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ABSTRACT
SciDB [4, 3] is a new open-source data management sys-
tem intended primarily for use in application domains that
involve very large (petabyte) scale array data; for example,
scientific applications such as astronomy, remote sensing and
climate modeling, bio-science information management, as
well as commercial applications such as risk management
systems in the financial services sector, and the analysis of
web log data. In this talk we will describe our set of motivat-
ing examples and use them to explain the features of SciDB.
We then provide a snapshot of the project ‘in flight’, describ-
ing our novel storage manager, array data model, query lan-
guage, and extensibility frameworks.
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1. INTRODUCTION
In this paper we introduce and describe a new data man-

agement system; SciDB. We begin by ( 1 ) explaining the
motivations for SciDB, which lie in serving the needs of
the community of scientific users with very large scale, and
algorithmically sophisticated, data management problems.
Then we ( 2 ) move on to describe the features and func-
tionality of our system: our data model, query language,
extensibility framework, and ( 3 ) our overall architecture.
In brief, SciDB is built to support an array data model and
query language with facilities that allow users to extend our
system with new scalar data types and array operators. We
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then proceed to ( 4 ) sketch our system’s architecture and
highlight certain design features. We envision SciDB as a
massively parallel storage manager that is able (where pos-
sible) to parallelize large scale array processing algorithms.
We conclude the paper ( 5 ) with a review of our project
in-flight.

2. BACKGROUND AND MOTIVATION
Due to the way modern science makes extensive use of

sensor arrays to measure whatever physical phenomenon is
the subject of study, much modern scientific data differs
from business data in at least three important respects.

First, as their name suggests, sensor arrays consist of rect-
angular arrays of individual sensors. For example, the Hub-
ble Space Telescope’s third generation Wide Field Camera
(WFC3) consists of two UV/visible detecting charged-couple
detectors, each capturing 2048x4096 pixels. An image from
this camera covers an area of the sky about 8.5% the di-
ameter of the moon. [10] Within each WFC3 image there
are almost certain to be a large number of distinguishable
features corresponding to light from distinct objects such as
stars, galaxies and nebula. Each of these observable features
spans a block of co-located pixels. Because it is ultimately
derived from such sensor arrays scientific data has a neces-
sary and implicit ordering; for each element or data value
there are other values left, right, up, down, next, previous,
or adjacent to it.

Second, in contrast to most commercial information man-
agement applications, scientific analysis typically requires
mathematically and algorithmically sophisticated data pro-
cessing methods. Sensor data is ’noisy’. Typically, it must
be heavily pre-processed to be cleaned before scientists can
use it, and the cleaned data is input to complex analytic
processing. Scientists as consumers of data management
technologies are comfortable with tools for statistical anal-
ysis such as R, MatLab or SAS. Indeed, the goal of many
scientific research projects is to develop novel techniques for
data processing and analysis.

And third, because sensor arrays can be manufactured
on a large scale, and re-used multiple times (to search for
changes over time, such as the short lived appearance of
super-nova), data generated by modern scientific instruments
is extremely large. For example, the Large Hadron Collider
will produce approximately 15 petabytes of data annually
[2], and a single experimental run of a modern gene sequenc-
ing machine will produce on the order of a terabyte of image
data that is reduced through subsequent processing to sev-
eral gigabytes of short read data.
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Figure 1: Simple Two Dimensional SciDB Array.

Unlike the relational model where the concept of implicit
ordering is anathema to the model’s set-theoretic under-
pinnings, or SQL DBMS systems where ordering information
must be explicitly defined as part of the schema and stored
in the database, an array data model, with implicit ordering,
and notions of ‘adjacency’ or ’neighborhood’, is more desir-
able in scientific domains. ’Order’ in scientific sensor data is
not a question of representation: it is fundamental to the se-
mantics of the problem domain. Furthermore, to cope with
the complexity of the data processing, scientific users require
a much more flexible (ie. extensible) data management plat-
form than those currently available. These factors suggest
that a different kind of DBMS is called for.

However, in contrast to tools like the statistical software
packages mentioned earlier, the SciDB architecture draws
heavily on the scalability lessons learnt by commercial DBMS
vendors. SciDB is first and foremost a system for the stor-
age, processing and analysis of data. Our system will rely
on other software to handle user-interface, data visualization
and so forth.

