
A Demonstration of Interactive Analysis of
Performance Measurements with Viska

Helga Gudmundsdottir, Babak Salimi, Magdalena Balazinska, Dan R. K. Ports, Dan Suciu
University of Washington

helgag, bsalimi, magda, drkp, suciu@cs.washington.edu

ABSTRACT
The ultimate goal of system performance analysis is to iden-
tify the underlying causes for performance differences be-
tween different systems and different workloads. We make
this goal easier to achieve with Viska, a new tool for generat-
ing and interpreting performance measurement results. Viska
leverages cutting-edge techniques from big data analytics
and data visualization to aid and automate this analysis, and
helps users derive meaningful and statistically sound conclu-
sions using state-of-the-art causal inference and hypothesis
testing techniques.

Keywords
performance debugging, causal inference, data analytics

1. INTRODUCTION
Much of systems research consists of performance analysis

– to learn when one system outperforms another, to iden-
tify architectural choices responsible for the difference, and
to identify performance anomalies in particular workloads.
Ultimately, researchers and developers want to quickly un-
cover the underlying causes that contribute to these factors.
Common types of questions include comparing performance
across systems (Why is one system faster than another for
a particular workload?), understanding the performance of
distributed systems (With multiple components and frequent
releases, what change caused a sudden increase in latency?),
and performance tuning (Why is a particular database system
configuration affecting runtime?).

These questions are challenging because systems evolve
over time and have hundreds of configuration knobs for tun-
ing. Performance is also often closely tied to the underlying
platform and available resources. As a result, performance
analysis today requires deep expertise in each system and
its codebase, and detailed experimentation, instrumentation,
and profiling.

The Viska project aims to make performance analysis easier
with a new tool for generating and interpreting performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3056448

Viska Python Library

Hypothesis
Testing
(HTM)

Graph
Generation

(GGM)

Viska
Language

(VLM)

Feature
Engineering

(FEM)

Data Layer
(ViskaDataFrames, ViskaSeries, ...)

Exploration and Analysis

Interactive
Visualization

(IVC)

Web Frontend

Web
Server

Data Sources

Data Generation

Log Parser
(LPM)

System
Deployment

(SDM)

System
Monitoring

(SMM)

Query
Generator

(GEM)

CSV
JSON

...

PostgreSQL
SQLite

...

AWS S3
...

Figure 1: Viska System Architecture

measurement results, helping users derive meaningful and
statistically sound conclusions. Viska collects a variety of
features that describe the execution of a query, including
query execution time, attributes of the input data (e.g. input
data sizes and other statistics), attributes of the executed
queries (e.g., operators in the queries), and system configura-
tion parameters (e.g., available CPU, memory, and disk IO
resources). Each query execution profile takes the form of
a feature vector. Viska allows users to explore these feature
vectors to identify correlations and isolate potential causes.

Viska is specifically designed to address the unique chal-
lenges of performance data, namely:

• High dimensionality. The data consists of a large number of
runs of experiments with different workloads, configuration
settings, and deployments. Viska focuses investigative ef-
forts by automatically identifying important features from
this large set of variables.

• Unclear relationships between variables. