
Noname manuscript No.
(will be inserted by the editor)

The HaLoop Approach to Large-Scale Iterative Data Analysis

Yingyi Bu · Bill Howe · Magdalena Balazinska · Michael D. Ernst

Received: date / Accepted: date

Abstract The growing demand for large-scale data min-
ing and data analysis applications has led both industry
and academia to design new types of highly scalable data-
intensive computing platforms. MapReduce has enjoyed
particular success. However, MapReduce lacks built-in sup-
port for iterative programs, which arise naturally in many
applications including data mining, web ranking, graph
analysis, and model fitting. This paper1 presents HaLoop,
a modified version of the Hadoop MapReduce framework,
that is designed to serve these applications. HaLoop allows
iterative applications to be assembled from existing Hadoop
programs without modification, and significantly improves
their efficiency by providing inter-iteration caching mech-
anisms and a loop-aware scheduler to exploit these caches.
HaLoop retains the fault-tolerance properties of MapReduce
through automatic cache recovery and task re-execution. We
evaluated HaLoop on a variety of real applications and real
datasets. Compared with Hadoop, on average, HaLoop im-
proved runtimes by a factor of 1.85 and shuffled only 4% as
much data between mappers and reducers in the applications
that we tested.

Yingyi Bu
University of California - Irvine, Irvine, CA, USA 92697
E-mail: yingyib@ics.uci.edu

Bill Howe
University of Washington, Seattle, WA, USA 98195
E-mail: billhowe@cs.washington.edu

Magdalena Balazinska
University of Washington, Seattle, WA, USA 98195
E-mail: magda@cs.washington.edu

Michael D. Ernst
University of Washington, Seattle, WA, USA 98195
E-mail: mernst@cs.washington.edu

1 This is an extended version of the VLDB 2010 paper “HaLoop:
Efficient Iterative Data Processing on Large Clusters” [8].

1 Introduction

The need for highly scalable parallel data processing
platforms is rising due to an explosion in the number of
massive-scale data-intensive applications both in industry
(e.g., web-data analysis, click-stream analysis, network-
monitoring log analysis) and in the sciences (e.g., analysis
of data produced by high-resolution, massive-scale simula-
tions and new high-throughput sensors and devices).

MapReduce [12] is a popular framework for program-
ming commodity computer clusters to perform large-scale
data processing in a single pass. A MapReduce cluster can
scale to thousands of nodes in a fault-tolerant manner. Al-
though parallel database systems [13] may also serve these
data analysis applications, they can be expensive, difficult
to administer, and typically lack fault-tolerance for long-
running queries [32]. Hadoop [17], an open-source MapRe-
duce implementation, has been adopted by Yahoo!, Face-
book, and other companies for large-scale data analysis.
With the MapReduce framework, programmers can par-
allelize their applications simply by implementing a map
function and a reduce function to transform and aggregate
their data, respectively. The MapReduce model has been
shown to be suitable for a variety of algorithms, including
web-scale document analysis [12], relational query evalua-
tion [20], and large-scale image processing [37].

However, many data analysis techniques require it-
erative computations, including PageRank [31], HITS
(Hypertext-Induced Topic Search) [23], recursive relational
queries [5], clustering [22], neural-network analysis [18],
social network analysis [35], and internet traffic analy-
sis [27]. These techniques have a common trait: data are
processed iteratively until the computation satisfies a con-
vergence or stopping condition. The MapReduce framework
does not directly support these iterative data analysis appli-
cations. Instead, programmers must implement iterative pro-

2 Yingyi Bu et al.

url rank
u0 0.2
u1 0.2
u2 0.2
u3 0.2
u4 0.2

url source url dest
u0 u1
u0 u2
u2 u0
u4 u3
u3 u1
u2 u4
u4 u2
u0 u3
u1 u3

(a) Initial Rank Table R0 (b) Linkage Table L

MR1

8>><>>:
Ti1 = Ri onurl=url source L (Computes relation: (url source, url dest, rank))
Ti2 = γurl,rank, rank

COUNT(url dest)
→new rank (Ti1) (Computes: (url source,new intermediate rank))

Ti3 = Ti2 onurl=url source L (Computes: (url source, url dest, new intermediate rank)

MR2

8>><>>:
Ri+1 = γurl dest→url, 1−d

N
+d∗SUM(new intermediate rank)→rank (Ti3)

(for each url dest, aggregate populated ranks from different url source)
(d is the damping factor and usually is set to 0.85 while N the total count of distinct urls)

url rank
u0 0.084
u1 0.28
u2 0.13
u3 0.42
u4 0.08

(c) Loop Body (d) Rank Table R3

Fig. 1 PageRank example

grams by issuing multiple MapReduce jobs and orchestrat-
ing their execution using a driver program [25].

In addition to being cumbersome for the developer, there
are two key performance problems related to the use of a
driver program to manage iteration. The first problem is that
even though much of the data may be unchanged from itera-
tion to iteration, the data must be re-loaded and re-processed
at each iteration, wasting I/O, network bandwidth, and CPU
resources. The second problem is that the termination condi-
tion may involve detecting when a fixpoint has been reached
— i.e., when the application’s output does not change be-
tween two consecutive iterations. Computing this condition
may itself require an extra MapReduce job on each itera-
tion, again incurring overhead in terms of scheduling extra
tasks, reading extra data from disk, and moving data across
the network. To illustrate these problems, consider the fol-
lowing two examples.

Example 1 (PageRank) PageRank [31] is a graph analysis
algorithm that assigns weights (ranks) to each vertex by it-
eratively aggregating the weights of its inbound neighbors.
In the relational algebra, each iteration of the PageRank al-
gorithm can be expressed as two joins, two aggregations,
and one update (Figure 1(c)). These steps must be repeated
by a driver program until a termination condition is satis-
fied (e.g., either a specified number of iterations have been
performed or the rank of each page converges).

Figure 1 shows a concrete example. R0 (Figure 1(a)) is
the initial rank table, and L (Figure 1(b)) is the linkage ta-
ble. Two MapReduce jobs (MR1 and MR2 in Figure 1(c))
implement the loop body of PageRank. The first MapRe-
duce job joins the rank and linkage tables using a typical
reduce-side join algorithm [36]: the map phase hashes both

relations by their join attributes, and the reduce phase com-
putes the join for each key. As a simple optimization, this
job also computes the rank contribution for each outbound
edge, new intermediate rank. The second MapReduce
job computes the aggregate rank of each unique destina-
tion URL: the map function is the identity function, and
the reducers sum the rank contributions of each incoming
edge. In each iteration, Ri is updated to Ri+1. For example,
one could obtain R3 (Figure 1(d)) by iteratively computing
R1, R2, and finally R3. The computation terminates when
the rank values converge. Checking this termination condi-
tion requires yet another distributed computation on each
iteration, implemented as yet another MapReduce job (not
shown in Figure 1(c)).

This example illustrates several inefficiencies. In the
PageRank algorithm, the linkage table L is invariant across
iterations. Because the MapReduce framework is unaware
of this property, however,L is processed and shuffled at each
iteration. Worse, the invariant linkage data may frequently
be larger than the resulting rank table. Finally, determining
whether the ranks have converged requires an extra MapRe-
duce job after each iteration.

As a second example, consider a simple recursive query.

Example 2 (Descendant Query) Given the social network
relation in Figure 2(a), we wish to find everyone within two
“friend-hops” of Eric. The relation ∆S0={Eric, Eric} is the
reflexive friend relationship that initiates the computation,
as shown in Figure 2(b). This query can be implemented by
a driver program that executes two MapReduce jobs (MR1

and MR2 in Figure 2(c)) for two iterations. The first MapRe-
duce job finds a new generation of friends ∆Si by joining

The HaLoop Approach to Large-Scale Iterative Data Analysis 3

name1 name2
Tom Bob
Tom Alice
Elisa Tom
Elisa Harry

Sherry Todd
Eric Elisa
Todd John
Robin Edward

name1 name2
Eric Eric

MR1

(
T1 = ∆Si on∆Si.name2=F.name1 F (look one step further)
T2 = π∆Si.name1,F.name2(T1) (project newly discovered friend relations)

MR2

(
Si =

S
0≤j≤(i−1)∆Sj (union friends discovered before)

∆Si+1 = δ(T2 − Si) (duplicate elimination)

(a) Friend Table F (b) Initial Table ∆S0 (c) Loop Body

Eric(∆S0)

Elisa(∆S1)

Tom(∆S2) Harry(∆S2)

name1 name2
Eric Eric
Eric Elisa
Eric Tom
Eric Harry

(d) Result Generating Trace (e) Result Table S2

Fig. 2 Descendant query example

the friend table F with the friends discovered in the pre-
vious iteration. The second MapReduce job removes dupli-
cates — those tuples in ∆Si that also appear in any ∆Sj for
any j < i. Figure 2(d) shows how results evolve from ∆S0

to ∆S2. The final result is the concatenation of the disjoint
results from each iteration (Figure 2(e)). Other implementa-
tions are possible.

This example essentially implements the semi-naı̈ve
evaluation strategy for recursive logic programs [5]: we re-
move duplicate answers on each iteration to reduce the num-
ber of redundant facts derived. Implemented as a MapRe-
duce program, however, this approach still involves wasted
work. As in the PageRank example, a significant fraction of
the data (the friend table F) remains constant throughout the
execution of the query, yet still gets processed and shuffled
at each iteration.

Many other data analysis applications have characteris-
tics similar to the above two examples: a significant fraction
of the processed data remains invariant across iterations, and
the termination condition may involve a distributed compu-
tation. Other examples include statistical learning and clus-
tering algorithms (e.g., k-means), web/graph ranking algo-
rithms (e.g., HITS [23]), and recursive graph or network
queries.

This paper presents a new system called HaLoop that
is designed to efficiently handle these applications. HaLoop
adopts four design goals: first, loop-invariant data should
not be re-processed on each iteration; second, tests for fix-
points (e.g., PageRank convergence) should not require an
extra MapReduce job on each iteration; third, any optimiza-
tions should not sacrifice Hadoop’s fault-tolerance proper-
ties; fourth, porting existing Hadoop applications to HaLoop
should not require changes to existing code, and should re-
quire as little new code as possible.

This paper makes the following contributions:

– New Programming Model and Architecture for Iterative
Programs: HaLoop offers a programming interface to ex-
press iterative data analysis applications, and allows pro-
grammers to reuse existing mappers and reducers from
conventional Hadoop applications (Section 2.2).

– Loop-Aware Scheduling: HaLoop’s scheduler ensures that
tasks are assigned to the same nodes across multiple iter-
ations, allowing the use of local caches to improve perfor-
mance (Section 3).

– Caching for Loop-Invariant Data: During the first it-
eration of an application, HaLoop creates indexed lo-
cal caches for data that are invariant across iterations.
Caching the invariant data reduces the I/O cost for loading
and shuffling them in subsequent iterations (Section 4.2
and Section 4.4).

– Efficient Fixpoint Evaluation: HaLoop caches a reducer’s
local output to allow efficient comparisons of results be-
tween iterations. This technique can help avoid a super-
fluous MapReduce job to check convergence conditions
(Section 4.3).

– Failure Recovery: HaLoop preserves the fault-tolerance
properties of MapReduce by automatically reconstructing
the caches from intermediate results and using them to re-
execute failed tasks (Section 5).

– System Implementation: We implemented HaLoop by
modifying the Hadoop MapReduce framework. As a re-
sult, mappers and reducers developed for Hadoop can be
used unchanged as part of a HaLoop application (Sec-
tion 6).

– Experimental Evaluation: We evaluated HaLoop on iter-
ative programs that process both synthetic and real world
datasets. HaLoop outperforms Hadoop on all tested met-
rics. On average, HaLoop improves query runtimes by
a factor or 1.85, and shuffles only 4% of the data be-

4 Yingyi Bu et al.

Task Queue

.

.

.

Caching Indexing

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13

Identical to Hadoop New in HaLoop

Local communication Remote communication

Modified from Hadoop

Fig. 3 The HaLoop framework, a variant of the Hadoop MapReduce
framework. There are three jobs running in the system: job 1, job 2, and
job 3. Each job has three tasks running concurrently on slave nodes.

tween mappers and reducers in the applications that we
test (Section 7).

