
Event Queries on Correlated Probabilistic Streams

Christopher Ré, Julie Letchner, Magdalena Balazinska and Dan Suciu
Dept. of Computer Science and Engineering,University of Washington

Seattle, WA, USA
{chrisre,letchner,magda,suciu}@cs.washington.edu

ABSTRACT
A major problem in detecting events in streams of data is that the
data can be imprecise (e.g. RFID data). However, current state-of-
the-art event detection systems such as Cayuga [14], SASE [46] or
SnoopIB[1], assume the data is precise. Noise in the data can be
captured using techniques such as hidden Markov models. Infer-
ence on these models creates streams of probabilistic events which
cannot be directly queried by existing systems. To address this
challenge we propose Lahar1, an event processing system for prob-
abilistic event streams. By exploiting the probabilistic nature of the
data, Lahar yields a much higher recall and precision than deter-
ministic techniques operating over only the most probable tuples.
By using a novel static analysis and novel algorithms, Lahar pro-
cesses data orders of magnitude more efficiently than a naïve ap-
proach based on sampling. In this paper, we present Lahar’s static
analysis and core algorithms. We demonstrate the quality and per-
formance of our approach through experiments with our prototype
implementation and comparisons with alternate methods.

Categories and Subject Descriptors
H.2.5 [Database Management]: Systems—Query processing; G.3
[Mathematics of Computing]: Probability and Statistics; F.4.1
[Mathematical Logic]

Keywords
Query Processing, Hidden Markov Models, Probabilistic
Databases, Streams

General Terms
Algorithms, Management, Performance, Theory

1A lahar is a stream of water mixed with dirt that flows down the
side of a volcano, typically after an eruption such as that of Mount
St. Helens in 1980. The Lahar system manages dirty streams of
probabilistic data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.!"

#$%
&!
'(
()

H3H2H1

H4

O3O2O1

S1

BA
6

?
7
?

?
7
?

Figure 1: At time 6 Joe is in hallway H1 and is read by antenna A,
so we are sure of his precise location. At time 7, we do not receive any
reading and so our knowledge of his location is imprecise: has he has
entered his office, O2, or continued down the hall to H2 and simply been
missed by antenna B?

1. INTRODUCTION
In this paper we study event queries on probabilistic data

streams. The data is streaming continuously from real-time data
sources such as sensors [39], ticker feeds [37], or network mon-
itors [5], or from historical data sources such as a sensor data
archive [11], a ticker history [37], or a network flow database [5].
Applications need to extract complex events (often user-specified)
from these streams of low-level atomic events. Such applications
include supply chain management [43], financial services [14],
business activity monitoring [21], elder care [27, 32], and various
pervasive computing applications [12, 25, 28]

Rich query languages supported by existing event detection en-
gines such as Cayuga [14], SASE [46] or SnoopIB [1] are designed
to extract sophisticated patterns from event streams. They support
powerful constructs such as joins, regular expressions, selections,
and projections. However, these languages require the data to be
precise. In many of the above application domains, the data is in-
stead imprecise due to either errors (e.g. missed readings in an
RFID deployment [20, 23]), or because the data is the output of
inference or predictive algorithms [12, 27, 32]. To address this
problem, we propose Lahar that supports complex event queries on
imprecise data streams.

1.1 Motivation
Our primary motivating application is an RFID deployment as

can be found inside a supply chain or department store [6], an
office building [40], or a hospital [38]. In an RFID application,
a fundamental relation is the location of people and objects over
time. Ideally, we would query this relation as a stream of tuples
with schema At(person, location, time). A tuple in the At relation,

(‘Joe’, ‘Room 326’, 10:05am) is called an event and tells us that Joe
was in room 326 at 10:05am. RFID-based applications are typi-
cally interested in transforming sequences of such low-level events
into higher-level events: e.g. “Joe is getting coffee”, “A database
group meeting just started”. These can be expressed as complex
event queries in a high-level, declarative query language such as
Cayuga [14], SASE [46], or SnoopIB [1]

RFID deployments, however, produce data that is imprecise for
three main reasons: conflicting readings, e.g. Alice is read by two
adjacent antennas, what is her true location? [20]; missed readings,
e.g. readers commonly detect only about 60%-70% of tags in their
vicinity [4, 20]; and granularity mismatch, an application queries
about offices, but the system only provides information about sen-
sors. Fig. 1 illustrates the problem. In this scenario, a user, Joe,
wearing an RFID tag, is walking through a building instrumented
with RFID readers. At time 6, antenna A has detected Joe’s tag, re-
moving almost all uncertainty about Joe’s location. However, there
is no reading for Joe at time 7, and so there are at least two possible
options. The first is that Joe could have gone into his office, O2,
where there are no sensors. Alternatively, he could have continued
down the hallway, and his tag was missed by antenna B. In large-
scale RFID deployments, read rates vary widely between 10% and
90% [44], making it impossible to distinguish between the various
possible cases.

A common approach to dealing with such imprecise data is to
build a model of the data and use raw readings as input to the
model. For our application, the standard approach is to use a tem-
poral graphical model, the simplest of which is the hidden Markov
model or HMM. In general, HMMs are used to infer a hidden state
based on a sequence of observations, e.g. the location of a person
based on sensor readings. In a real-time application we can use an
HMM to produce a distribution over Joe’s location at each timestep.
In an archived application we can continue to use HMMs, but
can now leverage more sophisticated techniques such as smooth-
ing [26]. Smoothing not only provides a more accurate distribution
over Joe’s location at each timestep, but also provides correlations
between Joe’s locations at different timesteps. For example, if we
determine that Joe really went into his office at t = 7, it is more
likely that he will continue to stay in his office at t = 8. In other
words, Joe’s location at time t is correlated with Joe’s location at
time t + 1.

Answering simple queries in a declarative language over the
probabilistic, correlated output of an HMM has previously been
studied [22], but only for queries that do not relate different points
in time. Many applications require sequences, projections and
joins, and so this limited query model is insufficient to meet their
needs. In this paper we propose instead to process complex event
queries on correlated, probabilistic streams. Our query language is
a subset of Cayuga and supports joins, selections, projections, and
regular expressions. The query semantics requires complex proba-
bilistic computations at runtime, and our main contribution consists
of developing techniques to perform these computations efficiently
on archived and streaming data.

More precisely, we identify four increasingly general classes
of queries and develop new algorithms for each of them. Regu-
lar Queries consist of selections and regular expressions, and can
be evaluated in streaming fashion; Extended Regular Queries add
projections and joins across time and can also be evaluated in a
streaming manner; Safe Queries add more complicated interleav-
ings of projections and sequencing, which require a more sophisti-
cated probabilistic stream algebra, and can be efficiently executed
on bounded, archived data; and finally, Unsafe Queries are prov-
ably hard to evaluate and for these we develop an approximation

algorithm.
An alternate approach is to discard the probabilities and corre-

lations produced by the low-level inference technique and simply
choose the single most likely location at each timestep. Cayuga
queries can then be run directly on the now-deterministic stream
using their standard semantics. However, we experimentally verify
that our approach yields both a higher recall and higher precision
than this approach for complex event queries, e.g. over 30% im-
provement in both precision and recall.

Another approach is to encode all queries as higher-level goals
directly in the HMM [12, 27, 32]. The limitation of this approach
is that the set of possible queries is predefined by the hard-coded
model. A third alternate approach is to store the streams in a prob-
abilistic relational database [3, 9]; however, probabilistic databases
do not operate on sequences or streams.

Finally, our techniques are more generally applicable than RFID
tracking. For example, elder care (or care of the cognitively im-
paired) applications require that the system infer the elder’s activi-
ties over time from a variety of sensor readings [27, 32, 41]. Care-
givers may want to query these activity streams [41]: did the elder
take her medicine today? Did she brush her teeth before going to
bed? A variety of other applications use HMMs and could similarly
benefit from our system (e.g., [12]).

1.2 Contributions
Our main contributions are a set of algorithms for efficiently pro-

cessing queries on correlated probabilistic streams. Our approach
allows for significantly increased precision and an increase. It is
efficient in practice, processing safe queries at a speed of over
100 Ktuples/sec. In Sec. 3, we give our core algorithmic contribu-
tions, all of which are implemented in Lahar. We briefly summarize
them below:

1. In Sec. 3.1, we provide an efficient algorithm for process-
ing Regular Queries over probabilistic event streams. These
streams can contain simultaneous events and correlations
across time.

2. In Sec. 3.2, we provide an efficient algorithm for Extended
Regular Queries. We also provide a sound and complete
static analysis to identify extended regular queries.

3. In Sec. 3.3, we provide an algorithm based on a novel al-
gebra for probabilistic streams that allows us to identify and
efficiently process the more general class of Safe Queries.

4. In Sec. 3.4, we give evidence that Safe Queries are the broad-
est class of queries that can be computed efficiently: We
show that even minor extensions lead to intractability, i.e.
]P-hardness.

5. In Sec. 3.5, we present a general algorithm based on naïve
random sampling. It can process any query, but is orders of
magnitude slower than our other algorithms.

In Sec. 4, we experimentally verify the quality and performance
of our system on a variety of simulated and real RFID traces and
scenarios.

2. PRELIMINARIES
In this section we present our data model, query language, and

probability model.

2.1 Data Model
An event is a tuple e conforming to the schema EventType(ID,

a1, . . ., an, T), with two distinguished attributes: an event key
(ID) and a timestamp (T). e represents some real world event
such as “Joe got coffee in room 326 at 10:05am”. To indicate
the key we underline it, e.g. person is the key in the event

GotCoffee(person, room, T). The attribute T denotes the time when
the event ended (e.g., the time when Joe got back from the coffee
room with his coffee). A stream (or sequence) of events is a set of
events of the same type with the same event key (ID), but distinct
timestamps (T). An event database consists of several streams of
events and, optionally, standard relations. Events are continuously
appended to the streams. We assume that the value of the attribute
T also corresponds to the time when the event tuple is inserted into
the database.