3. FEATURES AND FUNCTIONALITY
In this section we review the features of the SciDB data

model. As we mentioned earlier, SciDB adopts an array
data model. The properties of this model reflect common
scientific use-cases. SciDB database are organized as collec-
tions of n-dimensional arrays. Cells in a SciDB array each
contain a tuple of values, and individual values in a tuple
are associated with a distinguishing attribute name.

3.1 Data Definition
To create an array in SciDB, the user would issue the

following command:

CREATE ARRAY Example

( A::INTEGER, B::FLOAT ) [ I=0:4, J=0:4];

Figure 1 illustrates what what such an array might look
like. SciDB arrays may be sparse. A nominally rectilinear
array can have jagged edges, and can even have islands of
’empty’ cells surrounded by cells containing actual values.
In Figure 2, the cells at [4,1], [2,2], [4,3] and [0,4] are all
shown as being empty.

Drawing on several of our scientific use cases SciDB dis-
tinguishes between two classes of ‘missing’ information con-
flated in SQL’s handling of NULL values. Empty cells of
the kind blacked out in Figure 2 are simply ignored for the
purpose of any data manipulation operations. Yet scientific

Figure 2: Sparse Array with Jagged Edges and Holes

applications often employ some mechanism for handling val-
ues which are ‘out of bound’ codes, and are treated differ-
ently depending on the operation being undertaken. For ex-
ample, in remote sensing applications, ‘clouds’ are encoded
differently than ‘pixel missing due to camera malfunction’.
However, neither of these case mean the pixel ’empty’. An
’empty’ cell might occur when several images are stitched
together but there are gaps between them.

Values in SciDB attributes can be of any of the expected
numerical or (currently) fixed length string data types. From
our work with the science community it is clear that these
types aren’t sufficient to cater to every requirement. For
example, a scientific measurement is often accompanied by
error bars, or even expressed as a probability distribution
function. For these reasons SciDB will support an extensible
type system similar to Postgres’ user-defined types [8] (see
below).Further, the SciDB data model is nested ; a cell in a
SciDB array can itself contain another SciDB array.

3.2 Data Manipulation
Users employ a declarative query language when work-

ing with data in a SciDB database . Underlying our query
language is a small collection of algebraic primitives which
operate on arrays. These primitives can generally be charac-
terized based on whether or not the operations manipulates
an array in terms of it’s structure–the array’s rank, and di-
mension indices–or by addressing the array’s contents–the
data values in attributes in cells. Some do both.

A complete, formal description of the operators in our
data model is beyond the scope of this paper. Instead, we
provide examples that illustrate several operators and show
how they are combined. Three of our structural operators
appear below. Figure 3 illustrates the output each of these
operations produces.

Slice ( Example, I = 2);

Slice() projects an array along a particular index value in
single dimension. In this case the Slice() operator will ex-
tract from the Example array a single column, corresponding
to cells where the column index value is 2.

Subsample (

Example,

I BETWEEN 1 AND 3 AND J BETWEEN 2 AND 4 );

Subsample() is a generalization of Slice(). Instead of a sin-
gle ‘slice’ through the array Subsample() extracts a region
of the array, where the region is specified by a conjunctive
predicate over the dimension indices.
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Figure 3: Structural Operator Examples

SJoin (

Subsample (

Example,

I BETWEEN 1 AND 3 AND J BETWEEN 2 AND 4 ),

Slice ( Example, I = 2)

);

SJoin() is a binary array operator that combines cells from
two input arrays. It combines attributes from cells with the
same dimensional index values. SJoin()’s input arrays need
not have identical dimension structure, as we see in this
example.

The following pair of query fragments illustrate how users
can perform operations on the data contents of the array.
Figure 4 illustrates the output each of these query fragments
produces.

Filter( Example, A > 2 );

Filter() applies a predicate to the attribute values in the in-
put array, and produces as output another array of the same
size–same rank and dimension. Cells where the predicate is
found false are set to empty.

Apply( Slice ( Example, I = 2), A * B );

Apply() applies a calculation to attribute values in the input
array, and produces a new array with cells populated with
new values.

All of the operators in our algebra are composable. The
second example query above illustrates how to combine two
SciDB operators, one a structural operator and the other a
content based operator. The list of potential array operators
is very large but we currently anticipate implementing about
a dozen, basic building blocks and relying on our users to
prioritize for us what they require.