2 HaLoop Overview

This section first introduces HaLoop’s architecture and
compares our design choices with other alternatives, and
then illustrates HaLoop’s application programming model
and interface.

2.1 Architecture

Figure 3 illustrates the architecture of HaLoop, a modi-
fied version of the open-source MapReduce implementation
Hadoop [17].

HaLoop inherits the basic distributed computing model
and architecture of Hadoop. The latter relies on a distributed
file system (HDFS [19]) that stores each job’s input and out-
put data. A Hadoop cluster is divided into two parts: one
master node and many slave nodes. A client submits jobs
consisting of mapper and reducer implementations to the
master node. For each submitted job, the master node sched-
ules a number of parallel tasks to run on slave nodes. Every
slave node has a task tracker daemon process to communi-
cate with the master node and manage each task’s execution.
Each task is either a map task or a reduce task. A map task
performs transformations on an input data partition by exe-
cuting a user-defined map function on each 〈key, value〉 pair.
A reduce task gathers all mapper output assigned to it by a
potentially user-defined hash function, groups the output by
keys, and invokes a user-defined reduce function on each
key-group.

HaLoop uses the same basic model. In order to accom-
modate the requirements of iterative data analysis applica-

tions, however, HaLoop includes several extensions. First,
HaLoop extends the application programming interface to
express iterative MapReduce programs (Section 2.2). Sec-
ond, HaLoop’s master node contains a new loop control
module that repeatedly starts new MapReduce steps that
compose the loop body, continuing until a user-specified
stopping condition is satisfied (Section 2.2). Third, HaLoop
caches and indexes application data on slave nodes’ local
disks (Section 4). Fourth, HaLoop uses a new loop-aware
task scheduler to exploit these caches and improve data lo-
cality (Section 3). Fifth, if failures occur, the task sched-
uler and task trackers coordinate recovery and allow iter-
ative jobs to continue executing (Section 5). As shown in
Figure 3, HaLoop relies on the same file system and has the
same task queue structure as Hadoop, but the task scheduler
and task tracker modules are modified and the loop con-
trol, caching, and indexing modules are new. The HaLoop
task tracker not only manages task execution, but also man-
ages caches and indices on the slave node, and redirects each
task’s cache and index accesses to the local file system.

2.2 Programming Model

In HaLoop, the programmer specifies an iterative com-
putation by providing: 1) the computation performed by
each map and reduce in the loop body, 2) the names of the
files produced and accessed by each step in the loop body,
3) the termination condition, and 4) the application-specific
caching behavior. This section describes each of these inter-
faces.

Map and reduce computations. In HaLoop, the Map func-
tion and Reduce function have exactly the same interfaces
and semantics as they do in Hadoop:

– Map transforms an input 〈key, value〉 tuple into intermedi-
ate 〈inter key, inter value〉 tuples.

– Reduce processes intermediate tuples sharing the same
inter key, to produce 〈out key, out value〉 tuples.

To express an iterative program, the user must specify
the loop body and the termination condition. Each step in
the loop body accepts one or more input datasets and pro-
duces a single output dataset. The termination condition is
either specified as a fixed number of iterations or as a fix-
point, which is satisfied when a specified output dataset does
not change from one iteration to the next. Each loop iteration
comprises one or more MapReduce steps. The programmer
constructs a sequence of MapReduce steps as the loop body
by calling the following function once for each step:

– AddMapReduceStep(int step, Map map impl,

Reduce reduce impl) creates a MapReduce step
consisting of a map function map impl and a reduce

The HaLoop Approach to Large-Scale Iterative Data Analysis 5

function reduce impl as well as an integer that indicates
its execution step in the loop body.

Inputs/output for each loop step. To specify the inputs and
output of each job in the loop body, the programmer imple-
ments two functions:

– GetInputPaths(int iteration, int step) returns
a list of input file paths for the step in the iteration. Fre-
quently, a step refers to two kinds of datasets: 1) loop-
invariant “constant” datasets, and 2) datasets produced by
steps executed in current or prior iterations.

– GetOutputPath(int iteration, int step) tells the
framework the output path for the step in the iteration.
Each (iteration, step) pair is expected to have a unique
output path; no dataset should be overwritten in order to
preserve fault-tolerance properties.

Termination condition. To express an iterative program,
the user must specify the loop body and the termination con-
dition. Each step in the loop body accepts any input datasets
and produces any output datasets. The termination condition
is either a given number of iterations or a fixpoint; that is,
when a specified output does not change from one iteration
to the next.

A fixpoint is typically defined by exact equality between
iterations, but HaLoop also supports the concept of an ap-
proximate fixpoint, where the computation terminates when
the difference between two consecutive iterations is less than
a user-specified threshold. HaLoop also supports terminat-
ing the computation after a maximum number of iterations
have occurred. Either or both of these termination conditions
may be used in the same loop. For example, PageRank may
halt when the ranks do not change more than a user-specified
convergence threshold ε from one iteration to the next, but
never run more than, say, 10 iterations [31].

To specify the termination condition, the programmer
may use one or both of the following functions:

– SetFixedPointThreshold(DistanceMeasure dist,

double threshold) specifies a distance measure and
sets a bound on the distance between the output of one
iteration and the next. If the threshold is exceeded, then
the approximate fixpoint has not yet been reached, and
the computation continues.
The user-defined dist function calculates the distance
between two reducer output value sets sharing the same
reducer output key, without knowing what the key is. The
total distance between the last-step reducer outputs of the
current iteration i and the previous iteration i− 1 is∑

out key

dist(Ri|out key , Ri−1|out key)

where R|out key = {out value | 〈out key , out value〉 ∈
R}. It is straightforward to support other aggregations be-
sides sum.

A common use case for the distance function is to test
a convergence criterion. For example, the k-means algo-
rithm terminates when the k centroids do not move by
more than some threshold in a given iteration. As an-
other example, a distance function could return 0 if the
two value sets are non-empty and 1 if either value set is
empty; the total distance is then the number of keys in the
symmetric difference of the two key-sets.

– SetMaxNumOfIterations provides further control of
the loop termination condition. HaLoop terminates a
job if the maximum number of iterations has been
executed, regardless of the distance between the cur-
rent and previous iteration’s outputs. On its own,
SetMaxNumOfIterations can also be used to implement
a simple for-loop.

Caching Behavior. HaLoop supports three types of caches:
the mapper input cache, the reducer input cache, and the
reducer input cache. The reducer input cache and mapper
input cache can be created automatically in the first itera-
tion by analyzing the dependency graph of the loop body
(see Section 4.1). But HaLoop also exposes an interface for
fine-grained control over the caches. In particular, we find
that applications may need to specify the data to cache on
a tuple-by-tuple basis. In Example 1, reducer slave nodes
only cache tuples from the L table, rather than those from
Ri. However, the framework may not know which tuple is
from L nor which is from Ri, since the table tag is embed-
ded in the reducer input key or value, which is application
specific. HaLoop introduces the CacheFilter interface for
programmers to implement, with one method:

– isCache(K key, V value, int id) returns true if the
〈key, value〉 tuple needs to be cached, and returns false
otherwise. The parameter id provides auxiliary informa-
tion for decision making. For a mapper input or reducer
output tuple, id is the number of tuples consumed or pro-
duced so far. For a reducer input tuple, id is the number
of tuples processed so far with the same key. The id is
useful in certain cases, such as multi-way joins, like the
PageRank example implementation in Figure 20.

There are several methods to enable and disable different
cache types. Additionaly, HaLoop exposes a method accept-
ing a CacheFilter implementation and a cache type, which
HaLoop applies to the data before creating the cache of the
specified type.

In summary, the HaLoop programming model supports
programs of the form

repeat until termination condition:
Output0 = MR0(Inputs0)
Output1 = MR1(Inputs1)
...
OutputN−1 = MRN−1(InputsN−1)

6 Yingyi Bu et al.

Map Reduce Map Reduce

Stop?

Map Reduce Map Reduce

Stop?

Hadoop Job1 Hadoop Job2

Map1 Reduce1
HaLoop Job

Map2 Reduce2

Map1 Reduce1 Map2 Reduce2

Application ApplicationYes
No

Yes (return)Submit

SubmitSubmit ReturnReturn

Stop condition

Fig. 4 Boundary between an iterative application and the framework
(HaLoop vs. Hadoop). HaLoop knows and controls the loop, while
Hadoop only knows jobs with one MapReduce pair.

where each MRi is a MapReduce job. Figure 4 shows the
difference between HaLoop and Hadoop, from the applica-
tion’s perspective: in HaLoop, a user program specifies loop
settings and the framework controls the loop execution, but
in Hadoop, it is the application’s responsibility to control the
loops.

3 Loop-aware Task Scheduling

This section introduces the HaLoop task scheduler. The
scheduler provides potentially better schedules for iterative
programs than Hadoop’s scheduler by co-locating tasks with
the caches they need. Sections 3.1 and 3.2 explain the de-
sired schedules and scheduling algorithm, respectively.

3.1 Inter-Iteration Locality

The goal of HaLoop’s scheduler is to schedule tasks that
access the same data on the same physical machine, even if
these tasks occur in different iterations or different steps in
the same iteration. This capability allows the use of caches
to store data across iterations, reducing redundant work.

For example, Figure 5 is a sample schedule for two it-
erations of the join step (MR1 in Figure 1(c)) of the Page-
Rank application from Example 1. The relation L (which
may span several nodes) represents the original graph, and
does not change from iteration to iteration. The relation R
(which may also span several nodes) represents the ranks
computed on each iteration. To improve performance, L is
cached and re-used on each iteration.

There are three slave nodes involved in the job. The
scheduling of iteration 0 is no different than in Hadoop: the
map tasks are arbitrarily distributed across the three slave
nodes, as are the reduce tasks. In the join step of iteration
0, the input tables are L and R0. Three map tasks are exe-
cuted, each of which loads a part of one or the other input
data file (a.k.a., a file split). As in ordinary Hadoop, the map-
per output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned.
Then, three reduce tasks are executed, each of which loads
a partition of the collective mapper output. In Figure 5, re-
ducer R00 processes mapper output keys whose hash value

is 0, reducer R01 processes keys with hash value 1, and re-
ducer R02 processes keys with hash value 2.

The scheduling of the join step of iteration 1 can take
advantage of inter-iteration locality: the task (either a map-
per or reducer) that processes a specific data partition D is
scheduled on the physical node where D was processed in
iteration 0. Note that the two file inputs to the join step in
iteration 1 are L and R1.

The schedule in Figure 5 provides the ability to reuse
loop-invariant data from past iterations. Because L is loop-
invariant, mappers M10 and M11 would compute identical
results to M00 and M01. There is no need to re-compute
these mapper outputs, nor to communicate them to the re-
ducers. In iteration 0, if reducer input partitions 0, 1, and 2
are stored on nodes n2, n0, and n1 respectively, then in iter-
ation 1, L need not be loaded, processed, or shuffled again.
In that case, in iteration 1, only one mapper M12 for R1-
split0 needs to be launched, and thus the three reducers will
only copy intermediate data from M12. With this strategy,
the reducer input is no different, but it now comes from two
sources: the output of the mappers (as usual) and the local
disk.

Definition: inter-iteration locality. Let d be a file split (map-
per input partition) or a reducer input partition2, and let T i

d

be a task consuming d in iteration i. Then we say that a
schedule exhibits inter-iteration locality if for all i > 0,
T i−1

d and T i
d are assigned to the same physical node if T i−1

d

exists.

The goal of task scheduling in HaLoop is to achieve
inter-iteration locality. To achieve this goal, the only restric-
tion is that HaLoop requires that the number of reduce tasks
should be invariant across iterations, such that the hash func-
tion assigning mapper outputs to reducer nodes remains un-
changed.

3.2 Scheduling Algorithm

The HaLoop scheduler is a modified version of the stan-
dard Hadoop TaskQueue scheduler. As in the TaskQueue
scheduler, each slave node has a fixed number of slots to
hold running tasks (either map or reduce). If the slots are
all being used, the slave node is considered fully loaded.
Each slave node sends periodic heartbeats to the master, and
the master decides whether to schedule a task to the hosting
slave upon each heartbeat. If the slave node already has a full
load, the master re-assigns its tasks to a nearby slave node.
Other improved strategies such as delay scheduling [38] are
out of our scope and are orthogonal to the HaLoop system.

2 Mapper input partitions in both Hadoop and HaLoop are repre-
sented by an input file URL plus an offset and length; reducer input
partitions are represented by an integer hash value. Two partitions are
assumed to be equal if their representations are equal.

The HaLoop Approach to Large-Scale Iterative Data Analysis 7

n0

n1

n2

n0

n1

n2

R0-split0

L-split0

L-split1

R01

R02

R00

n0

n1

n2

n0

n1

n2

M12

M10

M11

R11

R12

R10

n0

n1

n2

n0

n1

n2

M02

M00

M01

R01

R02

R00

n0

n1

n2

n0

M12

R11

R12

R10

Cache

Cache

Cache

Cache

Cache

Cache

Unnecessary computation in Hadoop Unnecessary communication in Hadoop Local disk I/O in HaLoop

Iteration 0 (HaLoop) Iteration 1 (HaLoop)

Iteration 0 (Hadoop) Iteration 1 (Hadoop)

M02

M00

M01

partition 1

partition 0

partition 2

partition 0

partition 1

partition 2

partition 1

partition 0

partition 2

partition 1

partition 0

partition 2

R0-split0

L-split0

L-split1

R1-split0

L-split0

L-split1

R1-split0

Fig. 5 A schedule exhibiting inter-iteration locality. HaLoop schedules tasks processing the same inputs on consecutive iterations to the same
physical nodes. Mij is the mapper task consuming input partition j in iteration i, and Rij is the reducer task consuming mapper output partition
j in iteration i. No partition is assumed to fit in main memory of a single node.

The HaLoop’s scheduler keeps track of the data parti-
tions processed by each map and reduce task on each physi-
cal machine, and it uses that information to schedule subse-
quent tasks taking inter-iteration locality into account.

Figure 6 shows the pseudocode for the scheduling algo-
rithm. In a job’s iteration 0, the schedule is exactly the same
as that produced by Hadoop (line 2). Note that, on line 2,
hadoopSchedule does not return the entire hadoop schedule.
Rather, it returns one “heartbeat worth” of the entire sched-
ule. After scheduling, the master remembers the association
between data and node (lines 3 and 12). In later iterations,
the scheduler tries to retain previous data-node associations
(lines 12 and 13). If the associations is no longer appropri-
ate due to increased load, the master node will associate the
data with another node (lines 5–8). Each time the scheduling
algorithm is called, at most one partition is assigned to the
node (line 3 and 12). Task failures or slave node failures can
also cause the scheduler to break inter-iteration locality, as
we discuss in Section 5.

4 Caching and Indexing

Thanks to the inter-iteration locality offered by the task
scheduler, access to a particular loop-invariant data partition
is usually only needed by one physical node. To reduce I/O
cost, HaLoop caches those data partitions on the physical

node’s local disk for subsequent re-use. To further accelerate
processing, it indexes the cached data. Section 5 discusses
how caches are reloaded in case of failures or changes in
the task-to-node mapping. This section presents the details
of how HaLoop detects loop-invariant datasets and builds
and uses three types of caches: reducer input cache, reducer
output cache, and mapper input cache. Each one fits a num-
ber of application scenarios. Application programmers can
choose to enable or disable a cache type. HaLoop also has
an interface that allows for programmers to do fine-grained
cache control (see Section 2.2).

4.1 Detecting Loop-Invariant Datasets

Files that are suitable for inter-iteration caching are those
that are not produced by any jobs and are read repeatedly
by the same step across multiple iterations. Our experimen-
tal results show that caching is worthwhile even in the case
where the file is read just twice.

Before an iterative job is executed, the master node iden-
tifies caching opportunities by examining the dependency
graph of the overall job. It constructs a directed bipartite de-
pendency graph for the first n iterations (typically just two)
as follows. The graph contains a node for each step 〈i, j〉 at
iteration i, step j, and also add a node for each unique file
input and file output returned by GetInputPaths(i,j) and

8 Yingyi Bu et al.

Task Scheduling
Input: Node node, int iteration
// The current iteration’s schedule; initially each list is empty
Global variable: Map〈Node, List〈Partition〉〉 current
// Initially, the latest iteration’s schedule; eventually each
list is empty
Global variable: Map〈Node, List〈Partition〉〉 previous

1: if iteration == 0 then
2: Partition part = hadoopSchedule(node);
3: current.get(node).add(part);
4: else if node.hasFullLoad() then
5: Partition part = previous.get(node).get(0);
6: Node substitution = findNearestIdleNode(node);
7: previous.get(node).remove(part);
8: previous.get(substitution).add(part));
9: else if previous.get(node).size()>0 then

10: Partition part = previous.get(node).get(0);
11: schedule(part, node);
12: current.get(node).add(part);
13: previous.get(node).remove(part);
14: end if
Fig. 6 Task scheduling algorithm, whose goal is to assign the slave
node an unassigned task that uses data cached on that node. If there
are running jobs, this function is called whenever the master node re-
ceives a heartbeat from a slave, which happens multiple times per iter-
ation. Before each iteration, previous is set to current, and then
current is set to a new map containing empty lists.

GetOutputPath(i,j). The graph contains an edge from
step 〈i, j〉 to file x if x ∈ GetInputPaths(i, j), and an edge
from file x to step 〈i, j〉, if x = GetOutputPath(i, j). A file
is cachable if its node x in the dependency graph 1) has no
outgoing edges, and 2) all incoming edges involve the same
step. From the detected loop-invariant datasets, the HaLoop
framework determines which step in the first iteration writes
the cache and which step(s) in upcoming iterations read the
cache.

4.2 Reducer Input Cache

The reducer input cache avoids the need to re-process
the same data with the same mapper in multiple iterations.
For those datasets determined to be cacheable by the loop-
invariant detection procedure, HaLoop will cache the re-
ducer inputs across all reducers and create a local index for
the cached data. Reducer inputs are cached before each re-
duce function invocation, so that tuples in the reducer input
cache are sorted and grouped by reducer input key.

Consider the social network example (Example 2) to see
how the reducer input cache works. Three physical nodes
n0, n1, and n2 are involved in the job, and the number of
reducers is set to 2. In the join step of the first iteration,
there are three mappers: one processes F -split0, one pro-
cesses F -split1, and one processes ∆S0-split0. The three

name1 name2
Tom Bob
Tom Alice
Elisa Tom
Elisa Harry

name1 name2
Sherry Todd
Eric Elisa
Todd John
Robin Edward

name1 name2
Eric Eric

(a) F -split0 (b) F -split1 (c) ∆S0-split0

Fig. 7 Mapper input splits in Example 2

name1 name2 table ID
Elisa Tom #1
Elisa Harry #1
Robin Edward #1
Tom Bob #1
Tom Alice #1

name1 name2 table ID
Eric Elisa #1
Eric Eric #2

Sherry Todd #1
Todd John #1

(a) partition 0 (b) partition 1

Fig. 8 Reducer input partitions in Example 2 (“#1” is the tag for tuples
from F and “#2” is the tag for tuples from ∆S0.)

splits are shown in Figure 7. The two reducer input parti-
tions are shown in Figure 8. The reducer on n0 corresponds
to hash value 0, while the reducer on n1 corresponds to hash
value 1. Then, since table F (with table ID “#1”) is detected
to be invariant, every reducer will cache the tuples with table
ID “#1” in its local file system.

In later iterations, when a reduce task passes a shuffled
key with associated values to the user-defined Reduce func-
tion, it also searches for the key in the local reducer input
cache with the current step number to find associated values,
appends them to the sequence of shuffled values, and passes
the key and merged value iterator to the Reduce function.

In the physical layout of the cache, keys and values are
separated into two files, and each key has an associated
pointer to its corresponding values. Sometimes the selectiv-
ity in the cached loop-invariant data is low. In this case, after
reducer input data are cached to local disk, HaLoop creates
an index (ISAM of level 2) over the keys and stores it in
the local file system too. Since the reducer input cache is
sorted and then accessed by reducer input key in the same
sorted order, the disk seek operations are only conducted in
a forward manner, and in the worst case, in each iteration,
the input cache is sequentially scanned from local disk only
once. Currently, HaLoop does not support full outer join,
right outer join, or other computations that involve iterating
over all keys in the cache. Keys that exist only in the cache
(the right relation) but not in the shuffled input (the left re-
lation) do not trigger reduce invocations. An extension to
remove this limitation without sacrificing the performance
benefits in the equijoin case is to allow the programmer to
specify a flag that indicates whether all keys in the cache
should be considered or not. This extension has been imple-
mented in the current code base, but was not implemented
during the experiments in this paper.

The reducer input cache is suitable for PageRank, HITS,
various recursive relational queries, and any other algorithm
with repeated joins against large invariant data. The reducer
input cache requires that the partition function f for every

The HaLoop Approach to Large-Scale Iterative Data Analysis 9

mapper output tuple t satisfies three conditions: (1) f must
be deterministic, (2) f must remain the same for the same
step across iterations, and (3) f must not take any inputs
other than the tuple t. In HaLoop, the number of reduce tasks
is unchanged for the same step across iterations, therefore
the default hash partitioning satisfies these conditions. In ad-
dition, the Reduce function implementation must be aware
that the order of values might be changed due to caching:
For each reducer input key, we append cache values after the
shuffled values, when they may have originally appeared at
the beginning.

4.3 Reducer Output Cache

The reducer output cache is used in applications where
fixpoint evaluation should be conducted after each iteration.
For example, in PageRank, a user may set a convergence
condition specifying that the total rank difference from one
iteration to the next is below a given threshold. With the re-
ducer output cache, the fixpoint can be evaluated in a dis-
tributed manner without requiring a separate MapReduce
step. The distance between current output and latest out-
put is accumulated after each Reduce function call. After all
Reduce function invocations are done, each reducer eval-
uates the fixpoint condition within the reduce process and
reports local evaluation results to the master node, which
computes the final answer.

The reducer output cache requires that in the corre-
sponding MapReduce pair of the loop body, the mapper
output partition function f and the reduce function satisfy
the following condition: if (ko1, vo1)∈reduce(ki, Vi), (ko2,
vo2)∈reduce(kj , Vj), and ko1=ko2, then f (ki)=f (kj). That
is, if two Reduce function calls produce the same output
key from two different reducer input keys, both reducer in-
put keys must be in the same partition. This condition en-
sures that both keys are sent to the same reduce task. Fur-
ther, f should also meet the requirements of the reducer in-
put cache. Satisfying these requirements guarantees that the
step’s reducer output tuples in different iterations but with
the same output key are produced on the same physical node,
which ensures the usefulness of reducer output cache and the
correctness of the local fixpoint evaluation. Our PageRank,
descendant query, and k-means clustering implementations
on HaLoop all satisfy these conditions, as do all jobs with re-
ducers that use the same input key as output key (e.g., word
count).

4.4 Mapper Input Cache

Hadoop attempts to co-locate map tasks with their input
data. On a real-world Hadoop cluster like CluE [10], the rate
of data-local mappers is around 60%–95% or even lower,
depending on the runtime environment. HaLoop’s mapper

input cache aims to avoid non-local data reads in mappers
during non-initial iterations. In the first iteration, if a map-
per performs a non-local read on an input split, the split will
be cached in the local disk of the mapper’s physical node.
Then, with loop-aware task scheduling, in later iterations, all
mappers read data only from local disks, either from HDFS
or from the local file system. The mapper input cache can
be used by model-fitting applications such as k-means clus-
tering, neural network analysis, and any other iterative algo-
rithm consuming mapper inputs that do not change across
iterations.

5 Failure Recovery

The goal of the fault-tolerance mechanism of Hadoop is
to ensure that a single task failure triggers a bounded amout
of recovery work. A failed map task can be rescheduled on
a different node, and its input can be reloaded from the dis-
tributed file system (perhaps accessing a redundant copy). A
failed reduce task, similarly rescheduled, can reconstruct its
input from the mapper outputs, which are written to disk for
this purpose (Figure 9(a)). In each case, only one task must
be re-executed. If a node fails, multiple tasks will fail. More-
over, local map output that may be needed by other tasks will
become unavailable. In this case, Hadoop reschedules the
failed tasks and also reschedules the map tasks needed to re-
compute the lost data. In both cases, the number of tasks that
must be re-executed is a small constant factor of the number
of failures.

In HaLoop, the more general iterative programming
model introduces the risk of recursive recovery, where a fail-
ure in one step of one iteration may require re-execution of
tasks in all preceding steps in the same iteration or all pre-
ceding iterations. Avoiding recursive recovery is a key de-
sign goal of the fault-tolerance mechanism in HaLoop.

In previous sections, we have described how HaLoop ex-
tends Hadoop with inter-iteration caches to reduce redun-
dant work. These caches must be reconstructed in response
to failures. The key insight is that the source data for each
of these caches is guaranteed to be available, assuming the
fault-tolerance features of the underlying distributed filesys-
tem are reliable. In this section, we explain how recovery
occurs for each failure type.

5.1 Failure Types

We consider three categories of failures:

– Task failure A map or reduce task may fail due to pro-
gramming errors (e.g., unanticipated data formats), or due
to transient system errors (e.g., network timeouts during
file access). A task may also be killed by the job tracker if

10 Yingyi Bu et al.

n2

n1

R10

R12

shuffle re-shuffle

Task failure happens Recovery phase

R11 (re-execution)

n0

n1

n2

n0

n1

n2

M12

M10

M11

R11

R12

R10

R1-split0

L-split0

L-split1

partition 1

partition 2

partition 0

n0

n1

n2

M12

M10

M11

R1-split0

L-split0

L-split1

partition 0

partition 1

partition 2

n0

n0

n1

n2

n0

n1

n2

M12

M10

M11

R11

R12

R10

n2

n1

n1

n2

M12(re-execution)
M10

M11

R10

R12

shuffle re-shuffle

Node failure happens Recovery phase

R11 (re-execution)

R1-split0

L-split0

L-split1

partition 1

partition 2

partition 0

R1-split0

L-split0
partition 0

partition 2

partition 1

L-split1

(a) When a reduce task fails in Hadoop, the reduce task is rescheduled
onto another node, and the corresponding mapper outputs are accessed
to reconstruct the reduce task’s input. (Note that a failed task usually is
rescheduled on another node, but not necessary.)

(b) If an entire node fails, the corresponding mapper output may have
been lost. In this case, the map tasks are re-executed as needed.

n0

n1

n2

R11

R12

R10

n2

n1

n0

M12

R12

n2

n0

n1

n2 R01

Node failure happens Recovery phaseCache reloading phase

M02

M00

M01

(partial re-execution)

n0

M12

R1-split0

partition 1

Cache

Cache

Cache

Cache

Cache

R10

R11 (re-execution)

Cache

partition 1

partition 2

partition 0
partition 1

partition 0

partition 2

R1-split0

shuffle re-shufflere-load
Local disk I/O

n0

n1

n1

n2

n0

n1

n2

(c) In HaLoop, a reduce task failure may involve reconstructing the reducer input cache. The procedure is similar to reducer task recovery in
Hadoop, except that the cache must be reconstructed from the mapper output of iteration 0. (Note that there are only one mapper launched in
iteration 1 because the invariant dataset L uses a reducer input cache.)

n0

n1

n2

R11

R12

R10

n2

n1

n1

M12

R10

R12

R11(re-execution)

shuffle re-shuffle

Node failure happens Recovery phase

n2

R01

re-load

Cache reloading phase

n1

n2
M02 (re-execution)

M00

M01

(partial re-execution)

(re-execution)

Cache

partition 1

n0

M12

R1-split0 partition 1

partition 2

partition 0 R0-split0

R1-split0

Cache

Cache

Local disk I/O

Cache

Cache

Cache

partition 0

partition 1

partition 2

Cache

n1

n2

n1

n2

(d) If an entire node fails, the mapper output from iteration 0 may be lost. In this case, the corresponding map tasks are re-executed as needed.

Fig. 9 Recovery from failures affecting map and reduce tasks in HaLoop and Hadoop. A map task Mip consumes input partition p in iteration i.
Similar notation is used to refer to reduce tasks.

Table 1 Source Data Properties of Different Cache Options

Cache Type Primary Data Source Primary Data Source Location Secondary Data Source Secondary Data Source Location
Mapper input cache (i, j) Step input (0, j) distributed file system N/A N/A
Reducer input cache (i, j) Mapper Output (0, j) all mappers’ local disks Step input (0, j) distributed file system
Reducer output cache (i, j) Mapper Output (i-1, j) all mappers’ local disks Step input (i-1, j) distributed file system

The HaLoop Approach to Large-Scale Iterative Data Analysis 11

it does not send a status update after some threshold de-
lay. HaLoop inherits Hadoop’s strategy for task failures:
a failed task is restarted some number of times before it
causes the job to fail.

– Slave node failure: An entire slave node, potentially host-
ing many tasks, may fail due to hardware or operat-
ing system errors, or a network partition may leave the
node inaccessible. The master node concludes a slave
node has failed if it does not receive a heartbeat message
from the slave node after some user-specified duration.
In these cases, all work assigned to the slave node must
be rescheduled. Further, any data held on the failed node
must either be reconstructed, or an alternative source for
the data must be identified. We will describe slave node
failure in more detail in this section.

– Master node failure: If the master node fails, all run-
ning jobs are considered aborted and are re-executed from
scratch once the master node recovers. The next genera-
tion of Hadoop may build fail-over functionality among
multiple master nodes3. This technique is orthogonal to
what we propose in HaLoop; we consider master node
failure recovery out of scope for this work.

5.2 Recovery Process: HaLoop vs. Hadoop

In both Hadoop and HaLoop, slave node failure recovery
proceeds by initiating task recovery for each task running on
the failed node. Task recovery requires 1) reconstituting the
input for the task and 2) rescheduling the task. In HaLoop,
the input for a failed task may include inter-iteration caches
managed by the HaLoop system. We discuss the primary
and secondary data sources used to to reconstruct each of
the three different caches in this section. In both systems,
recovery is transparent to user programs.

5.2.1 Source Data for Each Cache Type

In HaLoop, the mapper output (in the local file system)
and the reducer output (in the distributed file system) from
every step of every iteration are retained until the iterative
job completes. To maximize expressive power, the API al-
lows the output of any step in any iteration to be used as
input of any future step in any future iteration. The program-
mer controls this behavior by providing implementations of
the GetOutputPath and GetInputPath functions (see Sec-
tion 2.2). However, HaLoop assumes that the output files
are unique for each step and iteration; i.e., nothing is over-
written. This condition prevents any previous output from
becoming unavailable for cache reconstruction.

3 http://developer.yahoo.com/blogs/hadoop/posts/2011/02/mapreduce-
nextgen

The primary data source that HaLoop uses to reconstruct
the caches is described in Table 1. Recall that the mapper
input cache avoids the need to pull data across the network
on iterations beyond the first. Therefore, the primary data
source for the mapper input cache for step j in iteration i is
the original input data for step j in iteration 0. This data is
stored and replicated in the underlying distributed file sys-
tem, and we can therefore assume that a copy is available
even in the presence of a node failure.

The reducer input cache avoids the need to reprocess
static data beyond the first iteration. The primary data source
for the reducer input cache for step j in iteration i is there-
fore the mapper output from step j in iteration 0. This pri-
mary data source is written only to local disk; it is not repli-
cated to the distributed file system. Therefore, a node failure
potentially could make one or more mappers’ outputs per-
manently unavailable. In this case, the appropriate map tasks
from iteration 0 are re-executed. In this case, we say that the
secondary data source for the reducer input cache at step j
is the input data for step j on iteration 0, which is replicated
in the distributed file system.

The reducer output cache allows efficient comparison of
two consecutive iterations; it is typically used for fixpoint
calculations. The primary source data of the reducer output
cache for step j in iteration i is the mapper output of step
j in iteration i − 1 (the previous iteration’s result). As with
the reducer input cache, the primary source is stored on the
local disk of the mapper nodes. When a reduce task for step
j in iteration i fails and re-executes on a new node, it first
runs the appropriate reduce task (which has the same par-
tition value) in step j of iteration i − 1 to reconstruct the
reduce output cache. The secondary data source is the map-
per input of step j in iteration i − 1, which is guaranteed to
be available.

The primary source data information needed to recon-
struct any cache are guaranteed to be available without hav-
ing to recompute an entire parallel step. However, in some
failure cases, one or more map tasks may need to be re-
executed to reconstruct the unavailable portion of the pri-
mary source data; these map tasks rely on the secondary data
sources described in Figure 1.

5.2.2 Recovery from Task Failures

In Hadoop, if a map or reduce task fails, the sched-
uler reschedules the failed task. For a failed map task, the
rescheduled map task processes the same input data parti-
tion as the original task. The input data may or may not need
to be copied across the network, depending on where the
new task is scheduled. For a failed reduce task, the resched-
uled reduce task processes the same partition of the overall
mapper output; i.e., the same key groups. This partition is
reconstructed from the individual mapper outputs from the

12 Yingyi Bu et al.

preceding phase. In both cases, the failed task is typically
rescheduled on a different physical node in order to avoid
repeating failures resulting from the node itself.

Figure 9(a) illustrates how a Hadoop cluster of three
nodes (n0, n1, n2) recovers from a reduce task failure us-
ing the PageRank example of Figure 5. Recall that each
map task is labeled Mip, indicating that it processes parti-
tion p in iteration i. Each reduce task is labeled similarly.
Consider the second iteration (iteration 1): map tasks M10,
M11, andM12 are scheduled on node n1, n2, and n0, respec-
tively, while reduce tasks R10, R11, and R12 are scheduled
on node n2, n0 and n1, respectively. If task R11 fails, the
Hadoop scheduler re-schedules R11 to execute on node n2.
Once R11 starts running on n2, the newly scheduled task re-
copies the data constituting partition 1 from the mapper out-
puts stored on local disks of n1, n2, and n0, sorts and groups
the copied data, and then re-executes the reduce function
once per group.

In HaLoop, task recovery involves not only the re-
execution of the failed task, but also the reconstruction of all
relevant caches from their primary data source. Consider the
reconstruction of a reducer input cache, which stores data
from the first iteration to avoid unnecessary reshuffling and
resorting on future iterations. Once the failed task is resched-
uled, the task re-shuffles, re-sorts, and re-groups the mapper
output from from the first iteration. This process is similar
to the process Hadoop uses to recover from a reducer failure
(Figure 9(a)), but must access data from the first iteration.

This process is illustrated for the PageRank application
in Figure 9(c). In the second iteration (iteration 1), map task
M12 is scheduled on node n0, while reduce tasks R10, R11,
and R12 are scheduled on nodes n2, n0 and n1 respectively.
If R11 fails, the master node reschedules it to run on node
n2. Then, the newly scheduled task discovers that its cache
is unavailable and triggers reconstruction. The task on node
n2 copies mapper outputs from iteration 0 (not iteration 1).
After copying, the new task on n2 sorts and groups the shuf-
fled data and writes them to local disk, reconstructing the
cache. Finally, since the reduce input cache is ready, R11

gets re-executed on node n2.
Now consider the case when the reducer output cache

is enabled. The primary source data for the reducer output
cache of step j is the corresponding mapper output of step j
from the previous iteration i − 1. If some mapper output is
unavailable, we re-execute the corresponding map task. The
failed reduce task of the current iteration is then re-executed,
and the fixpoint condition is checked to bring the job back
to normal execution.

Finally, consider the mapper input cache in the presence
of failures. When a failed map task is rescheduled on an-
other machine, the newly scheduled task fetches its input
data partition from the distributed file system as usual, then
reconstructs the cache for use in future iterations.

These cache reconstruction procedures may also be in-
voked during normal processing in response to scheduling
conflicts. If a task cannot be scheduled on the node that holds
a cache the task requires, the task can be rescheduled else-
where and the cache reconstructed as we have described.
This situation arises when a node containing a cache has no
free task slots and a task is scheduled on a substitution node
(Figure 6).

5.2.3 Recovery from slave node failures

In Hadoop, if a slave node fails, the scheduler resched-
ules all its hosted tasks on other slave nodes. Figure 9(b)
illustrates how iteration 1 of PageRank job survives the fail-
ure of node n1: tasks hosted by n1 (M12 and R11) are re-
executed on other nodes (n1 and n2, respectively).