A snapshot of the database taken at time n thus contains a set
of stream prefixes. We call each such snapshot a world W and
denote it as a sequence of sets of tuples: W = (w1, . . . ,wn) where
wi

def
= {e | e ∈ W, e[T] = i} (each wi is the set of events inserted into

the database at time i).

2.2 Event Query Language
Our query language is a strict subset of Cayuga [14], consisting

of selections, sequencing, joins, and Kleene plus. We describe it
here briefly. To define event queries, we first define a subgoal, a
condition, and a base query.

A subgoal is a relational symbol with a list of variables
and/or constants without T. For example, given a relation
At(person, location, T), then At(x, ‘Room201’) is a subgoal that
denotes an event (i.e., a tuple from At) where a person visited room
201 at some time. A condition θ is a complex Boolean expression
over variables, e.g. y > 20, or Hall(z). The latter is a relational
query checking whether z occurs in the relation Hall.

D 2.1. A base query, bq, is either σθ(g) (a subgoal
with a predicate) or (σθ(g))+〈V, θ2〉 (parametrized Kleene plus).
Here, V denotes the set of variables that are shared across the un-
foldings of the Kleene plus and θ2 is a predicate applied to each
unfolding. An event query, or simply query, is defined recursively
as a base query, or if q1 is a query and bq is a base query, then
q = q1; bq (sequence) and σθ(q1) (selection) are queries as well.

We define a query in two stages because, in our language, we
restrict all sequencing to be left-associative: E1; E2; E3 means
(E1; E2); E3. We don’t allow E1; (E2; E3) as in Cayuga [45]. We
write goal(q) for the set of subgoals in q. We write var(θ), var(g),
var(q) for the set of variables in a condition, a subgoal, or a query.

Example 2.2 The simple query from the introduction: “Joe got
coffee” can be expressed as a sequence of three events: (1) Joe is
in his office, (2) Joe is in a coffee room, (3) Joe is back in his of-
fice. In our language, assuming Joe’s office is room 220 and CRoom
contains a list of all coffee room locations, this query is:

qJoeCoffee = At(‘Joe’, ‘220’); (σCRoom(l)At(‘Joe’, l)); At(‘Joe’, ‘220’)

A more sophisticated query: “Tell me if anyone goes to the Cof-
fee Room without stopping at someone else’s office” can also be
expressed as a sequence of multiple events: (1) a person is in his or
her office, (2) the person is at a sequence of locations in the hallway
(without stopping in anyone else’s office), and (3) the person is in
a coffee room. In our language, this query is:

qAnyCoffee =σθ1 (At(p, l1); At(p, l2)+〈{p} , θ2〉; At(p, l3))
where θ1 = Person(p) AND Office(p, l1) AND CRoom(l3)
and θ2 = Hall(l2)

A query returns an event with one attribute for each free variable
and a timestamp, T; for a single subgoal g each variable in g is
free, for Kleene Plus g+〈V, θ〉 only the variables in V are free. For
a sequence, q = q1; g, the free variables are the union of the free

Let q be a query and W be a world. The semantics of q on W, ~q�W is a set
of events e, with attributes for each shared variable and T , defined as follows:

~g�W
def
= {e |e ∈ W AND e matches g}

~σθ(q1)�W
def
= {e | e ∈ ~q1�W and e[var(θ)] ∈ θ}

~q1; bq�W
def
= {e | e1 ∈ ~q1�W and e1[var(q1)] = e[var(q1)]
e2 ∈ S(e1, bq) and
e2[T] = mine′∈S(e1 ,bq) e′[T] and e[T] = e2[T]}

~q1;σθ1 (g)+{V, θ2}�W
def
= ~σθ2 (q1;σθ1 (g))�W

∪ ~σθ2 (FV̄

[
σθ2 (q1;σθ(g))

]
;σθ(g))�W

∪ . . .
where:

S(e1, bq) def
= {e′ | e′ ∈ ~bq�W , e′[var(bq)] = e1[var(bq)],

and e′[T] > e1[T]} (the set of events that come after e1)

V̄ def
= var(g) − V

FV̄ [e] def
= denotes substituting each variable in V̄ with a fresh one

Figure 2: Semantics of Lahar’s query language.

variables in q1 and g. We write var(θ), var(g), var(q) to denote
the set of free variables in a condition, a subgoal, or a query. The
formal semantic is in Fig. 2.

Most constructs have a standard semantics, which we informally
explain below. We call a variable shared if it occurs in more
than one subgoal or is shared in a Kleene plus. If a variable is
shared it must be bound to the same value–hence it expresses a
join, as in datalog (see e.g. the variable p denoting the person get-
ting coffee in qAnyCoffee). A sequence query q; bq pairs the events
returned by q with their immediate successors among events re-
turned by bq. The parameterized Kleene plus q+〈V, θ2〉 is a union
of a series of sequence operations, where the variables in V are
shared and the condition θ2 is applied at the end. For example,
consider At(p, l)+〈{p} , Hallway(l)〉. Here the variable p is shared,
while l is not, so the query asks for the same person but possi-
bly at different locations – all of which must be hallways. On
the other hand, in At(p, l)+〈{p, l} , Hallway(l)〉 both variables are
shared, which means that we require the same person to be at the
same location which must be a hallway in each unfolding. Bindings
to the shared variables are returned by the queries, while the oth-
ers are not: At(p, l)+〈{p} , Hallway(l)〉 returns a set of events with
attributes p and T only.

Finally, we say that a query q is satisfied at time t and write
W |= q@t, if there exists an event e with timestamp T = t that
satisfies q. Formally, there exists some e such that e ∈ ~q�W and
e[T] = t. In Lahar, for a query q, we returns the timesteps at which
q is satisfied without the events.

2.3 Probabilistic Event Databases
Let A1, . . . , Ak be k value attributes, where Ai takes values in

some domain Di. Let D̄ = D1 × . . .×Dk, and D̄⊥ = D̄∪{⊥}. A par-
tial random variable over A1, . . . , Ak is a function p : D̄⊥ → [0, 1]
s.t.
∑

d∈D̄⊥ p(d) = 1.
A probabilistic event, e, consists of a key (ID), a timestamp

(T) and a partial random variable over its value attributes. For an
illustration, let e be the event “Joe got coffee at 10:05am either
in room 326 with probability 0.2, or in room 327 with probabil-
ity 0.7”. The event key (Joe) and the event timestamp (10:05am)
are known, while the value attribute (room) is given as a random
variable. We write:

P[e = ‘Room326’] = 0.2, P[e = ‘Room327’] = 0.7

Notice that with probability 0.1 Joe did not have coffee at all
at 10:05am, in which case the room is ⊥, which we write as

(a) (b) (c) (d)
E(7)

tag T d’ d p

Joe 7 O2 O2 0.7

H2 0.4

H3 0.1

Joe 7 H2 O2 0.2

! ! ! ! !

Joe 7 H3 O2 0.1

! ! ! ! !

T tag loc p

7 Joe H1 0.4

H2 0.2

O2 0.4

7 Sue O2 0.6

! ! ! !

8 Joe O2 0.6

! ! ! !

Sue 7 O2 O2 0.1

! ! ! ! !

!

!

!

e(7)

e(8)

Joe 8 O2 O2 0.6

! ! ! ! !

E(7)

tag T d’ d p

Joe 7 O2 O2 0.7

H2 0.4

H3 0.1

Joe 7 H2 O2 0.2

! ! ! ! !

Joe 7 H3 O2 0.1

! ! ! ! !

T tag loc p

7 Joe H1 0.4

H2 0.2

O2 0.4

7 Sue O2 0.6

! ! ! !

8 Joe O2 0.6

! ! ! !

Sue 7 O2 O2 0.1

! ! ! ! !

!

!

!

e(7)

e(8)

Joe 8 O2 O2 0.6

! ! ! ! !

!
"#$
%&
!
'(
()

BA

H2

H3

O3O2O1

S1

H1
7 7

7

7

7

!
"#$
%&
!
'(
()

BA

H2

H3

O3O2O1

S1

H1

8

8

8

8

8

Figure 3: (a) A visual representation of a particle filter; a particle is a guess about Joe’s true location at time 7. (b) The distribution over Joe’s
location at t = 8, after Joe is not detected by any readers. The system has concluded it is likely that Joe is in his office, O2, with probability 0.6. (c) A
representation of an event relation, At. One stream is for Joe, highlighted as e(7) and e(8). This stream is interleaved with the stream tracking Sue’s
location. (d) Correlation in the At relation (the CPT). In particular, E(7) for Joe’s stream shows the conditional probability table for times 7 and 8.
The shaded rows highlight the distribution on his location at time 8 given that he was in his office at time 7. For example, given that Joe was in his
office at time 7, he is likely to remain in his office at time 8, because E(7)(O2,O2) = 0.7 and less likley to go to the hallway, E(7)(H2,O2) = 0.2.

P[e =⊥] = 0.1. Events with the same key are correlated. For
example the event “Joe is having coffee in Room 326 at 9:50am” is
positively correlated with the event “Joe is having coffee in Room
326 at 9:55am” and negatively correlated with “Joe is having coffee
in Room 327 at 9:50am” (because the room differs).

The value ⊥ denotes the absence of an event: For example, if
Joe did not get coffee one morning then all his GetCoffee events
for that time will have the value ⊥.

Let the sequence ē = (e(1), e(2), . . . , e(t), . . .) be a stream of prob-
abilistic events. We abbreviate P[e(t+1) = d(t+1) | e(t) = d(t)] with
P[e(t+1)|e(t)]. Then ē is Markovian if:

P[e(t+1)|e(1), . . . , e(t)] = P[e(t+1)|e(t)]

In this case, the probability of a particular sequence of values
d̄ = (d(1), d(2), . . . , d(t)) is given by Bayes’ rule:

µ(d̄) def
= P[e(1) = d(1)]

∏
i=2,...,t

P[e(i) = d(i)|e(i−1) = d(i−1)] (1)

We assume that a single stream can have Markovian correlations
across time, but that distinct streams are independent.