Although it elevates arrays as its fundamental organiza-
tional method, it is important to note that the SciDB op-
erators have only an approximate correspondence to more
rigorous operators of linear algebra. We expect that users
will come to require these powerful analytics methods and
we are working to introduce them into our system.

Figure 4: Content Operator Examples

3.3 Extensibility
We envision that SciDB will be highly extensible. To sat-

isfy user requirements for non-business data types–complex
numbers, values with error bars–SciDB will provide Postgres
style user-defined data type(UDT) and user-defined function
(UDF) extensibility of the type found in most modern SQL
DBMS products. Users will be able to add their own, do-
main specific data types to a SciDB instance, and these new
types will inter-operate with SciDB’s own types and array
operators.

In addition, SciDB will support a novel class of operator
extensibility. Our experience working with scientific use-
cases suggests that scientific researchers often wish to ap-
ply their own highly specific algorithms to data stored in
SciDB in conjunction with some pre-processing handled by
SciDB’s built-in operators. We encourage users to add their
own user-defined array operators written in C/C++. New
operators will take SciDB array input(s), and return array
output(s).

For example, one extremely common kind of operation
in scientific data management involves examining a region
or neighborhood of values in an array. Standard procedure
when dealing with image data is to ‘smooth’ or ‘blur’ the
data to remove irrelevant detail and noise. One popular fil-
tering method is usually referred to as Gaussian Smoothing
which produces, for each cell in the array, a ‘weighted av-
erage’ of the cell’s neighborhood, with the average weighted
more towards the value of closer cells. 1 Such an operator
might appear in SciDB’s query language as follows:

Smooth(

Subsample (

Example,

I BETWEEN 1 AND 3 AND J BETWEEN 2 AND 4 )

);

1Or. more interestingly, when studying the phenomenon
of gravitational lensing (where light from distant objects is
distorted or ‘lensed’ around a closer, massive and invisible
object) astronomers want to compare the spectral signatures
of multiple glints of light in an image, were each glint spans
a block of adjacent pixels.
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Obviously this degree of extensibility complicates query
planning enormously. The SciDB optimizer will have very
limited insight into the logical or performance properties of
the operators it is working with. In the case of the Smooth()
operator introduced above, the SciDB engine may have to
materialize the result of the intermediate Subsample(). For
other kinds of operators, however, it might be possible to
pipe-line the results of an inner sub-expression directly.

4. ARCHITECTURE
SciDB adopts a shared nothing design for its overall sys-

tem architecture. We envision a SciDB instance being de-
ployed over a network of computers, each with its own lo-
cally attached storage. Each compute/storage node runs
a semi-autonomous instance of a SciDB engine, providing
communications, query processing and a local storage man-
ager. SciDB processes running on each node share access to
a (logically) centralized system catalog database that stores
information about the nodes, data distribution, user-defined
extensions, and so forth. Our design is rather less tightly
coupled than most shared nothing systems, and is influenced
by the design of modern distributed computing systems that
use a Map/Reduce[5] model. We expect this looser archi-
tecture will make it easier for us to build more flexible pro-
visioning and reliability. Physical nodes may come and go,
but unless a query addresses data stored on a node that
is off-line, the SciDB instance is unaffected. Adding nodes
amounts to adding new entries in our system catalog: the
only central point of failure in the system.

Over the next few sections we review some of the features
of our system’s implementation.

4.1 Storage Manager
The design of our storage manager draws on features from

a number of commercial DBMSs, but includes a number
of novel features reflecting the requirements of array data
processing.

SciDB implements a distributed, no-overwrite storage man-
ager. Data in a SciDB array is not update-able. New array
data can be appended to a SciDB database, or the results of
a SciDB query can be written back to the storage manager.
We plan to implement only the ‘A’ and ‘D’ of transactional
ACIDity.

In addition to our own purpose built storage manager we
anticipate that SciDB will provide access to external data
in situ through our extensible operator mechanism. For ex-
ample, scientific users with large collections of NetCDF [9]
or HDF [6] files will able to address that data without im-
porting it, and export data from SciDB in these de facto
standard file formats.

4.1.1 Chunking, and Vertical Partitioning
Figure 5 presents an outline of our approach to storage

management; how SciDB maps data in logical arrays into
physical storage.

