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Abstract
The need for effective tools for big data data management and
analytics continues to grow. While the ecosystem of tools is
expanding many research problems remain open: they include
challenges around efficient processing, flexible analytics, ease
of use, and operation as a service. Many new systems and much
innovation, however, come from industry (or from academic
projects that quickly became big players in industry). An im-
portant question for our community is whether industry will
solve all the problems or whether there is a place for academic
research in big data and what is that place. In this paper, we
address this question by looking back at our research on the Nu-
age, CQMS, Myria, and Data Pricing projects, and the SciDB
collaboration.

1. INTRODUCTION
Over the past ten years, the need to manage big data has be-

come an increasingly pressing problem in industry. As a result,
the landscape of big data management systems has grown at
a rapid pace. The Hadoop stack [3] is the prime example with
innovations at the storage (HDFS), execution (Hadoop MapRe-
duce), resource management (Hadoop YARN), and declarative
query layers (e.g., Apache Hive [4]). Many other systems are
also under active use and development including Cloudera Im-
pala [9], Amazon Redshift [2], Apache Storm [6], and many
others. With so much innovation happening in industry, a natu-
ral question for the academic community is whether industry
will solve all the big data problems or whether there is a place
for academic research in big data management. The clear an-
swer, of course, is that academic research has an important
role to play. In fact, some of the more transformative systems
in use in industry today (e.g., Spark [5] and GraphLab [12])
originated in academia. The more accurate question to ask is
thus how best to contribute to the vibrant big data management
area. In this paper, we reflect on big data management research
by looking back at example innovations from our Nuage [26],
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Figure 1: Academia can contribute in many ways to re-
search in big data management and analytics.

CQMS [10], Myria [25], and Data Pricing [11] projects, and
the SciDB [28, 29] collaboration.

2. FOUNDATION IN SCIENTIFIC DATA
AND APPLICATIONS

Similar to industry, science is increasingly becoming data-
driven [13]. From small research labs to large communi-
ties [21,30], scientists have access to more data than ever before.
As academic researchers on a university campus, we have ac-
cess to these exciting domain science datasets and problems. In
our big data research in the database group at the University of
Washington, we are tapping into the real data and workloads
from science collaborators on campus. These real applications
enable us to understand some of the challenges related to big
data management. The applications that we have studied in-
clude the analysis of telescope images [31], N-body simulation
data analysis [19, 20], processing of bibliometrics data, social
networking data analysis, and, most recently, natural language
processing and biology data analysis. We focus on the first two
applications as more detailed illustrative examples.

The goal of the N-body application [19, 20] is to study how
structure forms and evolves in the universe. The approach is to
use simulations that typically start shortly after the Big Bang
and run the full lifespan of the universe, approximately 14
billion years. The output of the simulation and thus the input
to the analysis takes the form of a single table. The universe
is represented with a set of particles. Each row in the table
captures the state of one particle at one timestep during the sim-
ulation. This dataset while simple exercises data management
systems in interesting ways. First the input data is growing at
a fast pace. Simulations are increasingly longer, large-volume,
and fine-grained with growing numbers of particles. Just a few
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years ago, the output of a simulation was tens of GB in size.
Last year, it was a few TB in size. This year, it is hundreds of
TB in size. Second, the analysis ranges from simple to com-
plex: select, project, join, and aggregate queries are useful for
basic data exploration [19]. But the important analysis requires
data clustering (with arbitrarily large clusters) [18] to identify
galaxies at each timestep and the study of the evolution of these
galaxies over time [20].

In the telescope image data analysis application [31], the
goal is to extract celestial objects (e.g., galaxies) from telescope
images such as those collected by the the Sloan Digital Sky
Survey (SDSS [30]) or the upcoming Large Synoptic Survey
Telescope (LSST [21]). The input data takes the form of a time-
series of 2D images at different locations in the sky. Because
some sources are too faint to appear in a single image, the
approach is to co-add a stack of images before performing
the source extraction. There are several interesting challenges
with this application: First, the original data lies on a sphere
rather than a flat 2D surface. Second, the co-addition requires
an iterative data cleaning process to remove outliers. Finally,
the data is large in the order of tens of TB for the SDSS and
tens of TB per night for the LSST.