A probabilistic event database,W, consists of a set of proba-
bilistic event streams and, optionally, standard relations. We store
and process probabilistic event databases in a relational system, as
is done with deterministic event databases. Note that a Marko-
vian stream is fully specified by the conditional probability ta-
ble (CPT), E(t)(d′, d) = P[e(t+1) = d′ | e(t) = d], for d, d′ ∈ D̄⊥
and an initial marginal distribution P[e(0]. Thus a probabilistic
stream with value attributes A1, . . . , Ak can be stored in a rela-
tion with schema E(ID, T, A′1, . . . , A

′
k, A1, . . . , Ak, P). An example

of this encoding is shown in Fig. 3(d) (we further discuss this fig-
ure below). A particular case is that of an independent stream,
where E(t)(d′, d) = P(t)[d′], in which case the schema simplifies to
E(ID, T, A′1, . . . , A

′
k, P).

Finally, we give the formal semantics of a query over a prob-
abilistic event database W. Consider any world W. Let d̄ =
(d(1), . . . , d(t)) be a subset of events in W with the same key2: its
probability is given by Eq.(1). Then the probability of the world W
is µ(W) =

∏
d̄∈W µ(d̄).

D 2.3. LetW be a probabilistic event database and q
2We pad with ⊥ at all timestamps where the key is missing.

be a query. The value of q denoted µ(q) is defined as:

µ(q) def
=
∑

W:W |=q

µ(W)

Our goal is to process event queries on the most up-to-date data
in a probabilistic event database. Formally, for the remainder of the
paper we study the event query evaluation problem:

Event Query Evaluation Problem: Given an event query q and
any probabilistic event databaseW at time t, the event query eval-
uation problem is to calculate the probability that q is true at time
t, i.e. µ(q@t).

2.4 Generating Event Streams
A probabilistic event stream can be obtained by performing in-

ference on an HMM. In our motivating application, the input to
Lahar is the result of inference on an HMM that determines the
marginal distribution of the location of each RFID tag. In our ex-
periments, our input is generated by a popular, sample-based in-
ference technique called particle filtering [2]. Two examples of
sampled distributions produced by the particle filter are shown in
Fig. 3(a) and (b). Each particle represents a guess about Joe’s lo-
cation. The particle filter predicts the location of each particle at
the next time step based on its current location, but independently
from the location of any other particle. It then resamples the par-
ticles, choosing with a higher probability those particles that are
more consistent with the sensor readings. For example, if a sight-
ing occurs at antenna A, then particles near antenna A are more
likely to be resampled. To compute a marginal probability distribu-
tion such as in Fig. 3(c), we simply count the number of particles
in each location and divide by the total.

Lahar is designed for two different scenarios: a near real-time
scenario, or simply real-time, where we immediately consume the
output of inference, and an archived scenario, where we are able
to preprocess the data. The real-time scenario models the situa-
tion when our system does not have access to correlation infor-
mation and so must assume that each tuple is independent. By
contrast, the archived scenario assumes correlation information is
available. Specifically, we apply Bayesian smoothing [26, 31]
which not only reduces the noise in the marginal distributions,
but also produces consistent Markovian correlations between ad-
jacent timesteps, which are captured in CPTs as in Fig. 3(d). In the

archived scenario, Lahar uses these CPTs to extract higher-quality
events. Hence, in the real-time scenario, Lahar operates on inde-
pendent streams while in the archived case, it processes Markovian
streams.

3. PROCESSING EVENT QUERIES
We now turn to the problem of evaluating the probability of

a query q on a probabilistic event database W. We describe
four algorithms, applicable to four increasingly complex classes of
queries: Regular, Extended Regular, Safe, and General.

Regular Queries We first consider regular queries, which are
similar to standard regular expressions.

D 3.1 (R Q). A predicate θ is local in q
if var(θ) ⊆ var(g) for some subgoal g in q. A query q is regular if
every predicate is local and there are no shared variables, i.e. for
any distinct subgoals g, g′ we have var(g)∩var(g′) = ∅ and Kleene
pluses do not share (or export) variables.

Example 3.2 As a simple illustration, the Regular Query below
checks whether Joe went from ‘a’ to ‘c’ by going only through the
Hallway:

qJoe,hall = At(‘Joe’, ‘a’); At(‘Joe’, l)+〈∅, Hallway(l)〉; At(‘Joe’, ‘c’)

In Sec. 3.1 we describe an algorithm for Regular Queries. Its com-
plexity is given below:

T 3.3. Fix a Regular Query q. Then q can be evaluated
on a probabilistic event database W in time O(|W|) and space
O(1). Further, we can incrementally compute q with each step re-
quiring time O(1).

Thus Regular Queries can be evaluated in streaming fashion.
Extended Regular Queries Extended Regular Queries allow

some projections and joins in addition to regular expressions.

D 3.4. A query q is syntactically independent on x if
(a) x is shared among all subgoals, (b) x is in a key position in every
subgoal, and, (c) if g, g′ are subgoals of the same stream type, then
there must exist a position i in the key such that x occurs at position
i in both g and g′.

D 3.5 (E R Q). A query q is ex-
tended regular if all predicates are local and for any variable x
that appears in more than one subgoal (or is shared by a Kleene
plus), q is syntactically independent on x.

This definition implies that if we substitute distinct constants
c1, c2 for x, then no tuple can unify with both q{x → c1} and
q{x→ c2}.

Example 3.6 This Extended Regular Query asks for an alert when
any person goes from ‘a’ to ‘c’ using Hallways in between.

qhall = σPerson(x)(At(x, ‘a’); At(x, l2)+〈{x} , Hallway(l2)〉; At(x, ‘c’))

Sec. 3.2 discusses the algorithm for Extended Regular Queries; its
complexity is:

T 3.7. Let q be an Extended Regular Query. Then q can
be evaluated on a probabilistic event databaseW in time O(|W|)
and in space O(m), where m is the total number of distinct keys
in W. Further, we can incrementally compute Extended Regular
Queries, with each step of the algorithm requiring time O(m).

Thus Extended Regular Queries can also be evaluated in stream-
ing fashion. Their memory requirements depend on the number of
distinct key values in the streams, e.g. the number of people and
objects that the system is tracking. However, this number is inde-
pendent of the length of the streams.

Safe Queries The third class of queries we consider are Safe
Queries.

D 3.8 (S Q). Fix a query q where all predi-
cates are local. Given a variable x, let q′ be the smallest subquery
in q that contains all occurrences of x, then we say x is grounded
if q′ is syntactically independent on x. A query q is safe if every
predicate is local and any variable that appears in more than one
subgoal (or is shared by a Kleene plus) is grounded in q.

Recall that a subquery q′ is a prefix of q. Thus, in Def. 3.8, q′

is the shortest prefix of q that contains all occurrences fo x. In
particular, x must occur in each subgoal of this prefix, since q′ is
syntactically independent on x.

Example 3.9 The following Safe Query checks whether a person
x went to a talk: It first checks that the person and a laptop were in
an office, then that the person and the laptop were together until the
person entered a lecture room:

qtalk = σθ(Carries(x, y, z); (Carries(x, y,−))+〈{x, y} , 〉; At(x, u))

where θ(x, y, z, u) = Person(x), Laptop(y), Office(z),
LectureRoom(u).

Sec. 3.3 discusses an algorithm for evaluating Safe Queries. Its
complexity is:

T 3.10. Let q be a Safe Query. Then q can be evaluated
on a probabilistic event database W in time O(|W|2) and space
O(T 2), where T is the number of distinct timestamps inW.

Thus while Safe Queries can be computed efficiently on a stored
probabilistic event database, they cannot be computed in streaming
fashion because the history that we need to maintain increases with
the size of the streams. We describe in Sec. 3.3 extensions and
variations of Safe Queries, whose definitions are more involved,
but which have the same complexity.

Finally, in Sec. 3.4, we show that even minor extensions of safe
plans are provably hard to evaluate, e.g. even a single non-local
predicate is intractable. For these most general queries we describe
a general-purpose evaluation algorithm in Sec 3.5.

3.1 Regular Queries
Despite their names, Regular Queries have a more subtle seman-

tics than regular expressions. Consider the following example:

Example 3.11 Here, q f and qs are seemingly equivalent Regular
Queries, but they are not:

q f = R(a); R(b) and qs = σy=‘b’(R(a); R(y))

Intuitively, the two queries differ only on the order in which they
apply the condition y = ‘b’: q f uses it to filter the stream,
while qs applies the condition after first selecting a successor
for R(a). More concretely, consider the input sequence I =
{R(a, 1);R(c, 2);R(b, 3)}, i.e. an R(a) event at time 1, followed by
an R(c) event at time 2, followed by an R(b) event at time 3. At
time 1, q f sees the tuple R(a), and now looks for a successor, but
only among R(b) tuples; it finds one at time 3 and so is true at t = 3.
In contrast, qs also sees the R(a) tuple at time 1, but now looks for
its successor among all tuples of the form R(x) – there is only one
successor at time t = 2, R(c), which does not satisfy the predicate
x = b. Thus, q f is not satisfied by this input stream.

In spite of these subtleties, we show that Regular Queries can be
translated into standard regular expressions by choosing an appro-
priate input alphabet and translating the input probabilistic event
database into this alphabet. Our technique also encodes the action
of the NFA as a Markov Chain, which allows us to keep track of
probabilities using matrix multiplication.

3.1.1 Translation to Regular Expressions
To reduce the number of cases for our translation, we first push

down selections as far as possible by repeatedly applying the fol-
lowing two identities to the query: first, σθ(q1; q2) = σθ(q1); q2 if
var(θ) ⊆ var(q1) and then σθ1 (σθ2 (q1)) = σθ′ (q1), informally we
take θ′ = θ1 ∧ θ2. At the end of this process, there are two cases,
either: (1) a selection applies directly to a subgoal σθ(g), for exam-
ple in σy=b(R(y)), which we might as well replace with R(b), or (2)
a selection applies to the last subgoal in its child sequence, e.g. in
σθ(. . . ; g) we have var(θ) ⊆ var(g). Both q f and qs are unchanged
by these rules.