First, in common with the so-called column-store stor-
age managers[1, 7] , we vertically partition the data in our
arrays. The SciDB storage manager splits attributes in a
single logical array and handles values for each attribute
separately. In other words, all low level operations in SciDB
deal with arrays that contain a single value in each cell.
The motivation here is the same as it is for column-store
systems. Scientific users often focus their attention, in a

Figure 5: SciDB Storage Manager

particular query, on a sub-set of attributes in the logical
array. Vertical partitioning therefore reduces I/O costs.

Second, our storage manager takes each attribute’s data,
and further decomposes the array into a number of equal
sized, and potentially overlapping, chunks. In SciDB chunks
are our physical unit of I/O, processing, and inter-node com-
munication. Chunks are quite large: on an order of 64
megabytes. Within the SciDB system catalog we store, for
each chunk, the chunk’s location–as a range of dimensional
indices–within the logical array.

4.1.2 Overlapping Chunks
The motivation for our decision to overlap chunks deserves

more detailed discussion.
Recall the Gaussian Smoothing operation introduced in

Section 3.3. To compute the new, smoothed value for each
cell, the algorithm needs to consult attribute values in the
surrounding region. The size of the region that contributes
to the smoothing operation varies from application to ap-
plication but is typically fairly small, relative to the overall
data. If the array data was partitioned into non-overlapping
chunks, SciDB would be obliged to ’stitch together’ adjacent
chunks to reconstruct ’boundary’ regions.

By segmenting our arrays into overlapping chunks, and
picking the right ’overlap’ extent, we are able to parallelize
operations like Gaussian Smoothing. All of the data needed
to compute the filter is available within the same chunk. The
downside of this strategy is that it increases our storage man-
agement overhead, and presents a configuration challenge to
SciDB DBAs.

Consider the illustration in Figure 6. Here, an 11x5 ar-
ray ‘A’ has been decomposed into three, overlapping 5x5
chunks. With this scheme, an operation that requires the
examination of any complete 3x3 subsample of A need only
consult the data in a single chunk and the operation can be
parallelized three ways. The darker grey areas are regions
of the array that are replicated; a particular attribute value
in a cell stored in more than one chunk. Lighter gray areas
represent regions of the array which are ’non-core’ in the
sense that any algorithm considering a 3x3 subsample of ‘A’
will be unable to compute results for these boundary cells.
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Figure 6: Chunk Overlap Motivation

This discussion of overlapping chunks is a good place to
point out another feature of our design. Earlier, we de-
scribed the SciDB data model’s selection of array operators.
As physically implemented, these operators are actually ap-
plied on a chunk-at-a-time basis. Thus we typically do not
have to compute the entire result of an operator applied to
an array before going on to the next operator. For exam-
ple, the chunks produced by the physical implementation of
Slice(Example, I=2) from Section 3.2 can be passed imme-
diately to the Apply() operator in a pipeline.

4.1.3 Distribution
Initially we expect that we will distribute data in a simple,

consistent fashion. Chunks are assigned to nodes in such a
way that chunks containing data values for a particular cell
of the logical array are co-located on the same node. The
idea is to optimize for queries that combine data from single
cells. For example, the following query:

Filter (

Subsample (

Example,

I BETWEEN 1 AND 3 AND J BETWEEN 2 AND 4 ),

A * B > 5 );

can be executed by pipe-lineing a chunk-at-a-time through
the operator tree, and does not require any communication
between nodes.

SciDB records in its system catalogs an entry for each
chunk that informs the query processor what region of the
logical array each chunk spans and what attribute it con-
tains. We are using the Postgres open-source DB as a system
catalog repository manager because this allows us to use R-
Trees to quickly identify which chunks contain data relevant
to a particular subsample of the array, thereby facilitating
fragment elimination and improving query planning.

4.1.4 Compression
Earlier we mentioned that we plan on setting the SciDB

chunk size to something reasonably large: 64 megabytes or
so. In many of our scientific use-cases, we have observed
that compression is used very frequently to cut down stor-
age requirements. Consequently we compress each chunk
individually when writing it to disk, and uncompress it as
we read it in. For some operators it is possible to work on
uncompressed data directly, depending on the compression

scheme, and we are actively investigating this optimization.
Compression is also used in network operations to minimize
the bandwidth requirements of our Scatter/Gather opera-
tion (see below).

4.2 Query Processing
In contrast with the relational model, where algebraic op-

erators are widely commutable, the SciDB engine has much
less flexibility when organizing query plans. Some opera-
tions can be re-organized for efficiency, but the semantics
of many of them preclude this. For example, we may not
know the precise dimensions of the output of an an SJoin()
or CrossProduct() operator until the size of it’s input ar-
rays is known. Consequently our initial approach to query
processing will be very simple. We describe it in this section.

