodes, development of a lightweight kernel for the BlueGene/L compute nodes,
testing of the BlueGene/L compilers, development of an MPI implementation for Blue-
Gene/L, executing some unmodified MPI benchmarks, porting of LoadLeveler (IBM’s
job management system) to BlueGene/L, and development of the control system for
BlueGene/L. In this section, we give more details on three particular experiences with
BGLsim: The testing of BlueGene/L compilers, experiments with the NAS Parallel
Benchmark IS, and evaluation of simulation speed.

6.1 Compiler testing and validation with BGLsim

The BlueGene/L machine double FPU unit has a novel design that cannot be exploited
by conventional compilers. For that reason, there was an effort to develop a compiler
(and assembler) that would be able to take advantage of the new features of the dou-
ble FPU. Since the compiler is very specific to the architecture, we could not test its
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new capabilities on other hardware. Since the BlueGene/L machine hardware was not
available at that time, BGLsim was of great help in the compiler debugging process.
We were able to find and repair bugs in the compiler. For example, in one situation the
compiler was generating a binary instruction with its operands in the wrong position.
With the available instrumentation in BGLsim, we were able to generate traces and
identify the problem. In other cases, we were able to detect wrong code generation for
specific operations and to identify problems in the register allocation algorithm.

6.2 NAS IS Parallel Benchmark experiment

In order to validate and demonstrate our simulation environment, we chose to run an
MPI application over the Ethernet network. We believe this to be a stressing case for the
simulator, as it exercises IP stacks and Linux in all nodes. (In the “normal” BlueGene/L
configuration, Linux runs only on the I/O nodes.)

The application chosen is the IS (Integer Sort) kernel from the NAS Parallel Bench-
mark suite version 2.3 [3, 10]. It is a parallel integer sort problem that sequentially
generates keys at the beginning and then sorts them. In its performance measurements,
it accounts for communication and computation. The problem size we used was the
sample (S) size, which was kept the same when varying the number of processors. We
changed the program timer to not only get the time on the simulated machine but also
the process’s instruction counter. This takes advantage of our per process instruction
counters.

To run the experiments, we cross-compiled the LAM/MPI 6.5.4 and common Linux
network utilities such as telnetd and rshd. We also built a ramdisk with all the basic
utilities, lamd and the cross-compiled IS benchmark for 1, 2, 4 ,8, 16 and 32 processors.
In a cluster of Linux/x86 host machines, we booted a 32-node BGLsim simulation, and
ran the experiments.

In Figure 7, we plot the number of instructions spent on communication, the number
of instructions spent on computation and the total number of instructions per process, as
a function of the number of processes. As expected, the number of instructions for com-
putation decreases as the number of processors increases and the number of instructions
used for communication increases with the number of processors.

By analyzing the total number of instructions, we can verify that the configuration
for this problem size that results in the least number of executed instructions (per node)
is the one that uses 16 nodes, when the communication overhead is not so high and
there is still a significant gain in splitting the computation.

6.3 NAS Parallel Benchmarks slowdown

In order to analyze the slowdown introduced by our simulator in the execution of an
application, we have executed all the NAS Parallel Benchmarks with a varying number
of nodes. We compare the execution time of the benchmarks when running natively on
our x86 Linux host machines and when running on the simulated BlueGene/L machine.

Table 1 presents the results obtained, in the form of slowdown. That is, the ratio of
simulation time and native time. We used the class S size for all benchmarks. Most of
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Fig. 7. Computation and communication instructions executed per node in the NAS Parallel
Benchmark IS (size S), as a function of the number of nodes used in the computation.

the benchmarks were run on 2, 4, 8, and 16 nodes. The BT and SP benchmarks require
a square grid and therefore were executed on 4, 9 and 16 nodes. The class S of LU can
only be executed with 2 and 4 nodes, due to the problem size.

We observe that the mean slowdown for all these benchmarks is around 600, that
is, the simulation takes 600 times the real execution time of the benchmark running
natively on the host system. Among the benchmarks, EP is the one that suffers a sig-
nificantly higher slowdown. In general, the slowdown of the simulations decrease when
the number of processors is increased. The likely reason is that the slowdown for our
simulation of computations is higher than the slowdown for our simulation of commu-
nications.

benchmark / nodes 2 4 8/9 16

BT - 660 570 490
SP - 530 450 400
IS 260 220 170 150
CG 640 540 510 500
FT 790 570 480 230
LU 670 340 - -
EP 1750 1670 1530 1250
MG 680 350 270 280

Table 1. Slowdown of the simulated NAS Benchmarks.
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7 Conclusions

We have presented a complete parallel system simulator that is being used for software
development and hardware analysis and verification. It is capable of running the same
exact code that runs on real hardware. System software has been instrumented to col-
lect additional important information that would be impossible to gather in real hard-
ware. The simulator has been useful in porting compiler and operating system code,
in developing MPI libraries, control and monitoring systems, and job scheduling and
management tools.

Experiments were performed to validate the functionality of the simulator and mea-
sure simulation speed. We were able to gather data from individual processes in the
simulated system through the use of joint instrumentation between the simulator and
the operating system.

The simulator we developed is not cycle accurate. It is useful for developing and
evaluating code for a large-scale parallel machine and verifying its architectural design
before it is deployed. We believe it can provide significant input for future designs of
parallel systems. To make the simulator even more useful, we are currently extending it
with timing models that account for functional unit latencies, memory system behavior
and inter-node communications. These timing models will provide approximate perfor-
mance information for applications and system software. Although not cycle accurate,
we believe the timing models can have enough accuracy to support design decisions, in
both hardware and software.
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