Our translation consists of four steps: (I) defining a set of sym-
bols Lq, on which our automaton operates (II) translating an event
database W (without probabilities) into a sequence of subsets of Lq:
that is, let Σ = P(Lq), the power set of Lq, then any event database
W is translated into a word in Σ∗. (III) translating the query q into
a regular expression Eq over Σ, and (IV) recovering the Markov
chain over Σ that is induced by the probabilistic event databaseW.
We show these steps next.

(I) Let g1, . . . , gn be a left-to-right enumeration of the subgoals of
q. Since q is regular, each predicate in a query q is associated with
a single subgoal. Without loss of generality, we also may assume
that every subgoal gi is associated with exactly one predicate σi.
For example, q f introduces a trivial selection, that is, q f becomes
σtrue(R(a); R(b)). Further, we may also assume base queries do not

contain selections. We then define Lq
def
= {m1, . . . ,mn} ∪ {a1, . . . an}.

Here, for each i = 1, . . . , n, mi and ai are simply distinct constants;
we give them a semantics below. Finally, since multiple symbols
can occur simultaneously, we define the language of the automaton,
Σ, to be Σ = P(Lq).

(II) Let W be an event database: we translate this into a sequence
S̄ (T)

W = S (1)S (2) . . . S (T) ∈ Σ∗. For each t, let W (t) be the set of events
with timestamp t. Then the set S (t) is derived from W (t) as follows.
If W (t) contains an event that matches (or unifies with) a subgoal gi,
then we insert mi into S (t); if it matches both the subgoal gi and is
accepted by its predicate σi, then we insert both mi and ai into S (t).
In Ex. 3.11, R(c, 2) is an event for qs for which an m2 is produced
without a corresponding a2, since c does not satisfy σ2 = σy=b.

(III) We rewrite the input query into regular expressions over Σ
with the following syntax:

E = P | (E, E) | E+ | E∗

where P is an atomic predicate on the alphabet Σ of the following
form: P is either a set S , or the negation of a set ¬S , where S ⊆ Lq.
In the first P matches any input in Σ that is a superset of S , and
in the second it matches any input that is disjoint from S . The
translation of a query q into a regular expression Eq is given by:

q Eq, its translation
g1 {a1}

σi(q′; gi) Eq′ , (¬ {mi, ai})∗, ai

q′; g+i 〈∅, θ〉 Eq′ , ((¬ {mi, ai})∗, ai)+

Example 3.12 Returning to our previous example, we see that the
regular expression translations of q f and qs are the same:

Eq f = Eqs = {a1} , (¬ {m2, a2})∗, {a2}

state 2state 1
{a1}

¬{m2, a2}

{a2}

Figure 4: A sample automaton corresponding to both q f or qs of
Ex. 3.11. Implicitly, the automaton is always in the start state, hence
it is not drawn. State 2 is a final state.

{m1, a1,m2} {m2} {⊥}

W
(1)

W
(2)

W
(3)

W
(3)

W
(2)

W
(1)

e
(1)
1 e

(2)
1 e

(3)
1

Single
possible
world

(II)
Event
translation

q
f

S(1) S(2) S(3)

a .1 b .6 c .7

e
(1)
1 e

(2)
1 e

(3)
1

W

W S

S

(IV)
Recovering
Markov
chain

S
(1)

S
(2)

S
(3)

.1 .6 .7

a b c

{m1, a1,m2} {m2} {⊥}

Figure 5: A probabilistic event databaseW represents many possible
worlds. Here,W consists of only a single stream (correlations are not
pictured). In step (II), a single possible world W̄(t) = W(1) . . .W(t) maps
to a word in Σ∗, denoted S̄ t = S (1), . . . , S (t). In step (IV), we recover the
distribution of S , which is denoted S̄(t) = S(1) . . . ,S(t).

A sample automaton that captures this language is illustrated in
Fig. 4. However, Lahar translates the input from Ex. 3.11 differ-
ently for each query:

Time Input S (t) for q f S (t) for qs

1 R(a) {m1, a1} {m1, a1,m2}

2 R(c) ∅ {m2}

3 R(b) {m2, a2} {m2, a2}

This translation correctly preserve the semantics: q f is true because
the input string is {m1, a1}, ∅, {m2, a2} which matches the regular
expressions {b1}, ¬ {m2, a2}

∗, and {a2} respectively. However, qs is
false, because here the second symbol is {m2}which does not match
¬ {m2, a2}

∗ nor {a2}. Said another way, if automaton is in State 1
(Fig. 4), then on reading {m2}, it must move. However, it can take
neither the self-loop, annotated with ¬{m2, a2}, nor the outgoing
edge, annotated with {a2} and so must fail to accept.

The final step in our translation is to prepend a wildcard star (e.g.
.∗) at the beginning of Eq, since event queries may start at any time.
The translation is correct in the following sense:

P 3.13. W |= q@T iff Eq accepts S̄ (T)
W .

(IV) Finally, we show how to recover the Markov chain that we
use to evaluate the regular expression Eq. The distribution of this
chain is induced by the probabilistic event databaseW. Formally,
we do this by adding the sets S (t) to the events in W; the regular
expression uses only the sets S (t), while the presence of all other
events fromW ensures that the chain is Markovian. This process
is illustrated in Fig. 5.

Formally, we define a sequence of random variables S̄(T) =

S(1)S(2) . . .S(T), which capture the distribution of S (1) . . . , S (T)

in Fig. 5. Recall that W is a collection of n-Markov chains,

e1, e2, . . . , en, where each ei is a probabilistic stream. LetW(t) be
the set of all probabilistic events with timestamps t in all Markov
chains in W. We view W(t) as a random variable whose values
are sets of events, W (t). Formally, let S (t) be the set of mi’s and
ai’s constructed via (II) above; observe that S (t) is only a function
of W (t). Then we define S(t) to be a random variable that takes the
value W (t) ∪ S (t) with probability P[W (t)] =

∏
e(t)∈W(t) P[e(t)]. This

is a Markov chain, because the random variables in the setW(t+1)

depend only on those in the setW(t). The conditional probability
table for the sequence S(t) is the product of the CPTs for all Markov
chains inW. Note that we cannot define S(t) to be just S (t) because
the probability of a transition S(t) to S(t+1) depends not only on S (t),
but also on the hidden state W (t). Thus, we simply include the hid-
den state in W (t) hidden state in S(t).

In the real-time scenario, where all event streams are indepen-
dent, the definition of an individual Markov Chain, e(1), . . . , e(t), is
simpler: The state at time t + 1 does not depend on the state at time
t. The remainder of the construction is unchanged.

3.1.2 Regular Expressions on Markov Chains
Let E be a regular expression over an alphabet Σ, and δ be the

transition function for the corresponding automaton. Consider T
random variables over Σ, S(1), . . . ,S(T), and suppose they form a
Markov chain:

P[S(t)|S(1) . . .S(t−1)] = P[S(t)|S(t−1)]

The Markov chain is thus completely defined by the conditional
probability tables, C(t)(σ′, σ) = P[S (t) = σ′|S (t−1) = σ], for t =
1, . . . ,T (we assume S (0) to be some fixed symbol in Σ). It defines a
probability space over words of length T in Σ∗, i.e. each word w has
some probability P[w] of being generated by the Markov process.
We define the probability of the regular expression E, P[E], to be
the probability that a randomly chosen word w satisfies E. Our
goal is to compute P[E] from the expression E and the CPT C(t),
t = 1, . . . ,T .

Let A be a deterministic automaton for the expression E, and let
Q be its states. Denote w = w(1) . . .w(T) a random word generated
by the Markov chain. For each t = 1, . . . ,T , we define a random
variable M(t) with values in Σ×Q as follows. For each σ ∈ Σ, q ∈ Q
the random variable M(t) takes the value (σ, q) if the following event
holds: “w(t) = σ and the automaton is in state q after reading the
symbol w(t)”. In Ex. 3.12, suppose that event R(a) at time 1 has
a probability of 0.5, then the Markov Chain would be in the state
({‘State 1’} , {m1, a1}) (cf. Fig. 4). Then M(1),M(2), . . . ,M(T) forms
a Markov chain, and we can compute their probabilities iteratively
as follows:

P[M(t) = (σ′, q′)] =
∑

σ∈Σ,q∈Q:δ(q,σ′)=q′
C(t)(σ′, σ) · P[M(t−1) = (σ, q)]

In Lahar, this equation is implemented straightforwardly: the
regular expression is first compiled to an NFA and we maintain the
distribution of states of the automaton explicitly. This means that
our evaluation is essentially matrix multiplication.

In the real-time scenario, we can improve the algorithm using
the fact that the next letter seen by the automaton is independent
of the previously seen letters. In this case, M(t) can be defined by a
simpler event "the automaton is in stateσ", which does not mention
the previously seen letter. This results in a smaller automaton.

3.2 Extended Regular Queries
Recall the Extended Regular Query, qhall from Example 3.6; to

answer it we need to track each tagged person independently. Con-

sider a naïve method for computing such queries: substitute each
possible constant for x, create a large automaton, and use the algo-
rithm from Sec. 3.1 to process it. This approach is untenable be-
cause it requires space that is exponential in the number of possible
constants (people), since the distribution is now over all possible
subsets of people. In this section we give an efficient algorithm
for queries involving projection and join that avoids computing this
large automaton directly. We illustrate the method by example:

Example 3.14 q{x → d} denotes the result of substituting all oc-
currences of x with d in q. For example, let q joe = qhall{x→ ‘Joe’},

qJoe = σPerson(‘Joe’)(At(‘Joe’, ‘a’);
At(‘Joe’, l2)+〈∅, Hallway(l2)〉; At(‘Joe’, ‘c’))

qJoe is a regular query, so we can compute its probability using the
Markov chain approach from the previous section. Our goal is to
compute the probability that the query is true for any value of x, not
just for a single binding. For qhall, we make a critical observation: If
we bind x to different constants, say d, d′, then qd = q{x → d} and
qd′ = q{x→ d′} use disjoint sets of tuples. The events contributing
to qd and qd′ are therefore independent. This is significant because
it implies that we can now efficiently compute the probability of
their disjunction, which is P[qhall].