The process is similar in HaLoop. The additional fail-
ure situations introduced by the inter-iteration caches are ad-
dressed by identifying the appropriate source data (Table 1)
and re-executing tasks, as we have discussed.

In Figure 9(d), we show an example of recovery from
node failure for PageRank. Node n0 fails during iteration
1. After the failure, tasks M12 and R11 are rescheduled to
node n1 and n2 respectively. However, R11 depends on data
that was lost when node n1 failed. Therefore, before these
two tasks can be executed, the map task from the prior iter-
ation, M02, is re-executed. Further, the reducer input cache
for partition 1 on n2 is reconstructed by pulling the appro-
priate mapper output across the network. Finally, M12 and
R11 are re-executed, and the job proceeds.

5.3 HaLoop Scheduler Logging

In order to keep track of the binding between partitions
(mapper input data partitions or reducer input partitions) and
slave nodes, the HaLoop scheduler maintains a scheduling
history log. The log records the binding between partitions
and slave nodes in each step of the iterations that create
caches (typically the first iteration). This information is used
to inform the iteration-aware task scheduling as described in
Section 3. The scheduling log also helps the failure recov-
ery module to reconstruct caches, since the locations of the
tasks of all previous steps and previous iterations, and there-
fore the locations of the primary and secondary data sources,
are recorded.

For example, consider Figure 9(d). Prior to the failure
of node n1, the log records these bindings: (R0-split0, n0),
(L-split0, n1), and (L-split1, n2); (reduce partition 0, n2),
(reduce partition 1, n0), and (reduce partition 2, n1). On
the next iteration, HaLoop’s iteration-aware scheduler uses
this information as the schedule. After the recovery, the log
stores the bindings (R0-split0, n1), (L-split0, n1), and (L-
split1, n2); (reduce partition 0, n2), (reduce partition 1, n2),

The HaLoop Approach to Large-Scale Iterative Data Analysis 13

TaskScheduler

TaskTracker

Map
Task

Reduce
Task

TaskTracker

Map
Task

Reduce
Task

TaskTracker

Map
Task

Reduce
Task

Job Client

runjobComputeDistance();
while(! isFixedPoint() &&

! exceedMaxIterations())
{

kickOffJobForNewIteration();
…}

aggregateDistance();
while(! isFixedPoint() &&

!exceedMaxIterations())
{

kickOffNewIteration();
….}

in HaLoop:

in Hadoop:

Fig. 10 Job execution: HaLoop vs. Hadoop

and (reduce partition 2, n1), and the updated log will be used
for future scheduling.

5.4 Comparisons with Other Alternatives

There are at least two alternative techniques for reducer
output cache recovery: 1) We can ignore the loss of a reducer
output cache. To check a fixpoint condition, we can schedule
a separate MapReduce job to compare the current iteration
with the previous iteration. This technique may be effective
if the cost of the extra job is modest. 2) We can replicate the
reducer output cache to the distributed file system, ensuring
that it is available despite failures. This technique is only
effective if the probability of failure is high. Both techniques
are worth exploration in future work.

6 System Implementation

This section presents additional implementation details
for the HaLoop system. We first provide some background
on the Hadoop system and then introduce several important
extensions to Hadoop in HaLoop. The HaLoop source code
is publicly available at: http://code.google.com/p/haloop/.

6.1 Background on Hadoop

In Hadoop, client programs must implement the fixpoint
evaluation on their own, either in a centralized way or by an
extra MapReduce job. They must also decide when to launch
a new MapReduce job. The Mahout [25] project has imple-
mented multiple iterative machine learning and data min-
ing algorithms with this approach. Figure 10 demonstrates
how an iterative program is executed in Hadoop. The major
building blocks of the Hadoop system include:

– Master node daemon. In Hadoop, interface TaskSched-
uler and class JobInProgress play the role of master node:

they accept heartbeats from slave nodes and manage task
scheduling.

– Slave node daemon. Class TaskTracker is a daemon pro-
cess on every slave node. It sends heartbeats to the master
node including information about completed tasks. It re-
ceives task execution commands from the master node.

– Map and reduce task. Class MapTask and ReduceTask are
containers for user-defined Mapper and Reducer classes.
These wrapper classes load, preprocess and pass data to
user code. Once a TaskTracker gets task execution com-
mands from the TaskScheduler, it kicks off a process to
start a MapTask or ReduceTask process.

– Speculative execution. Speculative execution plays a key
role in fault-tolerance. If a task’s running time is much
longer than that of other peers, the task does not send a
status update for longer than a pre-defined period of time,
or a tasktracker’s heartbeat message is not received for
longer than a pre-defined time-period, the Hadoop task
scheduler will schedule speculative tasks to re-execute the
potentially failed tasks. If a speculative task execution is
based on a wrong decision, the task will be killed after the
original “false-negative” task completes.

6.2 HaLoop Extensions to Hadoop

In the HaLoop framework, we extended and modified
Hadoop as follows:

– Loop control and API. We implemented HaLoop’s loop
control and task scheduler by implementing our own
TaskScheduler and modifying the class JobInProgress.
Additionally, HaLoop provides an extended API to facili-
tate client programming, with functions to set up the loop
body, associate the input files with each iteration, specify
a loop termination condition, enable/disable caches. Job-
Conf class represents a client job and hosts these APIs.

– Caching. We implemented HaLoop’s caching mecha-
nisms by modifying classes MapTask, ReduceTask and
TaskTracker. In map/reduce tasks, HaLoop creates a di-
rectory in the local file system to store the cached data.
The directory is under the task’s working directory, and is
tagged with the iteration number and step number. With
this approach, a task accessing the cache in the future can
access the data for a specitic iteration and step number
as needed. After the iterative job finishes, all files storing
cached data are deleted.

– Fixpoint evaluation. HaLoop evaluates the fixpoint in a
distributed fashion. After the reduce phase of the specified
step, a ReduceTask computes the sum of the user-defined
distances between the current output and that of the previ-
ous iteration by executing the user-defined distance func-
tion. Then, the host TaskTracker sends the aggregated
value back to JobInProgress. JobInProgress computes the

14 Yingyi Bu et al.

sum of the locally pre-aggregated distance values returned
by each TaskTracker and compares the overall distance
value with the fixpoint threshold (set by the application).
If the distance is less than the specified threshold or the
current iteration number is greater than the maximum
number of iterations set by the application, JobInProgress
will raise a “job complete” event to terminate the job ex-
ecution. Otherwise, JobInProgress will put a number of
tasks in its task queue to start a new iteration. Figure 10
also shows how HaLoop executes a job. In particular, we
see that the TaskScheduler manages the lifecycle of an it-
erative job execution.

– Failure Recovery. HaLoop reuses speculative execution
mechanism to achieve fault-tolerance. In contrast with
Hadoop, HaLoop adds tags to speculative tasks to indicate
they are to be used for recovery from task failure or slave
node failure. Cache reconstruction is handled by a Recov-
eryTask class. A recovery task is initiated as a a specu-
lative task. The implementation follows the two kinds of
recovery discussed in Section 5.2.

7 Experimental Evaluation

We compared the performance of iterative data analy-
sis applications on HaLoop and Hadoop. Since use of the
reducer input cache, reducer output cache, and mapper in-
put cache are independent options, we evaluated them sep-
arately in Sections 7.1–7.3. Additionally, we evaluated the
overhead for failure recovery in Section 7.4 and the pro-
gramming effort with HaLoop programming interface in
Section 7.5.

7.1 Evaluation of Reducer Input Cache

This suite of experiments used virtual machine clus-
ters of 50 and 90 slave nodes in Amazon’s Elastic Com-
pute Cloud (EC2). There is always one master node. The
applications were PageRank and descendant query. Both are
implemented in both HaLoop (using our new programming
model) and Hadoop (using the traditional driver approach).

All nodes in these experiments are default Amazon small
instances4, with 1.7 GB of memory, 1 EC2 Compute Unit (1
virtual core with 1 EC2 Compute Unit), 160 GB of instance
storage (150 GB plus 10 GB for the root partition), 32-bit
platform, and moderate I/O performance.

We used both semi-synthetic and real-world datasets:
Livejournal (18GB, social network data), Triples (120GB,
semantic web data) and Freebase (12GB, concept linkage
graph).

4 http://aws.amazon.com/ec2/instance-types/

Name Nodes Edges size
Livejournal 4,847,571 68, 993,773 18GB
Triples 1,464,829,200 1,649,506,981 120GB
Freebase 7,024,741 154,544,312 12GB

Fig. 11 Dataset descriptions

Livejournal is a semi-synthetic dataset generated from
a base real-world dataset5. The base dataset consists of all
edge tuples in a social network, and its size is 1GB. We sub-
stituted all node identifiers with longer strings to make the
dataset larger without changing the network structure. The
extended Livejournal dataset is 18GB.

Triples is an RDF benchmark (resource description
framework) graph dataset from the billion triple challenge6.
Each raw tuple in Triples is a line of 〈subject, predicate, ob-
ject, context〉. We ignore the predicate and context columns,
and treat the dataset as a graph where each unique string that
appears as either a subject or an object is a node, and each
〈subject, object〉 tuple is an edge. The filtered Triples dataset
is 120GB in size.

Freebase is another real-world dataset7, where many
concepts are connected by various relationships. If we
search for a keyword or concept ID on the Freebase website,
it returns the description of a matched concept, as well as
outgoing links to the connected concepts. Therefore, we fil-
ter the Freebase raw dataset (which is the crawl of the whole
Freebase website) to extract tuples of the form 〈concept id1,
concept id2〉. The filtered Freebase dataset (12.2GB in total)
is actually a concept-connection graph, where each unique
concept id is a node and each tuple represents an edge. De-
tailed dataset statistics are in Figure 11.

We run PageRank on the Livejournal and Freebase
datasets because ranking on social network and crawl graphs
makes sense in practice. Similarly, we run the descendant
query on the Livejournal and Triples datasets. In the social
network application, a descendant query finds one’s friend
network, while for the RDF triples, such a query finds a sub-
ject’s impacted scope. The initial source node in the query
is chosen at random.

By default, experiments on Livejournal are run on a 50-
node cluster, while experiments for both Triples and Free-
base are executed on a 90-node cluster.

We executed the PageRank query on the Livejournal and
Freebase datasets and the descendant query on the Livejour-
nal and Triples datasets. Figures 12–15 show the results for
Hadoop and HaLoop. The number of reduce tasks is set to
the number of slave nodes. The performance with fail-overs
has not been quantified; all experimental results are obtained
without any node failures.