With the above examples, we found that the straightforward
application of existing data management systems could already
yield some improvements in productivity and efficiency of sci-
entific data analysis through declarative querying and the seam-
less manipulation of datasets too large to fit in memory [19].
At the same time, it unveiled interesting limitations in existing
technologies that lead to innovations as we describe next. Other
applications will have other interesting requirements for data
management systems and will push their boundaries in different
ways.

3. EXTENDING EXISTING TOOLS
Early in our Nuage [26] project, which focused on big data

management in the context of scientific applications, we ap-
plied single-node relational database management systems
(RDBMSs) and also Dryad [14] and Hadoop [3] to the ap-
plications described above. We found that it was far from trivial
to use these systems in a way that resulted in high performance.
As a concrete example, we applied Dryad (and later Hadoop) to
the data clustering step in the N-body application [18]. While
Dryad and Hadoop made it easy to express the computation,
both lead to problems with uneven load distribution, also called
skew. This observation lead us to perform a more in-depth
study of skew in MapReduce applications, thus generalizing
the problem beyond the original use-case. We then built the
SkewReduce and SkewTune [17] systems, which both extended
Hadoop to better manage skewed data either statically or dy-
namically (please find the full list of publications on our project
website [26]). Both systems are available as open source, have
been downloaded by many groups, and can be accessed through
the Nuage project website. In that same line of work, motivated
by scientific applications and limitations we were observing in
existing systems, we developed a progress indicator for MapRe-
duce workflows [24], extended Hadoop with efficient support
for iterative analytics [7], developed a fault-tolerance optimizer
for parallel, shared-nothing systems [34], and evaluated the
benefits of lazy evaluation in MapReduce computations. In
all cases, we were inspired by concrete problems found in

academia and developed general-purpose solutions by extend-
ing existing tools.

Through the SciDB collaboration [28, 29] whose goal has
been to build a parallel array processing system, we experi-
mented with applying the SciDB engine to scientific problems.
Because SciDB is an array engine, the telescope image anal-
ysis application was an obvious fit. We used this application
and other workloads to motivate and evaluate a new storage
manager for parallel array engines [32]: We evaluated the per-
formance of different types of array partitioning and on-disk
organization methods and also different techniques for storing
multiple versions of an array in support of efficient time-travel
operations. Beyond the storage layer, we developed new query
execution methods, especially for parallel array processing
with overlap and for iterative array processing [31]. Finally, we
studied how to handle spherical rather than Cartesian data and
developed the AscotDB system for telescope image analysis on
top of our extended version of SciDB. The full list of papers
appears on our project website [29].

Lessons Learned: These first experiences with big data re-
search made it clear to us that we had access to exciting scien-
tific applications on campus. Starting with these real applica-
tions and applying existing tools to these applications enabled
us to identify specific limitations of current tools, improve and
extend these tools, and give back to the community through
open source software and publications. We found this approach
to be the fastest method to produce publishable results and get
attention. Most importantly, the new problems that we identi-
fied in domain sciences in academia lead to general research
and solutions that are broadly applicable. As a result, we found
that users beyond academia were experiencing similar problems
in many cases and appreciated our contributions.

4. BUILDING NEW TOOLS
In academia, we may not have access to large engineering

teams, but we can still invest in building new data manage-
ment systems from scratch rather than remain constrained by
existing tools. Building a new tool opens the door to being
more transformative and more creative compared with using
existing engines. Furthermore, in academia, when building a
new system, we can focus on the novel research problems, the
new techniques, without worrying that the system be feature
complete. At the same time, building a system sufficiently full-
featured to support real users enables the research to remain
focused on real problems.

In that spirit, over the past few years, our group (in collab-
oration with members of the eScience Institute) has moved
beyond Hadoop and SciDB and built our own, parallel data
management system called Myria [25]. Myria combines state-
of-the-art methods for parallel data management together with
new techniques and algorithms. We use the system for research
in efficient query processing, operation as a cloud service, and
usability. We are also operating Myria as a service for users on
the University of Washington campus.