Formally, the key insight from Ex. 3.14 is that qhall is syntacti-
cally independent on x (Def. 3.4). This implies a straightforward
algorithm for computing P[q] for any Extended Regular q: Fix an
enumeration of all possible bindings for all x that occur in more
than one subgoal, e.g. d1, . . . , dn. For i = 1, . . . , n, let p(t)

i be
the probability that the Markov chain corresponding to the regular
query qdi

is true at time t. Then the probability that an Extended
Regular Query q is true is exactly 1 −

∏n
i=1(1 − p(t)

i).
Since each chain can be computed in O(1) space and there are

m chains, this approach requires O(m) space and can be computed
incrementally using O(m) multiplications, as stated in Thm. 3.7.

Completeness Checking whether a query is syntactically inde-
pendent is easy to implement efficiently inside a compiler. How-
ever, given that a similar syntactic condition is known to fail
for conjunctive relational queries [29, 36] it is natural to wonder
whether our check is complete. Surprisingly, for event queries, we
can show that our simple check is complete, we include the proof
in our full version [35].

3.3 Safe Queries
Recall qtalk from Ex. 3.9. To handle this query we need to check

that the same person was carrying some laptop on her way to the
talk, but then we do not care whether her laptop makes it to the lec-
ture room. This query is not Extended Regular because the variable
y appears in the first two subgoals, but not the last. Intuitively, this
query requires that we are able to interleave a projection (we don’t
care which laptop) and a sequencing operation. To handle these
more complicated queries we adopt a different strategy from previ-
ous sections: We use an algebra for probabilistic streams, which is
inspired by the Probabilistic Relational Algebra (PRA) [15]. The
goal of the algebra is to compute the probability of a query effi-
ciently, using simple operators that add and multiply probabilities.

3.3.1 Probabilistic Stream Algebra
Our algorithm uses query plans, called safe plans, which consist

of four algebraic operators that we define below. A safe plan is a
left-deep plan where the leftmost leaf is the set of regular expres-
sion queries, where all shared variables have been substituted with
constants. In a safe plan, every right child is a simple base query,

reg‹x›(R(x)S(x))

T('a', y)π-x

seq

projection

base query

sequencing

Figure 6: An example safe plan for q = R(x); S (x); T (‘a’, y).

ts

q = q';R()

time r1

12 13 146 7 8 94 5 11

r2 r3 r4

Witness
events

Precursor
events

Latest
precursor event

t f

ts' t f'

15

Latest
witness event

q[ts, t f]

q'[ts', t f']

Tp Tw

Figure 7: A possible world for R, annotated with information
used in computing seq(P′, bq) where P′ is a safe plan for q′

and q = q′; bq. Our goal is to compute P
[

q[ts, t f]
]

in terms
of P
[

q′[t′s, t
′
f]
]
.

which is just a set of streams relation of the same type on with sim-
ple selections and projections. An example safe plan is shown in
Fig. 6. We show how it is constructed in Sec. 3.3.2.

D 3.15. A safe plan is a left-linear tree of algebraic
operators. The leftmost leaf of a safe plan is a regular expression
operator, denoted reg〈Vreg〉(q), where Vreg is a set of variables and
q is a query. If we substitute any constants for Vreg in q, say d, then
q{Vreg → d} is regular. Vreg is all variables shared by q with the
rest of the query (in Fig. 6, Vreg = {x}).

Inductively, if P1 is a plan and bq a base query, then all of the
following are plans: σθ(P1) (selection), seq(P1; bq) (sequence),
and π−x(P1) (projection) which intuitively removes the variable x.

To determine that q is true at time t, we need to understand when
subqueries q′ of q are true not just at a single point, but during an
interval [ts, t f]. By during an interval, we mean that there exists
some point t, such that q′@t. This interval semantic is necessary to
get the induction off the ground. We denote the fact that q returns e
during [ts, t f] as q(e)[ts, t f] and define its semantics in the obvious
way.

Our goal for the remainder of the section is to explain how we
calculate the probability that q is satisfied during [ts, t f], which we
write as P[q(e)[ts, t f]]. Inductively, we may assume that a sub-
plan is able to correctly compute this value for any settings of e,
ts and t f . To simplify the discussion and notation, we assume that
all attributes are part of each key and all events in any stream are
independent.

Sequence We begin by illustrating the most interesting of our
operators, seq on a fixed Boolean query, q = q′; R(), i.e. there
are no shared variables between q′ and R() (above bq = R). A
precondition of seq(q1; g) is that no event can unify with both g and
any subgoal of q1. Fig. 7 shows the R events, r1, . . . , r4, in a single
possible world on an axis representing time. We use this figure to
illustrate our discussion below. For q to be satisfied during [ts, t f]
at least two things must happen: First, there must be an R() event

in [ts, t f]. We call any such event a witness event, e.g. r3 and r4 in
Fig. 7. Second, q′ must be true at some point occurring earlier than
some witness event. However, it is not enough that q′ be satisfied
simply before a witness event. To see this, suppose that q′ is true
only at time 5. Then in the possible world illustrated in Fig. 7, the
successor of q′ is r2. r2 will thus consume the q1 event, leaving no
q′ event to join with r3 and satisfy q during [ts, t f]. Hence we refer
to R() events in the interval [0, ts] as precursor events. To satisfy q,
we require that q′ is true after all precursor events, but also before
some witness event in [ts, t f]; this is the lower interval illustrated
in Fig. 7, from timesteps 7 to 14. Let Tp (resp. Tw) be the latest
precursor timestamp (resp. latest witness timestamp). Let t′s and
t′f be times such that t′s ≤ t′f , our example shows that if Tp = t′s,
Tw = t′f , and q′[t′s, t

′
f] is true, then we can conclude that q[ts, t f].

In words, if q′ is true in between the latest precursor and the latest
witness, then q is true. This is intuitively why we need intervals.
Thus we are lead to the following recursive formula:

P[q[ts, t f]] = P[∃t′s, t
′
f s.t. Tp = t′s,Tw = t′f and q′[t′s, t

′
f]] (2)

To compute Eq. 2 efficiently we observe that it can be factored into
the following form:

P[q[ts, t f]] =
∑
t′s ,t′f

P[Tp = t′s]P[Tw = t′f]P[q′[t′s, t
′
f]] (3)

To see that this equation is correct, we first observe that in any pos-
sible world there is a unique latest precursor time and latest witness
time. Thus, the event that the pair (Tp,Tw) takes a distinct value is
disjoint, which justifies the summation. Additionally, Tp and Tw are
independent events because they draw from disjoint sets of events.
Finally, all three random variables, q′[i, j], Tp, and Tw, are inde-
pendent because no single event can unify with more than one of
them. Eq. 2 can be computed in time O(t2) where t is the number
of distinct timestamps. Extending to the general case, where q′ and
R can share variables, is straightforward.

Regular Expression The next interesting operator is the regu-
lar expression operator which must compute the probability that a
regular expression is true during an interval [ts, t f]. Our Markov
chain algorithm from Sec. 3.1 only computes the probability that
the query is true at a single point in time, instead of during any
point during a given interval. To generalize to intervals, the key
step is to break apart the computation of P[q(e)[i, n + 1]] into
simpler components, which we accomplish using the following re-
cursive equation, P[q(e)[i, n + 1]] =∑

Q0⊆Q

P[q[i, n] | M(t) = Q0] P[q@n + 1 | M(t) = Q0] P[M(t) = Q0]

In words, this formula asserts that the value of q[i, n] and q[n+1, n+
1] are conditionally independent, given the state of the Markov
chain at time n, i.e. M(n). Furthermore, both terms in the formula
can be calculated efficiently: P[q(e)[i, n]] is given by recursion,
while P[q(e)[n + 1, n + 1]|M(n)] can be computed with a simple
modification of our previous Markov chain algorithm.

Other Operators The other operators in our algebra are essen-
tially standardPRA operators. Selection does not change the value
computed by the subplan if the condition θ(e) is true and returns 0 if
θ(e) is false. Projection computes exactly as described in Sec. 3.2.
We verify the preconditions of our operators below (Sec. 3.3.2).

Summarizing our discussion:

T 3.16. Given a query Q, if there exists a safe plan for
q then Q has an algorithm with O(|W|T 2) data complexity, where
T is the number of timestamps.

Algorithm 1 Plan(env, q) : Compute a safe plan for q.
Input: A list of eliminated variables env (initially ∅) and a query q
Output: A safe plan for q (or fail)

(* cannotUnify(q1, q) returns true if no event can match a goal in q1
and g. shared(q) is the set of shared variables in q. *)

1: if shared(q) ⊆ env then (* Check if q is regular *)
2: return reg〈env〉(q)
3: else if exists x < env such that q is independent on x then
4: return π−x(Plan({x} ∪ env, q))
5: else if q = σ(q1) then
6: return σ(Plan(env, q1))
7: else if q = q1; g, cannotUnify(q1, g) and var(q1)∩var(g) ⊆ env. then
8: return seq(Plan(env, q1), g)
9: else Fail

3.3.2 Compiling Safe Plans
In this section we give an efficient algorithm to compile safe

queries into safe plans. The algorithm is easiest to illustrate by
example. To simplify the presentation, we assume that all variables
are part of the key.