5 http://snap.stanford.edu/data/
6 http://challenge.semanticweb.org/
7 http://www.freebase.com/

The HaLoop Approach to Large-Scale Iterative Data Analysis 15

0 2 4 6 8 10
0

1k

2k

3k

4k

Ru
nn

in
g

Ti
m

e (
s)

Total Iteration

 HaLoop Hadoop

0 2 4 6 8 10
0

100

200

300

400

Ru
nn

in
g

Ti
m

e
(s

)
Iteration

 HaLoop Hadoop

H a L o o p H a d o o p0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Ru
nni

ng
Tim

e (s
)

C o n f i g u r a t i o n

 R e d u c e S h u f f l e

0 2 4 6 8 10
0.0

4.0G

8.0G

12.0G

16.0G

20.0G

Sh
uf

fle
d

D
at

a
(B

yt
es

)

Iteration

 HaLoop Hadoop

(a) Overall Performance (b) Join Step (c) Cost Distribution (d) Shuffled Bytes

Fig. 12 PageRank performance: HaLoop vs. Hadoop (Livejournal dataset, 50 nodes)

0 2 4 6 8 10
0

1k

2k

3k

4k

5k

Ru
nn

in
g

Ti
m

e (
s)

Total Iteration

 HaLoop Hadoop

0 2 4 6 8 10
0

200

400

600

800

Ru
nn

in
g

Ti
m

e
(s

)

Iteration

 HaLoop Hadoop

H a L o o p H a d o o p0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Ru
nni

ng
Tim

e (s
)

C o n f i g u r a t i o n

 R e d u c e S h u f f l e

0 2 4 6 8 10
0.0

4.0G

8.0G

12.0G

16.0G

Sh
uf

fle
d

D
at

a
(B

yt
es

)

Iteration

 HaLoop Hadoop

(a) Overall Performance (b) Join Step (c) Cost Distribution (d) Shuffled Bytes

Fig. 13 PageRank performance: HaLoop vs. Hadoop (Freebase dataset, 90 nodes)

0 1 2 3 4 5 6
0.0

2.0k

4.0k

6.0k

8.0k

Ru
nn

in
g

Ti
m

e
(s

)

Total Iteration

 HaLoop Hadoop

0 1 2 3 4 5 6
0

400

800

1200

1600

2000

R
un

ni
ng

 T
im

e
(s

)

Iteration

 HaLoop Hadoop

H a L o o p H a d o o p0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Ru
nni

ng
Tim

e (s
)

C o n f i g u r a t i o n

 R e d u c e S h u f f l e

0 1 2 3 4 5 6
0.0

30.0G

60.0G

90.0G

120.0G

Sh
uf

fle
d

D
at

a
(B

yt
es

)

Iteration

 HaLoop Hadoop

(a) Overall Performance (b) Join Step (c) Cost Distribution (d) Shuffled Bytes

Fig. 14 Descendant query performance: HaLoop vs. Hadoop (Triples dataset, 90 nodes)

0 1 2 3 4 5 6
0.0

2.0k

4.0k

6.0k

Ru
nn

in
g

Ti
m

e
(s

)

Total Iteration

 HaLoop Hadoop

0 1 2 3 4 5 6
0

200

400

600

800

1000

R
un

ni
ng

 T
im

e
(s

)

Iteration

 HaLoop Hadoop

H a L o o p H a d o o p0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Ru
nni

ng
Tim

e (s
)

C o n f i g u r a t i o n

 R e d u c e S h u f f l e

0 1 2 3 4 5 6
0.0

4.0G

8.0G

12.0G

16.0G

20.0G

Sh
uf

fle
d

D
at

a
(B

yt
es

)

Iteration

 HaLoop Hadoop

(a) Overall Performance (b) Join Step (c) Cost Distribution (d) Shuffled Bytes

Fig. 15 Descendant query performance: HaLoop vs. Hadoop (Livejournal dataset, 50 nodes)

Overall, as the figures show, for a 10-iteration job,
HaLoop lowers the runtime by 1.85 on average when the
reducer input cache is used. As we discuss later, the reducer
output cache creates an additional gap between Hadoop and
HaLoop but the impact is less significant on overall runtime.
We now present these results in more detail.

Overall Run Time. In this experiment, we used
SetMaxNumOfIterations, rather than fixedPoint-

Threshold and ResultDistance, to specify the loop
termination condition. The results are plotted in Fig-
ure 12(a), Figure 13(a), Figure 14(a), and Figure 15(a).

In the PageRank algorithm, there are two steps in ev-
ery iteration: join and aggregation. The running time in Fig-

16 Yingyi Bu et al.

ure 12(a) and Figure 13(a) is the sum of join time and ag-
gregation time over all iterations. In the descendant query
algorithm, there are also two steps per iteration: join and du-
plicate elimination. The running time in Figure 14(a) and
Figure 15(a) is the sum of join time and “duplicate elimina-
tion” time over all iterations.

HaLoop always performs better than Hadoop. The de-
scendant query on the Triples dataset has the best improve-
ment, PageRank on Livejournal and Freebase have inter-
mediate gains, but the descendant query on the Livejour-
nal dataset has the least improvement. Livejournal is a so-
cial network dataset with high fan-out and reachability. As
a result, the descendant query in later iterations (>3) pro-
duces so many duplicates that duplicate elimination domi-
nates the cost, and HaLoop’s caching mechanism does not
significantly reduce overall runtime. In contrast, the Triples
dataset is less connected, thus the join step is the dominant
cost and the cache is crucial.

Join Step Run Time. HaLoop’s task scheduling and re-
ducer input cache potentially reduce join step time, but do
not reduce the cost of the “duplicate elimination” step for
the descendant query, nor the final aggregation step in Page-
Rank. Thus, to partially explain why overall job running
time is shorter with HaLooop, we compare the performance
of the join step in each iteration. Figure 12(b), Figure 13(b),
Figure 14(b), and Figure 15(b) plot join time in each itera-
tion. HaLoop significantly outperforms Hadoop.

In the first iteration, HaLoop is slower than Hadoop,
as shown in (a) and (b) of all four figures. The reason is
that HaLoop performs additional work in the first iteration:
HaLoop caches the sorted and grouped data on each re-
ducer’s local disks, creates an index for the cached data, and
stores the index to disk. That is, in the first iteration, HaLoop
does the exact same thing as Hadoop, but also writes caches
to local disk.

Cost Distribution for Join Step. To better understand
HaLoop’s improvements to each phase, we compared the
cost distribution of the join step across Map and Reduce
phases. Figure 12(c), Figure 13(c), Figure 14(c), and Fig-
ure 15(c) show the cost distribution of the join step in a cer-
tain iteration (here it is iteration 3). The measurement is time
spent on each phase. In both HaLoop and Hadoop, reducers
start to copy data immediately after the first mapper com-
pletes. “Shuffle time” is normally the time between reducers
starting to copy map output data, and reducers starting to
sort copied data; shuffling is concurrent with the rest of the
unfinished mappers. The first completed mapper’s running
time in the two algorithms is very short, e.g., 1–5 seconds to
read data from one 64MB HDFS block. If we were to plot
the first mapper’s running time as “map phase”, the duration
would be too brief to be visible compared to shuffle phase
and reduce phase. Therefore we let the “shuffle time” in the
plots be the usual shuffle time plus the first completed map-

per’s running time. The “reduce time” in the plots is the total
time a reducer spends after the shuffle phase, including sort-
ing and grouping, as well as accumulated Reduce function
call time. Note that in the plots, “shuffle time” plus “reduce
time” constitutes what we have referred to as the “join step”.
Considering all four plots, we conclude that HaLoop outper-
forms Hadoop in both phases.

The “reduce” bar is not visible in Figure 14(c), although
it is present. The “reduce time” is not 0, but rather very
short compared to “shuffle” bar. It takes advantage of the
index HaLoop creates for the cache data. Then the join be-
tween ∆Si and F will use an index seek to search qualified
tuples in the cache of F . Also, in each iteration, there are
few new records produced, so the join’s selectivity on F is
very low. Thus the cost becomes negligible. By contrast, for
PageRank, the index does not help much, because the se-
lectivity is high. For the descendants query on Livejournal
(Figure 15), in iteration>3, the index does not help either,
because the selectivity becomes high.

I/O in Shuffle Phase of Join Step. To tell how much
shuffling I/O is saved, we compared the amount of shuffled
data in the join step of each iteration. Since HaLoop caches
loop-invariant data, the overhead of shuffling these invari-
ant data are completely avoided. These savings contribute
an important part of the overall performance improvement.
Figure 12(d), Figure 13(d), Figure 14(d), and Figure 15(d)
plot the sizes of shuffled data. On average, HaLoop’s join
step shuffles 4% as much data as Hadoop’s does.

7.2 Evaluation of Reducer Output Cache

This experiment shares the same hardware and dataset
as the reducer input cache experiments. To see how effective
HaLoop’s reducer output cache is, we compared the cost of
fixpoint evaluation in each iteration. Since descendant query
has a trivial fixpoint evaluation step that only requires test-
ing to see if a file is empty, we run the PageRank imple-
mentation in Section 10.1 on Livejournal and Freebase. In
the Hadoop implementation, the fixpoint evaluation is im-
plemented by an extra MapReduce job. On average, com-
pared with Hadoop, HaLoop reduces the cost of this step to
40%, by taking advantage of the reducer output cache and a
built-in distributed fixpoint evaluation. Figure 16(a) and (b)
shows the time spent on fixpoint evaluation in each iteration.

7.3 Evaluation of Mapper Input Cache

Since the mapper input cache aims to reduce data trans-
portation between slave nodes but we do not know the disk
I/O implementations of EC2 virtual machines, this suite of
experiments uses an 8-node physical machine cluster. All

The HaLoop Approach to Large-Scale Iterative Data Analysis 17

2 4 6 8 1 00 . 0

2 0 . 0

4 0 . 0

6 0 . 0

Run
nin

g T
ime

 (s)

I t e r a t i o n

 H a L o o p H a d o o p

2 4 6 8 1 00 . 0
2 0 . 0
4 0 . 0
6 0 . 0
8 0 . 0

Run
nin

g T
ime

 (s)
I t e r a t i o n

 H a L o o p H a d o o p

(a) Livejournal, 50 nodes (b) Freebase, 90 nodes

Fig. 16 Fixpoint evaluation overhead in PageRank: HaLoop vs.
Hadoop

2 4 6 8 1 0 1 20
1 k
2 k
3 k
4 k
5 k
6 k

Run
nin

g T
ime

 (s)

T o t a l I t e r a t i o n

 H a L o o p H a d o o p

2 4 6 8 1 0 1 20
1 k
2 k
3 k
4 k
5 k

Run
nin

g T
ime

 (s)

T o t a l I t e r a t i o n

 H a L o o p H a d o o p

(a) Cosmo-dark, 8 nodes (b) Cosmo-gas, 8 nodes

Fig. 17 Performance of k-means: HaLoop vs. Hadoop

nodes in these experiments contain a 2.60GHz dual quad-
core Intel Xeon CPU with 16GB of RAM.

PageRank and descendant query cannot utilize the map-
per input cache because their inputs change from iteration
to iteration. Thus, the application used in the evaluation is
the k-means clustering algorithm. We used two real-world
Astronomy datasets (multi-dimensional tuples): cosmo-dark
(46GB) and cosmo-gas (54GB). The Cosmo dataset8 is a
snapshot from an astronomy simulation of the universe. The
simulation covered a volume of 110 million light years on a
side, with 900 million particles total. Tuples in Cosmo are
multi-dimensional vectors.

We vary the number of total iterations, and plot the al-
gorithm running time in Figure 17. The mapper locality
rate is around 95% since there are not concurrent jobs in
our lab HaLoop cluster. By avoiding non-local data loading,
HaLoop performs marginally better than Hadoop.

7.4 Evaluation of Failure Recovery

We conducted experiments with either speculative exe-
cution enabled (then there are “logical” task failures, for ex-
ample, a very slow task is treated as “failed”), or failures in-
jected as slave node failures (by killing one task tracker pro-
cess at the last iteration’s cache-reading MapReduce step).
These experiments uses an 8-node physical machine clus-
ter. All nodes in these experiments contain a 2.60GHz dual
quad-core Intel Xeon CPU with 16GB of RAM. We use the

8 http://nuage.cs.washington.edu/benchmark/astro-
nbody/dataset.php

2 4 6 80
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Tim
e (

s)

I t e r a t i o n

 H a d o o p (p) H a L o o p (p)
 H a d o o p (n) H a L o o p (n)

Fig. 18 Overheads of failure recovery: HaLoop vs. Hadoop

synthetic livejournal dataset at a scale of 18GB to run Page-
Rank application. We vary the number of total iterations, and
plot the program running time in Figure 9, where Hadoop(p)
and HaLoop(p) are for the case of speculative execution, and
Hadoop(n) and HaLoop(n) are for the case when slave node
failure is injected.

7.5 Evaluation of Programming Effort

We measure the programming effort by line of code
in JAVA, including package imports, comments, and actual
code. Comments spread near-uniformly across source code
files. For the three applications we implemented, we report
in Figure 19 the line of code for mapper/reducer implemen-
tations (shared between Hadoop and HaLoop), extra code on
Hadoop (mostly for loop control), and extra code on HaLoop
(including hook function implementations and loop body
construction). From the figure, one can find that HaLoop in-
curs a small amount of extra programming overheads.

8 Related Work

Parallel database systems [13] partition data storage and
parallelize query workloads to achieve better performance.
However, they are sensitive to failures and have not been
shown to scale to thousands of nodes. Various optimization
techniques for evaluating recursive queries have been pro-
posed in the literature [5,41]. The existing work has not been
shown to operate at large scale. Further, most of these tech-
niques are orthogonal to our research; we provide a low-
level foundation for implementing data-intensive iterative
programs.