4.2.1 Parsing and Plan Generation
SciDB’s extensibility requires that our parser and plan

generator consult the system catalogs to determine the se-
mantics of query expressions. At this point we do not envi-
sion a type system as rich and sophisticated as the one pro-
vided by Postgres, but our decision to support user-defined
operators–such as Smooth()–complicates parsing. For each
syntactic token we need to determine the operator it corre-
sponds to, and to check that the schema’s semantics match
the operator’s requirements.

4.2.2 Optimization
For each client query, SciDB will perform initial processing–

parsing, semantic checks, type checking, lookup of user-
defined extensions–at a coordinator node. The coordina-
tor node then parcels out the execution of fragments of the
query plan to the distributed nodes.

Because we anticipate that our query planning problem
problem will be enormously complex, we plan to use adap-
tive methods. Where possible, the query planner on the co-
ordinator node will produce a complete physical plan from
the logical plan tree it is presented with. But where this
is impossible, the planner will identify a portion of the log-
ical plan that can be collected into a tree of pipe-lineable
operators and then schedule the parallel execution of these
physical sub-plans, one per node that contains relevant data.

The result of each of these sub-plans can be thought of
as a new (temporary) array. Depending on the result of
these physical sub-plans–the temporary array’s size, rank
and dimensions–the optimizer on the coordinator is then
free to perform another processing step.

4.2.3 Query Executor
Physical sub-plans consist of pipe-linable fragments (called

segments). The SciDB coordinator passes segments to lo-
cal nodes where they are executed against locally stored
data. We anticipate being able to pipe-line chunk-at-a-
time through the segment, and storing chunks which make
up results locally. Segment executors are localized to each
node. One of the complications our design implies is that
the shared libraries containing user-defined extensions must
be linked into each executable, on each node. In fact, we
will be storing these shared library modules as data in our
system catalogs.
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4.2.4 Scatter/Gather and Inter-Node Messaging
Not all queries can be easily parallelized. We anticipate

that, from time to time, SciDB will be required to dynam-
ically re-distribute data over the nodes of the cluster. To
cope with these situations we have implemented a special,
sophisticated operator pair we call the Scatter/Gather (S/G)
operator, and a special purpose messaging system designed
with our needs in mind. The properties of the SciDB S/G
operator are similar to the corresponding functionality in
MPP relational systems.

When the query processor determines that it needs to per-
form a dynamic re-distribution of data, it informs the par-
ticipating nodes of how the logical re-distribution of data
needs to occur. That is, it informs each node about the new
’chunk map’ for the array; the core data, and the extent of
the overlap. Then for each local chunk, the S/G operator
assigns the data it contains to a buffer associated with the
target node’s ID. Once that chunk-sized buffer is full, the
S/G operator pushes it to the target node.

The symmetric gather operator receives chunks from other
nodes, and may need to merge data from multiple remote
nodes.

5. PROJECT STATUS
We debuted SciDB at VLDB 2009 [3], were we presented

a demonstration system that we have used as a vehicle for
exploring user requirements in more detail. At this time
(March, 2010) we are in the process of developing a Version
1 release. Our release builds on the lessons of our simple
prototype and represents a considerably more flexible and
sophisticated implementation of these ideas.

SciDB is being managed as an open-source development
project with all code released under the Gnu Public Li-
cense Version 3.0. We are actively working with three ‘early
adopter’ customers in both scientific and commercial do-
mains. Currently SciDB is being developed by an interna-
tional pick-up team of engineers. We anticipate release of
Version 1 of our system, with most of the functionality de-
scribed in this document, in the second quarter of 2010.

6. CONCLUSION
We have presented SciDB: a novel, array-centric DBMS

designed to cater to large scale, query centric scientific work-
loads. We motivated our system by describing how in mod-
ern, Big Science projects the wide spread use of sensor arrays
causes data to be structured in a way that makes it awkward
to manage efficiently using relational DBMS approaches. We
explored some of the features of our system: it’s data model,
query language and approach to extensibility. We also de-
scribed our system’s architecture: it’s shared nothing archi-
tecture, approach to query processing and query execution.
We finished the paper with an overview the project’s status.

Readers interested in learning more, or volunteering to
help, are encouraged to visit our web site:

http://www.scidb.org
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