Example 3.17 Recall q = R(x); S (x); T (‘a’, y) from Fig. 6. We
now show how Lahar constructs a safe plan for q:

Initially, the first call to Alg. 1 is as Plan(∅, q). Because q is not
regular (line 1) nor is q syntactically independent on any variable
(line 3), Plan gets to line 7, the check for seq. q satisfies the check
for seq because R(x); S (x) and T (‘a’, y) do not share variables and
no event can unify with both. We now recursively compute P1 =

Plan(∅,R(x); S (x)). If this succeeds then P1 = seq(P1,T (‘a’, y)).
To compute Plan(∅,R(x); S (x)), the algorithm finds that

R(x); S (x) is independent on x (line 3). We now recurse again to
compute P2 = Plan({x},R(x); S (x)) (line 4). If this recursion suc-
ceeds, then Plan(∅,R(x); S (x)) = π−x(P2).

Finally, to compute Plan({x},R(x); S (x)), we now determine that
all shared variables in R(x); S (x) (namely, x) are contained in env,
here just {x}. Thus, we return reg〈x〉(R(x); S (x)) (line 2). Tracing
backwards through the stack, yields exactly the plan in Fig. 6.

3.4 Completeness
In this section, we study the completeness of our algorithms and

find that many simple extensions lead immediately to intractabil-
ity. We observe that even the simplest non-Safe queries are in-
tractable. Specifically, queries containing arbitrary non-local pred-
icates or parametrized Kleene pluses are intractable.

P 3.18. The following two queries have]P-hard data
complexity: h1 = σθ(x,y)(R(x); S (y)) and h2 = R(); S (x)+〈{x} , true〉.

Both parts of the proposition are reductions from counting the
number of solutions to a monotone bipartite 2DNF formula, which
is]P-Hard [33]. Thus, it makes sense to consider queries that
contain only local predicates, that do not contain Kleene plus or
repeated stream symbols and for which all attributes are part of the
event key. We call such queries read-once queries. Using our
syntactic definition of safety (Def. 3.8), we can immediately see
that the two simplest queries, which are read-once but not safe are
provably hard:

P 3.19. The following two queries have]P-hard data
complexity h3 = R(); S (x); T (x) and h4 = R(x), S (); T (x)

The proof for h3 again uses using an encoding similar to our
previous reduction. However, the proof that h4 is hard requires
much more work; it uses a complicated Turing reduction based on
polynomial interpolation. The fact that even the simplest non-Safe
Queries are intractable suggests that our algorithm is complete.

Entity Measure
People 8
Objects 52

Locations 352
Area ≈ 10k sq.ft.

Antennas 38
Duration 71.8 mins

Data Size (MB) Tuples
Filtered Probs 190MB 5.2M

Smoothed Probs 190MB 5.2M
Smoothed CPTS 26G 509M

Viterbi Paths 2MB 75k

(a) (b)

Figure 8: Real data statistics. (a) the real world represented in our
experiment (b) the data streams we produced.

3.5 Generic Algorithm
Our general algorithm can process any event query, but concep-

tually requires many concurrent executions of the query. We recall
the following simple application of naïve random sampling:

P 3.20 (e.g. [30]). Fix any Boolean query q over a
probabilistic event database W. Given any ε, δ > 0, there is an
algorithm returning an estimate ρ̃ of ρ def

= µ(q) for any k satisfying:

P[|ρ̃ − ρ| ≤ ε] ≥ 1 − δ

and runs in time O(ε−2 log 2
δ
· Eval(q)), where Eval(q) is an upper

bound on the time required to compute q. It is important to note
that P is taken over the random choices of the algorithm.

To achieve this guarantee we can run n copies of the query. In
each timestep, we count the number t of the n that are satisfied
and finally divide by n to get an estimate of P[q]. To achieve the
desired confidence and precision, δ and ε, we need to take n =
O(ε−2 log 2

δ
· Eval(q)). Of course, running several parallel copies

is grossly inefficient and so we use a simple technique based on
bitvectors.

4. EXPERIMENTS
Our experiments verify two key claims on real and synthetic

data: First, that our approach improves the quality of detected
events as compared with non-probabilistic approaches. Second,
that our approach is efficient, i.e. our prototype system can pro-
cess tens of thousands to hundreds of thousands tuples per second
for Regular, Extended Regular and Safe Queries.

4.1 Experimental Setup
Architecture In our current implementation, each query is run

in a separate process which receives one stream from the particle
filter per person, more generally per key per stream. The query
processor in each process loads all predicates needed by the query.

Experimental Data Our experiments use data from a building-
wide RFID deployment [40] and synthetic traces from a simulator
on the same environment. The real data was generated by 8 volun-
teers and 52 associated objects (e.g. keys, coffee mugs, and laptops)
as they moved throughout two floors of our building for a little over
one hour (two thirty minute time periods with a ten minute break of
no readings in between); this simulated the life cycle of two days in
the building. Each person and object was equipped with an RFID
tag. Readings from each tag were used as input to a separate parti-
cle filter. A key benefit of the particle filter is its ability to predict
distributions over rooms, despite the fact that rooms in our building
are not equipped with RFID readers. Figs. 8(a) and (b) summarize
statistics about our experiment.

Experimental Scenarios We evaluate our approach both in the
real time and archived contexts (see Sec. 2.4). For the real-time
context, we compare against a standard deterministic approach that
we call MLE. This approach picks the single most likely (highest

probability) tuple at each timestep; the result is a stream of de-
terministic events on which we directly process the query. In the
archived context we preprocess the data to compute a single most
likely path through the data, also known as the maximum a pos-
terori estimate (MAP). This is constructed using the Viterbi algo-
rithm [42]. The comparisons we make in our experimental scenar-
ios are summarized in the following table:

Scenario Our Approach Competitor
Marginals/Correlations

Real Time Filtered/Independent MLE
Archived Smoothed/Markov MAP

Implementation Details Our prototype query system is imple-
mented in slightly more than 9000 lines of OCaml, a garbage-
collected functional language, which is well-suited to the static
analysis used in our algorithms. The particle filter implementation
and infrastructure is written in about 4000 lines of Java code.

4.2 Quality
We first examine a single query that captures many of the phe-

nomena observed during our study. The query asks for a person
going to the coffee room: σθ(l1 ,l2 ,l3)(At(p, l1); At(p, l2); At(p, l3)),
where θ(l1, l2, l3) = NotRoom(l1), NotRoom(l2), CoffeeRoom(l3),
i.e. the person is outside the coffee room for two consecutive time-
steps and then inside the coffee room. Forty-four events match this
query in the real data.

Metrics We measure quality using two independent metrics, pre-
cision and recall, and a derived measure, the F1 measure, which is
defined as the harmonic mean of precision and recall. Precision is
the fraction of events detected by our system that correspond to real
world events, while recall is the fraction of real world events that
are detected by our system. The timestamps for real world events
come from annotations by our study participants and are thus im-
precise. To account for this imprecision, we consider that an event
e is a match for a real world event r, if e occurs within d seconds of
r. In this section, we use d = 30 seconds. We discuss the impact of
the d parameter in Section 4.2.2.

Lahar’s approach returns event tuples annotated with probabili-
ties; to compare our approach to deterministic approaches, we first
convert sets of probabilistic events into sets of deterministic events
by thresholding. In particular, we define a threshold parameter ρ,
such that if our system returns p as the probability that a query was
true at time t, we only consider that the event occurred if p > ρ.

4.2.1 Main Quality Experiments
Real Time Scenario Fig. 9 shows the values of the quality met-

rics as we vary the threshold parameter ρ ∈ [0 : 0.5], the range
where probabilities are most useful. Indeed, if one is only inter-
ested in very high-probability events, then the MLE is sufficient.
Our approach offers benefits when events are uncertain; for ex-
ample, our representative test query asks for sequences of three
person-location events. Even if each person-location event has a
probability as high as 0.75, the probability of the coffee-room event
will only be 0.753 = 0.42. Thus even the most likely events re-
turned by Lahar rarely have high probabilities, e.g. higher than 0.8.

As expected, Fig. 9 shows that our recall decreases and preci-
sion increases with ρ. More importantly, the figure shows that for
ρ in the range [0.1, 0.5] our approach’s benefit is dramatic: we out-
perform MLE in both precision by as much as 16 points (28% in-
crease) and recall by 11 points (at most a 13% increase). A way
to concisely capture this gain in both metrics is the increase in F1-
measure, shown in Fig. 9(c). We outperform MLE because MLE
is forced to choose a single location out of many, even in situations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Realtime Precision

MLE

Prob

Lahar
(Independent)

MLE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Realtime Recall

MLE

Prob

Lahar
(Independent)

MLE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Realtime F1

MLE

Prob

Lahar
(Independent)

MLE

(a) (b) (c)

Figure 9: Precision, recall and F1 as a function of ρ, the threshold.
Real Time scenario. The baseline is MLE. As the figure shows, our
approach improves both recall and precision for values of ρ in [0.1 :
0.5].

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Archived Precision

Markov

Viterbi

Lahar
(Markov)

Viterbi

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Archived Recall

Markov

Viterbi

Lahar
(Markov)

Viterbi

(a) (b) (c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

Archived F1

Markov

Viterbi

Lahar
(Markov)

Viterbi

Figure 10: Precision, recall and F1 for archived streams as a function
of ρ, the threshold. The baseline is the MAP obtained using Viterbi. On
archived data, the gains of our approach are even more significant.

when there is no clearly preferred location. In contrast, our ap-
proach is able to retain the entire set of alternatives. This explains
our gains in precision as well: If we consider a scenario where we
miss a reading in the neighborhood of the coffee room, the MLE
will likely continue to erroneously enter the coffee room, while we
assign the event a very low probability. This is further demonstrated
by the fact that our precision is slightly worse than the standard ap-
proach for ρ < 0.1. The main reason here is what we call particle
churn: i.e. as a person sits in the coffee room, some of her particles
keep moving out and back into the coffee room, sparking erroneous,
low-probability coffee-room events.