More recently, MapReduce [12] has emerged as a pop-
ular alternative for massive-scale parallel data analysis in
shared-nothing clusters. Hadoop [17] is an open-source
implementation of MapReduce. MapReduce has been fol-
lowed by a series of related system platforms for data-
intensive computing, including Dryad [21], Clustera [14],
Hyracks [7], Nephele/PACTs [6] and Hadoop++ [15]. How-
ever, like Hadoop, none of these systems provides explicit

18 Yingyi Bu et al.

App Mapper/Reducer Loc Extra (Hadoop) Extra (HaLoop)
PageRank 302 120 166

Descendant query 318 90 183
k-means 291 43 79

Fig. 19 Code size (lines of code)

support and optimizations for iterative or recursive types of
analysis. Hive [20], Pig [30], SCOPE [9] and HadoopDB [1]
provide high-level language supports for data processing
on Hadoop or Dryad, but none of them supports recursive
queries. Some work is related to MapReduce but orthogonal
to HaLoop: ParaTimer [28] proposes an accurate progress
indicator for MapReduce DAGs; literature [34] investigates
efficient fuzzy join methods on MapReduce.

MapReduce online [11] modifies Hadoop to enable
streaming between mappers and reducers, and also al-
lows to loop over several map-reduce phases (for example,
streaming from reducers to mappers) to naturally support
iterative computations. Various system challenges such as
fault-tolerance and task scheduling have been addressed in
MapReduce online to make the architecture work. However,
MapReduce online does not provide caching options across
iterations at the infrastructure level because it is not aware
of loops.

Mahout [25] is a project whose goal is to build a set of
scalable machine learning libraries on top of Hadoop. Since
most machine learning algorithms are model fitting applica-
tions, nearly all of them involve iterative programs. Mahout
uses an outside driver program to control the loops, and new
MapReduce jobs are launched in each iteration. The draw-
back of this approach has been discussed in Section 1. Like
Mahout, we are trying to help iterative data analysis algo-
rithms work on scalable architectures, but we are different
in that we are modifying the fundamental system: we inject
the iterative capability into a MapReduce engine.

Nova [29] is a workflow manager built on top of an un-
modified Pig/Hadoop software stack, which processes con-
tinuous data using a graph of Pig programs. Nova supports
incremental data processing. However, without changing
Hadoop’s task scheduling mechanims, application program-
mers cannot explore cache (either disk or memory) locality
to avoid redundant shuffling of static data in iterative data
processing such as the PageRank example.

Delay scheduling [38] improves disk locality of the map
phase in multi-user scenarios by adding a wait time before
scheduling potentially non-local map tasks. This delay im-
proves the probability that a data-local node will become
available. Scarlett [3] addresses the same problem by plac-
ing blocks in the distributed file system according to data
popularity. However, these techniques do not exploit the
data flow and dependency information we exploit to make
Hadoop “iteration-aware”. Moreover, they are orthogonal
to our contributions related to using reduce-side caches to

avoid redundant shuffling, sorting, and grouping. This prob-
lem and solution are only relevant in the context of iterative
computations. General performance optimizations for itera-
tive jobs in a multi-user environment represent a promising
direction of investigation, but remain future work.

A study by Ganesh et al. [4] shows that disk-locality
is not that important when network performance is high and
job input/output data are compressed. However, HaLoop tar-
gets a commodity network environment (e.g., EC2) where
network I/O performance is moderate. Improving perfor-
mance by compressing data between map and reduce phases
may be beneficial, but is largely orthogonal to our work.

Twister [16] is a stream-based MapReduce framework
that supports iterative programs, in which mappers and re-
ducers are long running with distributed memory caches
to improve performance. Twister provides fault-tolerance
by checkpointing and replicating each iteration’s output to
distributed file system. Due to the elimination of mapper
output materialization, Twister has no intra-iteration fault-
tolerance; a single failure will cause re-execution of an
entire loop body (which may involve several MapReduce
steps). Additionally, Twister does not provide the reducer-
side cache mechanisms to eliminate redundant data shuf-
fling, sorting and grouping.

Spark [40,39] is a system that supports dataset reusing
across parallel operations for iterative machine learning al-
gorithms. The data reuse is achieved by resilient distributed
datasets, which are cached in the memory of cluster ma-
chines. The Spark architecture is suitable for clusters having
tens of gigabytes of memory per node (Ganesh et al. report
that a cluster at Facebook has 16GB - 32GB per node). Our
initial design goal is for clusters having only around 1 giga-
bytes of memory per node, thus we did not focus on buffer
management.

We consider memory-based processing orthogonal to
our approach. Similar to Twister and Spark, we speculate
that HaLoop could be extended with a memory-based buffer
manager layer built on task trackers to further improve ef-
ficiency, without changes to the task scheduler and caching
mechanisms we explore. Different in-memory cache man-
agement policies such as LRU, FIFO, and MRU are also
considered orthogonal to this work; evaluation and opti-
mization of such policies in this context represent important
open questions. Currently, we follow the Hadoop model that
emphasizes disk-oriented processing for fault-tolerance and
scalability beyond main memory sizes.

The HaLoop Approach to Large-Scale Iterative Data Analysis 19

BOOM [2] uses the Overlog [24] language to implement
API-compatible with Hadoop and HDFS, and adds high-
availability and debugging support. Thus, recursive queries
could be naturally supported. However, it does not explore
the direction of distributed caching to improve the perfor-
mance.

Piccolo [33] provides system support for iterative data
processing, using partitioned table data model with user- de-
fined partitioning. The partitioned tables are in distributed
memory and users can give locality hint to improve lo-
cality. Iterative applications use message-passing to update
states in partitioned tables. Piccolo achieves fault-tolerance
by writing consistent global checkpointing: a global snap-
shot of the program state. This is different from the data
checkpointing and materialization mechanisms in all other
systems. The comparison on the two basic fault-tolerance
mechanisms is worth further investigation. Our work has
focused on identifying the minimal changes required to
Hadoop to support efficient iterative computation.

Pregel [26] is a distributed system for processing large-
size graph datasets, where each vertex receiving messages,
updating status, and sending messages out independently.
However, Pregel cannot support non-graph iterative compu-
tations such as the k-means. Pregel achieves fault-tolerance
by checkpointing vertices’ states after each iteration. Thus
it requires fully re-executing all tasks(vertices) in an iter-
ation from scratch on all nodes to recover from a failure,
while MapReduce and HaLoop only require re-executing
those failed tasks as well as a limited number of dependent
tasks.

Last but not the least, compared to Spark, BOOM, Pic-
colo and Pregel, HaLoop can support easy migration from
those already widely-existing Hadoop iterative applications
while others may require building applications from scratch.

9 Conclusion and Future Work

This paper presents the design, implementation, and
evaluation of HaLoop, a novel parallel and distributed sys-
tem that supports large-scale iterative data analysis appli-
cations. HaLoop is built on top of Hadoop and extends it
with a new programming model and several important op-
timizations that include (1) a loop-aware task scheduler, (2)
loop-invariant data caching, and (3) caching for efficient fix-
point verification. Besides, HaLoop employs similar fail-
ure recovery mechanisms to Hadoop and jobs can sustain
process failures and slave node failures. We evaluated our
HaLoop prototype on several large datasets and iterative
queries. Our results demonstrate that pushing support for
iterative programs into the MapReduce engine greatly im-
proves the overall performance of iterative data analysis ap-
plications. In future work, we would like to implement a
simplified Datalog evaluation engine on top of HaLoop, to

enable large-scale iterative data analysis programmed in a
declarative way.

Acknowledgements

The HaLoop project is partially supported by NSF CluE
grants IIS-0844572 and IIS-0844580, NSF CAREER Award
IIS-0845397, NSF grants CNS-0855252 and IIS-0910989,
Woods Hole Oceanographic Institute Grant OCE-0418967,
Amazon, University of Washington eScience Institute, and
the Yahoo! Key Scientific Challenges program. Thanks for
suggestions and comments from Michael J. Carey, Rares
Vernica, Vinayak R. Borkar, Hongbo Deng, Congle Zhang,
and the anonymous reviewers.

References

1. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi,
Alexander Rasin, and Avi Silberschatz. HadoopDB: An architec-
tural hybrid of MapReduce and DBMS technologies for analytical
workloads. VLDB, 2(1):922–933, 2009.

2. Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, and Russell Sears. Boom analytics: ex-
ploring data-centric, declarative programming for the cloud. In
EuroSys, pages 223–236, 2010.

3. Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula,
Albert G. Greenberg, Ion Stoica, Duke Harlan, and Ed Harris.
Scarlett: coping with skewed content popularity in mapreduce
clusters. In EuroSys, pages 287–300, 2011.

4. Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion
Stoica. Disk-locality in datacenter computing considered irrele-
vant. In HotOS, 2011.

5. François Bancilhon and Raghu Ramakrishnan. An amateur’s in-
troduction to recursive query processing strategies. In SIGMOD
Conference, pages 16–52, 1986.

6. Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker
Markl, and Daniel Warneke. Nephele/pacts: a programming model
and execution framework for web-scale analytical processing. In
SoCC, pages 119–130, 2010.

7. Vinayak Borkar, Michael J. Carey, Raman Grover, Nicola Onose,
and Rares Vernica. Hyracks: A flexible and extensible foundation
for data-intensive computing. In ICDE Conference, 2011.

8. Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael Ernst.
Haloop: Efficient iterative data processing on large clusters.
PVLDB, 3(1):285–296, 2010.

9. Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Dar-
ren Shakib, Simon Weaver, and Jingren Zhou. Scope: easy
and efficient parallel processing of massive data sets. PVLDB,
1(2):1265–1276, 2008.

10. Cluster Exploratory (CluE) program. http://www.nsf.gov/
pubs/2008/nsf08560/nsf08560.htm. Accessed July 7,
2010.

11. Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. MapReduce online. In
NSDI 2010, 2010.

12. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

13. David J. DeWitt and Jim Gray. Parallel database systems: The
future of high performance database systems. Commun. ACM,
35(6):85–98, 1992.

20 Yingyi Bu et al.

14. David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey F.
Naughton, Joshua Royalty, Srinath Shankar, and Andrew Kri-
oukov. Clustera: an integrated computation and data management
system. PVLDB, 1(1):28–41, 2008.

15. Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz
Kargin, Vinay Setty, and Jörg Schad. Hadoop++: Making a yel-
low elephant run like a cheetah (without it even noticing). PVLDB,
3(1):518–529, 2010.

16. Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime
for iterative mapreduce. In HPDC, pages 810–818, 2010.

17. Hadoop. http://hadoop.apache.org/. Accessed July 7,
2010.

18. Martin T. Hagan, Howard B. Demuth, and Mark H. Beale. Neural
Network Design. PWS Publishing, 1996.

19. Hdfs. http://hadoop.apache.org/common/docs/
current/hdfs_design.html. Accessed July 7, 2010.

20. Hive. http://hadoop.apache.org/hive/. Accessed
July 7, 2010.

21. Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys, pages 59–72, 2007.

22. Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data
clustering: A review. ACM Comput. Surv., 31(3):264–323, 1999.

23. Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. J. ACM, 46(5):604–632, 1999.

24. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Ma-
niatis, Timothy Roscoe, and Ion Stoica. Implementing declarative
overlays. In SOSP, pages 75–90, 2005.

25. Mahout. http://lucene.apache.org/mahout/. Ac-
cessed July 7, 2010.

26. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
Pregel: a system for large-scale graph processing. In SIGMOD
Conference, pages 135–146, 2010.

27. Andrew W. Moore and Denis Zuev. Internet traffic classification
using bayesian analysis techniques. In SIGMETRICS, pages 50–
60, 2005.

28. Kristi Morton, Magdalena Balazinska, and Dan Grossman. Para-
Timer: a progress indicator for MapReduce DAGs. In SIGMOD
Conference, pages 507–518, 2010.

29. Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yip-
ing Han, Mattias Larsson, Andreas Neumann, Vellanki B. N. Rao,
Vijayanand Sankarasubramanian, Siddharth Seth, Chao Tian, To-
pher ZiCornell, and Xiaodan Wang. Nova: continuous pig/hadoop
workflows. In SIGMOD Conference, pages 1081–1090, 2011.

30. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Ku-
mar, and Andrew Tomkins. Pig Latin: a not-so-foreign language
for data processing. In SIGMOD Conference, pages 1099–1110,
2008.

31. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The PageRank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

32. Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker. A
comparison of approaches to large-scale data analysis. In SIG-
MOD Conference, pages 165–178, 2009.

33. Russell Power and Jinyang Li. Piccolo: Building fast, distributed
programs with partitioned tables. In OSDI, 2010.

34. Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel
set-similarity joins using MapReduce. In SIGMOD Conference,
pages 495–506, 2010.

35. Stanley Wasserman and Katherine Faust. Social Network Analy-
sis: Methods and Applications. Cambridge University Press, 1994.

36. Tom White. Hadoop: The Definitive Guide. O’Reilly Media,
2009.

37. Keith Wiley, Andrew Connolly, Simon Krughoff, Je Gardner,
Magdalena Balazinska, Bill Howe, YongChul Kwon, and Yingyi
Bu. Astronomical image processing with hadoop. In Astronomical
Data Analysis Software and Systems, 2010.

38. Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. Delay scheduling:
a simple technique for achieving locality and fairness in cluster
scheduling. In EuroSys, pages 265–278, 2010.

39. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. Technical Report
UCB/EECS-2011-82, EECS Department, University of Califor-
nia, Berkeley, Jul 2011.

40. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In HotCloud, 2010.

41. Weining Zhang, Ke Wang, and Siu-Cheung Chau. Data partition
and parallel evaluation of datalog programs. IEEE Trans. Knowl.
Data Eng., 7(1):163–176, 1995.

10 Appendix: Application Implementations

In this section, we discuss how to implement iter-
ative applications on top of HaLoop, using three ex-
amples: PageRank, descendant query, and k-means. The
source code of the three examples is publicly available at:
http://code.google.com/p/haloop/.

10.1 PageRank Implementation

Let us walk through how PageRank (from Example 1) is
implemented on top of HaLoop. Before the rank calculation
loop, there is a pre-process MapReduce job to count outgo-
ing links for each URL, where a temporary table C contain-
ing (URL, count) pairs is produced. Without this pre-process
step, the join step’s reducers need to hold input value objects
in memory to get the outgoing URL count for each input key
(source URL), which will waste CPU resources on JAVA
garbage collections. There are two steps in PageRank’s loop
body: one is to join Ri (tagged as “0”), C (tagged as “1”)
and L (tagged as “2”) and populate ranks from source URLs
to destination URLs; the other is to aggregate ranks on each
destination URL.

The join step comprises of mapper ComputeRankMap
and reducer ComputeRankReduce. This MapReduce pair is
similar to the reduce-side join in literature [36], where re-
ducer input data are secondarily sorted on tables’ tag. There-
fore, at the reducer side, input values sharing the same input
key are sorted and grouped by their source table tag (Ri

tuple first, C tuple second, and L tuples third). Different
from pure join, in each reduce function call, the Comput-
eRankReduce calculates the populated rank for destination
URLs (values after the first two in the value iterator), where
each destination URL’s rank is assigned to the source URL’s

The HaLoop Approach to Large-Scale Iterative Data Analysis 21

public class RankLoopInputOutput implements LoopInputOutput {

@Override
public List<String> getInputPaths(JobConf conf, int iteration, int step) {

List<String> paths = new ArrayList<String>();
int currentPass = 2 * iteration + step;
if(step == 0) {

paths.add(conf.getOutputPath() + "/count");
paths.add(conf.getInputPath());

}
paths.add(conf.getOutputPath() + "/i" + (currentPass - 1));
return paths;

}

@Override
public String getOutputPath(JobConf conf, int iteration, int step) {

int currentPass = 2 * iteration + step;
return (conf.getOutputPath() + "/i" + currentPass);

}

}
public class RankReduceCacheFilter implements CacheFilter {

@Override
public boolean isCache(Object key, Object value, int id) {

if (id <= 1)
return false;

else
return true;

}
}

...
/**
* Join map/reduce step, to populate rank value from
* source to destination
*/

JobConf conf1 = new JobConf();
conf1.setMapperClass(NaivePageRank.ComputeRankMap.class);
conf1.setReducerClass(NaivePageRank.ComputeRankReduce.class);
...

/**
* Aggregate map/reduce step, to aggregate rank value

* for each unique url
*/

JobConf conf2 = new JobConf();
conf2.setMapperClass(NaivePageRank.RankAggregateMapper.class);
conf2.setReducerClass(NaivePageRank.RankAggregateReducer.class);
...

/**
* set the as-a-whole iterative job conf
*/

JobConf conf = new JobConf(PageRankNew.class);
conf.setNumReduceTasks(numReducers);
conf.setLoopInputOutput(RankLoopInputOutput.class);
conf.setLoopReduceCacheFilter(RankReduceCacheFilter.class);
// set up the m-r step pipeline
conf.setStepConf(0, conf1);
conf.setStepConf(1, conf2);
conf.setIterative(true);
conf.setNumIterations(specIteration);
JobClient.runJob(conf);

}

public static void main(String[] args) {

Fig. 20 The loop setting implementation for the PageRank example.

rank (the first one in value iterator) divided by the number
(the second one in value iterator) of destination URLs.

The aggregation step includes RankAggregateMap-
per and RankAggregateReduce, where RankAggregateMap
reads raw ranks produced by ComputeRankReduce, and
RankAggregateReduce sums the local ranks for each URL.
Combiner is enabled to improve efficiency.

Figure 20 shows the loop setting implementation for
PageRank. RankLoopInputOutput specifies thatL,C andRi

are loaded for step 0, but step 1 only consumes the output
from step 0. The RankReduceCacheFilter specifies that tu-
ples from L and C are cached, but tuples from Ri is not. In

public class DescendantLoopInputOutput implements LoopInputOutput {

@Override
public List<String> getInputPaths(JobConf conf, int iteration, int step) {

List<String> paths = new ArrayList<String>();
int currentPass = 2 * iteration + step;
if (step == 0) {

// join step
paths.add(conf.getOutputPath() + "/i" + (currentPass - 1));
paths.add(conf.getInputPath());

}
if (step == 1) {

// for the duplicate elimination step
for (int i = 1; i < currentPass; i += 2)

paths.add(conf.getOutputPath() + "/i" + i);
paths.add(conf.getOutputPath() + "/i" + (currentPass - 1));

}
return paths;

}

@Override
public String getOutputPath(JobConf conf, int iteration, int step) {

int currentPass = 2 * iteration + step;
return (conf.getOutputPath() + "/i" + currentPass);

}

}

public class DescendantReduceCacheFilter implements CacheFilter {

// table tag for \delta S in the join
Text tag0 = new Text("0");

// table tag for L in the join
Text tag1 = new Text("1");

@Override
public boolean isCache(Object key, Object value, int id) {

TextPair tv = (TextPair) value;
else if (tv.getSecond().equals(tag1))

return true;
else

return true;
}

}

...
// Join map/reduce step
JobConf job1 = new JobConf(NaiveDescendant.class);
job1.setMapperClass(JoinMap.class);
job1.setReducerClass(JoinReduce.class);

...

//Duplicate removal map/reduce step
JobConf job2 = new JobConf(NaiveDescendant.class);
job2.setMapperClass(DuplicateEliminateMap.class);
job2.setReducerClass(DuplicateEliminateReduce.class);
job2.setNumReduceTasks(numReducers);
...

// set the as-a-whole iterative join job conf
conf = new JobConf(Descendant.class);
conf.setLoopInputOutput(DescendantLoopInputOutput.class);
conf.setLoopReduceCacheFilter(DescendantReduceCacheFilter.class);

// set up the m-r step pipeline
conf.setStepConf(0, job1);
conf.setStepConf(1, job2);
conf.setIterative(true);
conf.setNumIterations(specIteration);
JobClient.runJob(conf);

...
}

public static void main(String[] args) {

Fig. 21 The loop setting implementation for the descendant query ex-
ample,

the main function, two job configurations are created, each
one for a step. Then, a container job configuration is created,
and it sets the loop body and the loop setting implementation
classes.

22 Yingyi Bu et al.

10.2 Descendant Query Implementation

Similar to PageRank example, the loop body of descen-
dant query also has two steps: one is join (to find friends-
of-friends by looking one hop further), and the other one is
duplicate elimination (to remove duplicates in the extended
friends set). The join step is also implemented in the same
way as the reduce-side join in literature [36]. After new
friends are produced by the join step, the duplicate elim-
ination step removes duplicates from the latest discovered
friends, considering all the friends produced so far. Here,
MapReduce pair JoinMap and JoinReduce compose the join
step, while MapReduce pair DuplicateEliminationMap and
DuplicateEliminationReduce form the duplicate elimination
step.

Figure 21 demonstrates the implementation for loop
setting interfaces and the main function. In class Descen-
dantLoopInputOutput, it returns different input paths for
join step (loads the latest discovered friends) and duplicate
elimination step (loads all friends discovered so far). De-
scendantReduceCacheFilter specifies that tuples from initial
friends table F (tagged with “1”) are cached at reducer side,
and tuples from latest generated friends table ∆Si (tagged
with “0”) are not cached. Similar to the PageRank example,
the main function configures loop body steps and sets up the
three loop setting implementation classes.

10.3 K-means Implementation

K-means clustering is another popular iterative data
analysis algorithm that can be implemented on top of
HaLoop. Unlike the previous two examples, however, k-
means takes advantage of the mapper input cache rather than
the reducer input/output cache, because the input data to
mappers at each iteration are invariant, while the reducer in-
put data keep changing. From iteration to iteration, reducers
only output the current k cluster means, and there is a final
classification job after the loop to assign each tuple to a clus-
ter. Thus, in the iterative job, the output from each iteration
has a very small size (only k cluster means), thus there is no
need to enable reducer output cache.

The implementation of mapper (KMeansMapper) and
reducer (KMeansReducer) is similar to that in Mahout [25].
The mapper assigns tuples to the closest cluster, and the
reducer re-calculate the means of clusters. Also, the com-
biner is enabled for local aggregation to reduce data shuf-
fling. Figure 22 shows the loop setting implementation of k-
means. It is very straightforward since there is only one step
in an iteration. Every iteration, the input path is the same
(by KMeansLoopInputOutput). Every tuple is qualified for
caching (by KMeansLoopMapCacheFilter). Similarly, the
main function sets up loop body and other implementation
classes.

public class KMeansLoopInputOutput implements LoopInputOutput {

@Override
public List<String> getInputPaths(JobConf conf, int iteration, int step) {

List<String> paths = new ArrayList<String>();
// only input the dataset, cluster means are
//read from HDFS in mappers
paths.add(conf.getInputPath());
return paths;

}

@Override
public String getOutputPath(JobConf conf, int iteration, int step) {

return (conf.getOutputPath() + "/i" + iteration);
}

}
public class KMeansLoopMapCacheFilter implements CacheFilter {

@Override
public boolean isCache(Object key, Object value, int id) {

// cache every tuple
return true;

}

}

...
/**
* kmeans loop body: only one map/reduce step
*/

JobConf conf = new JobConf(KMeans.class);
conf.setMapperClass(KMeansMapper.class);
conf.setCombinerClass(KMeansReducer.class);
conf.setReducerClass(KMeansReducer.class);
...

// as-a-while iterative job
JobConf job = new JobConf(KMeans.class);
job.setStepConf(0, conf);
job.setIterative(true);
job.setLoopMapCacheFilter(KMeansLoopMapCacheFilter.class);
job.setLoopInputOutput(KMeansLoopInputOutput.class);
job.setNumIterations(specIteration);
job.setJobName("iterative k-means");
JobClient.runJob(job);
...

}

public static void main(String[] args){

Fig. 22 The loop setting implementation for the k-means example.

10.4 Summary

Since MapReduce has been used as a foundation to ex-
press relational algebra operators, it is straightforward to
translate these SQL queries into MapReduce jobs. Essen-
tially, PageRank, descendant query, and k-means clustering
all share a recursive join structure. Our PageRank and de-
scendant query implementations are similar to MapReduce
joins in Hive [20], while k-means implementation is similar
to Hive’s map-side joins; the difference is that these three
applications are recursive, which neither Hive nor MapRe-
duce has built-in support.