Efficient Query Processing: Myria’s query execution layer
is called MyriaX. It is a relational, parallel, shared-nothing
engine. Similar to other engines, it comprises a coordinator
node and a set of worker nodes. As in HadoopDB [1], datasets
ingested into Myria are sharded into PostgreSQL databases
local to each node. MyriaX can read from other sources includ-
ing HDFS and Amazon S3, but it uses PostgreSQL as internal
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storage to leverage the tool’s binary storage and data indexing
capabilities. During query processing, once data is read out of
PostgreSQL, MyriaX processes it entirely in memory using its
own, often novel, operators. The engine streams data directly
from one operator to the next without going to disk and it can
scale out elastically as needed. Finally, MyriaX query plans
can have loops to support iterative computations. Based on
this state-of-the-art foundation, we innovate by developing new
query processing algorithms.

In a recent project, we focused on efficient and fault-tolerant
iterative query processing [35]. We were unhappy with existing
methods for iterative computations because they all had impor-
tant restrictions: Some were limited to synchronous processing
with synchronization barriers at the end of each iteration. Others
did support asynchronous processing but were specialized for
graphs. Others yet were more general but were exposing a low-
level interface where users needed to build query plans manu-
ally. To address these limitations, using our Myria system, we
developed a new approach to iterative query processing. With
our approach, users express declarative queries (i.e., Datalog
programs with what we define as bag-monotonic aggregates or
equivalent MyriaL scripts) that get automatically compiled into
parallel, shared-nothing plans with loops. These plans are eval-
uated incrementally, either asynchronously or synchronously,
and with various types of prioritized processing and failure han-
dling methods. Because we implemented the approach in our
Myria system, we were able to leverage our previous design
choices, such as ensuring the system never imposes unnec-
essary synchronization barriers. We were also able to extend
the system as we chose and make our new features directly
available to our users. By testing the approach on a variety of
real applications, including the N-body application described
above, we found that different iterative execution models yield
the fastest query runtimes for different applications in practice.
Asynchronous processing is not always the best approach and,
when it is, processing priorities can dramatically affect query
execution times.

In a second project, we focused on the theoretical founda-
tions of parallel query processing. Going back to theory and
foundations is an important component of academic research.
In this project, we considered recent theoretical results on join
processing in MapReduce systems and new developments in
single-node multiway join processing. Using our MyriaX ex-
ecution engine, we studied the systems aspects of these novel
algorithms, the benefits of their joint use during parallel query
evaluation, and developed algorithms to make their use practi-
cal in arbitrarily-sized clusters [8].

For both projects, the resulting innovations have been inte-
grated into the Myria stack and either are already available to
our users or are in the process of becoming available.

Operation as a Service: We are operating Myria as a cloud
service using the database group’s private cluster. Users can
access the service directly from their browsers using either our
generic interface or special-purpose interfaces. One example of
a specialized service on top of Myria is an application that we
developed for the analysis of galactic merger trees in N-body
simulations [20]. Users can also write Python (or other) scripts
to talk to the Myria stack.

By operating Myria as a cloud service, we are taking the
opportunity to re-think the interface and guarantees that cloud
data services should offer. With existing cloud services, users

either pay by the gigabyte processed (Google BigQuery) or by
instance-hour (Amazon Web Services). In Myria, we take a
completely different approach. Users show us the schema and
size of their data. We generate for them, what we call, Person-
alized Service Level Agreements (PSLAs) [27]. These PSLAs
show different service levels, each with a fixed hourly price.
At each service level, the user is shown the expected query
runtimes for different patterns of queries on their data. Under
the covers, we launch Myria clusters in the cloud and elastically
re-size these clusters to meet the performance advertised in the
PSLAs. Our new interface holds the promise to dramatically
simplify the usability of cloud services. It also opens interest-
ing research questions including how best to guarantee query
runtimes in a cloud service? How to explain query performance
without teaching users about query plans? How to help users
write queries in a way that leads to better performance? We are
actively pursuing these questions.