Archived Scenario One could reasonably assume that the im-
precision in the data is transient and that, given time and process-
ing, we could smooth away the noise and query the resulting de-
terministic data directly. However, our second series of quality
graphs, shown in Fig. 10, demonstrates that even after smoothing,
the real data remains imprecise and our approach provides signif-
icant gains against Viterbi. For example, at ρ = 0.12, we achieve
precision gain of 20 points (≈ 33%) and a massive 47-point gain
in recall. The gain in precision is due in roughly equal parts to (a)
smoothing, and (b) tracking correlations. We verified this by treat-
ing the stream independently and noting a resulting 8-point drop in
precision. The independent stream maintained comparable recall.
The benefit of tracking this imprecision with the richer correlations
from smoothing is clearly shown in Fig. 10(c): Our Markovian ap-
proach has a higher F1 than Viterbi along the entire interval. Also,
the precision and recall are higher than for MAP even for values of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
ob

ab
ilit

y
of

 A
cc

ep
t

Time (ms)

Enter Room

Probability
Markov
Viterbi

Markov

Independent

!"#$%&'())*

True path

Viterbi path

MLE estimate

(a) (b)

Figure 11: (a) Acceptance probability at each timestep of the query
“Have you been in room 410 for 3 seconds?”. Viterbi never accepts the
query and so takes value 0 throughout the whole interval. (b) Visual
illustration of how MLE and MAP can go wrong. There is no way to
decide between rooms, so MAP arbitrarily picks a single path, while
MLE hops around due to resampling.

ρ below 0.1. This is because smoothing has largely eliminated the
spurious churning that caused errors in our real-time event detec-
tion.

Generalizing to more complicated queries Multiple different
queries run on the real data all demonstrated performance numbers
similar to those shown above. This is in part because most of the
labeled events of interest had characteristics similar to our coffee-
room event, e.g. when did someone’s laptop leave their office, when
did a database meeting begin, etc.

A key observation made across multiple queries was that, if a
query involved many events which occurred outside of the range
of antennas, e.g. staying in an office, then correlations became im-
portant. To verify this fact we constructed a synthetic trace of a
person walking down the hall, entering a particular room, and stay-
ing there. We then asked the query: “Were you in the room for
k seconds? Because the number of rooms in the vicinity was ap-
proximately 6, each room had a probability of approximately 0.15
– however, in the smoothed data, the conditional probability that
a person would stay in a room given that she was already there
was much higher, e.g. 0.6. Thus, the probability that two consec-
utive timesteps were spent in the rooms was 4 times higher than
under independence assumptions, and continued to grow with the
number of consecutive timesteps. This explains the trend we see
in Fig. 11(a), that the Markovian approach accrues a much higher
probability during the visit than independence alone. In contrast,
the Viterbi estimate selects the wrong room and misses the event
completely.

4.2.2 Discussion
Comparison of MAP and MLE If we compare the absolute

recall of MAP and MLE, we see something surprising: the MAP
estimate has a lower recall than the MLE3 This is because the data
is very noisy and MAP is forced to pick a path and stick with it.
We verified this on synthetic data; a simplified version of this phe-
nomenon is illustrated in Fig. 11. Because the particle mass is es-
sentially split evenly between the two rooms and there are no sen-
sors in the rooms, resampling fluctuations cause the MLE estimate
to hop back and forth. In contrast, MAP must pick a single path
and so will remain in only one room. An additional factor in the
recall disparity is the presence of events that happen for only a few
seconds: Events with short duration appear to be spurious, hence
are likely to be removed from the MAP path estimate.

Skew The ground truth is data labeled by participants: Each par-
ticipant in our study carried a laptop and annotated the timestamp
3It does not make sense to directly compare the ρ values of the two
graphs because calculations of the underlying probabilities differ.

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90 100

tu
p
le

s
/s

e
c

Concurrent tags

Query 1 [Realtime]

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90 100

tu
p
le

s
/s

e
c

Concurrent tags

Query 2 [Realtime]

tu
pl

es
/s

ec

tu
pl

es
/s

ec

Sampling

Lahar (Independent)

MLE

Sampling

Lahar (Independent)

MLE

(a) (b)

Figure 12: Comparison of real-time performance techniques. There
is less than a factor of two difference between MLE and Lahar. Lahar
outperforms random sampling by orders of magnitude.

at which predefined events occurred, e.g. when they entered the
coffee room. Ground truth labels are thus noisy. For example, our
central query in this section precisely defines an “entered coffee
room event” to be triggered the second a person crosses the thresh-
old from the hallway into the coffee room. However in our study,
users sometimes first sat down or put away their mugs before re-
porting that they entered a room. This introduced skew between
the labeled times and the real world times. As one would expect,
increasing d to tolerate more skew increases the precision and re-
call of all approaches. However, we have verified that the relative
quality of the different approaches is the same for many different d
values.

4.3 Performance
In this section, we evaluate whether the performance of Lahar is

suitable for real-time and archived streams. Our main experiment
compares Lahar’s throughput on synthetic data for two queries:
(Q1), a Regular Query consisting of a selection on a single stream,
and (Q2), an Extended Regular Query with a sequence operator.
We simulate n objects moving simultaneously for 60 seconds, vary-
ing n from 1 to 100. We first measure the raw tuples-per-second
throughput achieved by our approach. Our safe plan algorithm re-
quires growing state. It is thus suitable only for stored streams, and
we study its performance separately.

Naïve Random Sampling Our default parameters for random
sampling are δ = 0.1 (confidence) and ε = 0.1 (precision), i.e. with
10% chance per event, we are off by more than 0.1 in our estimation
of the underlying probability. In all cases, we run each query seven
times and drop the highest and lowest times; the averages reported
are of the remaining five runs. The sample variance in all cases is
at least two orders of magnitude smaller than the time recorded.

4.3.1 Main Performance Results
Real-Time Streams Fig. 12 shows the comparison of our tech-

nique in the real-time scenario, against the MLE and our sampling
approach. The graph is in logscale and shows that there is less
than a factor of two difference between running with probabili-
ties and running the MLE. This is because the expensive process-
ing operation is the I/O cost of reading the tuples; Lahar’s actual
term-matching and processing is very efficient. In addition, there is
the expected difference between sampling and our technique: exact
techniques without expensive randomized draws are several orders
of magnitude faster than sampling, even on simple queries. Fur-
ther, they use drastically lower amounts of memory (see Thm. 3.7).
We can conclude from this graph that Lahar provides high-quality
event extraction while maintaining viable real-time performance.
We see that on the more complicated query Q2, the sampling ap-
proach already begins to show its unscalable behavior.

tu
pl
es
/s
ec

tu
pl
es
/s
ec

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

tu
p
le

s
/s

e
c

Concurrent tags

Query 1 [Archived]

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

tu
p
le

s
/s

e
c

Concurrent tags

Query 2 [Archived]

Viterbi Lahar
(Markov)

Sampling
Sampling

Viterbi Lahar
(Markov)

(a) (b)

Figure 13: Comparison of archived performance techniques. Lahar
performs similarly to Viterbi and is orders of magnitude faster than
naïve random sampling.

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

tu
p
le

s
/s

e
c

Concurrent tags

Safe Query [Performance]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

tu
p
le

s
/s

e
c

Simulated Time (minutes)

Safe Query [Effect of Time]

tu
pl

es
/s

ec

tu
pl

es
/s

ec

Lahar

Sampling

Lahar

Worst case

(a) (b)

Figure 14: (a) Performance of Safe Query versus sampling (b) Perfor-
mance of Safe Query as the length of the trace increases.

Archived Streams Fig. 13 shows that the Viterbi algorithm and
the Markov algorithm have the same raw throughput, indicating
that the overhead of our algorithms is small. Further, the Marko-
vian approach is still orders of magnitude faster than naïve random
sampling. However, this comparison is misleading: The Markovian
semantic requires many more tuples than the MLE to represent the
same number of objects, for two reasons. First, if a timestep con-
tains n tuples, then the CPT stream requires ≈ n2 tuples to represent
this timestep. Second, the Viterbi algorithm prunes aggressively
and keeps only a single tuple per timestep. To capture this we de-
fine a measure, the effective objects per second, which is computed
as the number of people times the number of timesteps, divided by
the number of seconds to process the trace. In practice, we found
that the effective tuples per second was slower by an order of mag-
nitude (e.g. a factor of 9− 10 on these traces). Sampling is affected
in exactly the same manner when it uses Markovian correlations.

4.3.2 Additional Experiments and Discussion
Query Complexity Experiment To measure the effect of query

complexity, we fixed the number of concurrently-tracked tags to 50
and varied the number of subgoals in an Extended Regular Query.
We find that our system can handle queries with up to five sub-
goals while still keeping pace with the demand of the system. In
particular, the time to process the trace is less than the time of the
actual trace. We should not expect to scale any better, as we have
shown that the query time increases exponentially with the number
of subgoals. For Markovian streams, the viable number of subgoals
drops to 3 – which is to be expected since Lahar maintain signifi-
cantly more state. However, since Markovian queries are intended
for offline use, this does not pose a significant obstacle.

Safe Plan Experiment Fig. 14(a) shows the performance of a
Safe, but not Extended Regular, query At(p, l1); At(p; l2); At(q, l3),
on a simulated 60-second trace as we vary the number of concurrent
tags. As we can see, even with many objects, the safe plans are
much more efficient than the sampling approach. However, since

the running time of safe plans depends on the number of timesteps
t, we expect that the running time should slow down as the trace
length increases. Because each iteration takes time O(n2), a run
of length n should take

∑n
i=1 = O(n3). In particular, the throughput

should decrease cubically; however, as Fig. 14(b) demonstrates, our
asymptotic performance is actually much better than the analytical
prediction. This is due to the fact that we evaluate the recurrence
lazily.

Optimization Techniques The majority of the bytes of
smoothed data (Fig. 8) are actually the result of particle filter delu-
sion during the ten minute break. In the experiments we have pre-
sented, Lahar ran directly on the output of the particle filter, includ-
ing this uninteresting data. However, there are known techniques
for reducing storage cost without affecting recall. For example,
using a pruning technique [8], we were able to reduce the CPT re-
lation size to ≈ 1Gb without a noticeable degradation in quality. We
expect that further optimizations along these lines are possible.