Usability: Finally, in the context of the Myria project but
also in our earlier CQMS project [10], we studied problems
related to database usability. Increasingly many data scientists
and data enthusiasts need to interact directly with big data man-
agement and analytics systems: How can we make these users
more productive? Through this research thread, we developed
new techniques to help users articulate SQL queries. We built
the SnipSuggest system [16] that provides contextual SQL auto-
complete recommendations based on similar queries written
by other users. We also developed techniques that let users
ask declarative queries about the performance of their analysis
in the PerfXPlain system [15]. Most recently, we developed
data cleaning techniques that maximize the quality of a user’s
visualization while minimizing the user’s data cleaning efforts.

Lessons Learned: Overall, we find that building a new
database system is a significant investment but it opens the
door to greater freedom to try new designs and new approaches.
These new methods may not entirely work at first, which is fine
in an academic setting, but they drive interesting research and
eventually become practical or give rise to new ideas. Interest-
ingly, in academia, building a new system means focusing on
the new features and new research rather than completeness of
features. At the same time, however, putting the engine in the
hands of real users helps to unveil the critical challenges to ad-
dress next. It also makes it easier to identify research problems
at different levels in the stack.

5. LOOKING IN NEW PLACES
A final exciting aspect of academic research in big data is that

we can take the time to look in places where others are not look-
ing yet. For example, when analyzing big data, a feature that
has become prominent is that users often analyze data provided
by other users or organizations (e.g., SDSS data or MIMIC-
II [23]). In cases where a user analyzes external data, the data
can come at a cost. The Azure Marketplace [22] is an example
web service where users can buy or sell data. Some datasets
are free, but most datasets cost money. Today, industry uses
simple data pricing mechanisms. Some users complain about
the limited pricing capabilities (e.g., when the data changes,
users often have no easy way to purchase only updates) but the
problem is not yet sufficiently widespread to draw attention. In
academia, however, we have the luxury to look into problems
that are looming on the horizon. In this case, an interesting
research question is how best to price relational (or other) data.
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The goal is to enable buyers to purchase exactly the data that
they need without requiring in-person negotiations, which don’t
scale. In a recent project, we developed new methods for data
pricing (see publications on our project website [11]), where
the key idea is to price queries (or views) rather than individual
tuples because queries better capture the information content
of the data and enable the enforcement of important properties
such as arbitrage-free pricing.

Datasets from third-party providers are also typically accom-
panied by terms of use. For example, the MIMIC-II data, which
is free to use for research, requires that users take an online
course to learn what they can and cannot do with the data.
Through an informal survey of 13 data providers, we found
that all datasets (or APIs to access them) came with terms of
use, averaging 8 pages in length. Reading, understanding, and
respecting such agreements is tedious and error-prone even for
honest users. Today, the process is manual. While industry is
tolerating the current manual data use management process, as
the use of third-party data grows, such a process will eventually
become untenable. To address this challenge, we developed
new techniques for automatically enforcing data use policies
with low overhead [33]: We developed a model for specifying
data use policies in SQL over the data’s usage log and devel-
oped a new method with several optimizations for efficiently
enforcing the policies. The resulting system is available as open
source and can be accessed through our project website.

Lessons Learned: Many big data management challenges
go beyond performance, usability, and service operation. Some
of these problems, including pricing and data use management
are not receiving as much attention as they should because
they have not yet become critical problems. We anticipate that
they will grow in importance. In academia, we can look many
years in the future, study what we expect to become the impor-
tant challenges, and develop principled solutions and system
prototypes for addressing them.

6. CONCLUSION
The landscape of big data research is rich. Academia has

many ways to contribute to this exciting field by applying and
improving existing tools, developing new and different tools,
considering challenges across the stack from usability to service
operation, and by looking at problems years in the future. For a
long time, data management has been a crucial tenet of industry
and sciences. Trends all point to its continued growth.
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