5. RELATED WORK
The use of automata as a basis for processing event queries is

common to both Cayuga [14, 45] and SASE [46]; however, nei-
ther consider probabilistic event streams. Our translation of regular
queries is similar to the use of ∃ and ∀ edges in Cayuga’s automa-
ton. However, Cayuga does not identify a class of queries which
can be efficiently translated with no state.

MystiQ [9] and Trio [3] are the two most influential probabilis-
tic databases today. MystiQ focuses on query evaluation and so is
more closely related to our work. There are two key differences
between the projects: (1) In MystiQ the query language is essen-
tially SQL, while our language is essentially the event sequence
language of Cayuga, which allows us to query temporal constraints.
(2) MystiQ allows events to be either independent or disjoint, but
does not allow temporal correlations, such as the Markovian corre-
lations that we consider

Hidden Markov models and their inference algorithms have a
long history; we refer the reader to [34] for a survey. Of course,
any query we consider here can be encoded as an HMM, but it is
unclear how the translation from event queries into HMM infer-
ence can be automated. Our focus in this project is not to improve
inference; instead we focus on managing the results of many dif-
ferent (independent) inference tasks. A project with similar goals
is [17], but to the best of our knowledge no algorithmic details are
published.

Recent work has started to explore the problem of query process-
ing over probabilistic data streams. Jayram et al. [18] introduced
the probabilistic stream model. Jayram et al. [18, 19] and Cormode
and Garofalakis [7] proposed efficient algorithms for computing
aggregate functions over uncertain data streams. Their query mod-
els are very limited and they do not consider correlations across
time. Kanagal and Deshpande [22] support queries over probabilis-
tic streams produced by an HMM but their queries are also limited
(selections, projections, and aggregations only). In contrast, our
approach supports a much richer query model over probabilistic
streams including sequences and joins. We also support correlated
streams. Finally, the Data Furnace project [17] outlined a similar
goal to ours: extracting probabilistic events from imprecise sensor
data. Their design, however, relies on exploiting an inference en-
gine to compute event probabilities while we focus on computing
these probabilities efficiently in a query processing engine.

Our name for safe plans follows the papers [9, 10], but our se-
quencing requires both order and universal quantifiers (i.e. no tuple
in between), which is not considered by Dalvi and Suciu. There
has also been work on probabilistic temporal databases, [13], but

the work allows a distribution over the time an event occurred and
has a different semantics than the one we present here.

In data mining and stream mining applications [16, 43], the
goal is to translate from deterministic but imprecise observations
to high-level facts. In our instance, the data itself contains uncer-
tainty with a precise semantics and our goal is simply to answer
queries. Further, we study exact algorithms for these problems. It
is interesting future work to consider more precise and efficient ap-
proximations.

Lahar makes heavy use of particle filters [2] and smoothing tech-
niques [24, 8]. Particle filtering in particular has recently gained
attention in databases research, notably [22].

6. CONCLUSION
We have presented Lahar, which enables declarative queries over

real time and archived streams of probabilistic events. We demon-
strated on real data that our approach provides significant quality
benefits versus determinizing the data, while providing efficient ex-
ecution. The key to our approach was a suite of novel algorithms.

Acknowledgement This work was partially supported by an
NSF graduate research fellowship, NSF Grants IIS-0454425, IIS-
0513877, IIS-0627585, IIS-0713576, and Gifts from Microsoft in-
cluding a gift under the SensorMap RFP.

7. REFERENCES
[1] R. Adaikkalavan and S. Chakravarthy. Snoopib:

interval-based event specification and detection for active
databases. Data Knowl. Eng., 59(1):139–165, 2006.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, February 2002.

[3] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
Uldbs: Databases with uncertainty and lineage. In VLDB,
pages 953–964, 2006.

[4] C. Floerkemeier and M. Lampe. Issues with RFID usage in
ubiquitous computing applications. In Proc. of the 2nd
Pervasive Conf., April 2004.

[5] Cisco Systems. Cisco IOS NetFlow.
http://www.cisco.com/go/netflow.

[6] Computerworld. Procter & Gamble: Wal-Mart RFID effort
effective.
http://www.computerworld.com/action/article.
do?command=viewArticleBasic%&articleId=284160,
February 2007.

[7] G. Cormode and M. Garofalakis. Sketching probabilistic data
streams. In Proc. of the 2007 SIGMOD Conf., June 2007.

[8] R. G. Cowell, S. L. Lauritzen, A. .P. David, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[9] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[10] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries
on probabilistic structures. In PODS, pages 293–302, 2007.

[11] Dartmouth College. CRAWDAD: A Community Resource
for Archiving Wireless Data At Dartmouth.
http://crawdad.cs.dartmouth.edu/index.php.

[12] S. K. Das et al. The role of prediction algorithms in the
MavHome smart home architecture. IEEE Wireless
Communications, 9(6):77–84, 2002.

[13] A. Dekhtyar, R. Ross, and V. S. Subrahmanian. Probabilistic
temporal databases, igr: algebra. ACM Trans. Database
Syst., 26(1):41–95, 2001.

[14] A.J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.M.
White. Towards expressive publish/subscribe systems. In
EDBT, pages 627–644, 2006.

[15] N. Fuhr and T. Rolleke. A probabilistic relational algebra for
the integration of information retrieval and database systems.
ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[16] M.N. Garofalakis, R. Rastogi, and K. Shim. Mining
sequential patterns with regular expression constraints. IEEE
TKDE. Knowl. Data Eng., 14(3):530–552, 2002.

[17] Garofalakis et. al. Probabilistic data management for
pervasive computing: The Data Furnace project. IEEE Data
Engineering Bulletin, 29(1), March 2006.

[18] T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation
algorithms for probabilistic data. In Proc. of SODA 2007.,
January 2007.

[19] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee.
Estimating statistical aggregates on probabilistic data
streams. In Proc. of the 26nd PODS Conf., June 2007.

[20] S. Jeffery et al.. Adaptive cleaning for RFID data streams. In
Proc. of the 32nd VLDB Conf., September 2006.

[21] D. Jobst and G. Preissler. Mapping clouds of soa- and
business-related events for an enterprise cockpit in a
java-based environment. In Proc. of the 4th Symp. on PPPJ,
pages 230–236, 2006.

[22] B. Kanagal and A. Deshpande. Online filtering, smoothing
and probabilistic modeling of streaming data. Technical
Report CS-TR-4867, University of Maryland, May 2007.

[23] N. Khoussainova, M. Balazinska, and D. Suciu. Towards
correcting input data errors probabilistically using integrity
constraints. In Proc. of Fifth MobiDE Workshop, June 2006.

[24] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell,
and D. Lang. Fast particle smoothing: if i had a million
particles. In Proc. of the 23rd ICML, pages 481–488, New
York, NY, USA, 2006. ACM.

[25] M. Lamming and D. Bohm. SPECs: Another approach to
human context and activity sensing research, using tiny
peer-to-peer wireless computers. In Ubicomp 2003, volume
2864, pages 192–199, 2003.

[26] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An
introduction to the application of the theory of probabilistic
functions of a Markov process to automatic speech
recognition. Bell Sys. Tech. J., 62:1035, 1983.

[27] L. Liao, D. J. Patterson, D. Fox, and H. A. Kautz. Learning
and inferring transportation routines. Artif. Intell,
171(5-6):311–331, 2007.

[28] J. F. McCarthy and T. D. Anagnost EVENTMANAGER:
Support for the Peripheral Awareness of Events. In HUC,
volume 1927, pages 227–235, 2000.

[29] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, 2004.

[30] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, New York, NY, USA, 2005.

[31] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

[32] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson,
D. Fox, H. Kautz, and D. Hahnel. Inferring activities from

interactions with objects. IEEE Pervasive Computing,
3(4):50–57, 2004.

[33] J. S. Provan and M. O. Ball. The complexity of counting cuts
and of computing the probability that a graph is connected.
SIAM J. Comput., 12(4):777–788, 1983.

[34] L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. pages 267–296,
1990.

[35] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event
queries on correlated probabilistic streams (full version).
Technical Report 08-03-02, University of Washington,
Seattle, WA, 2008.

[36] C. Ré and D. Suciu. Materialized views in probabilistic
databases for information exchange and query optimization.
In VLDB, pages 51–62, 2007.

[37] Reuters. Stock Data Feed. http://about.reuters.com/
productinfo/s/stock_data_feed/.

[38] RFID Journal. Hospital gets ultra-wideband RFID. http:
//www.rfidjournal.com/article/view/1088/1/1,
August 2004.

[39] Crossbow Technology. Products: Wireless sensor networks.
http:
//www.xbow.com/Products/wproductsoverview.aspx.

[40] University of Washington. RFID Ecosystem.
http://rfid.cs.washington.edu/.

[41] G. Virone, A. Wood, L. Selavo, Q. Cao, L. Fang, T. Doan,
Z. He, R. Stoleru, S. Lin, and J.A. Stankovic. An assisted
living oriented information system based on a residential
wireless sensor network. In 1st Distributed Diagnosis and
Home Healthcare (D2H2) Conference, April 2006.

[42] A. J. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE
Transactions on Information Theory, IT-13:260–269, 1967.

[43] F. Wang and P. Liu. Temporal management of RFID data. In
Proc. of the 31st VLDB Conf., September 2005.

[44] E. Welbourne, M. Balazinska, G. Borriello, and W. Brunette.
Challenges for pervasive RFID-based infrastructures. In
IEEE PERTEC 2007 Workshop, March 2007.

[45] W. White, M. Riedewald, J. Gehrke, and A. Demers. What is
"next" in event processing? In Proc. of the 26nd PODS
Conf., pages 263–272, New York, NY, USA, 2007. ACM.

[46] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD, pages 407–418, New York, NY,
USA, 2006. ACM.

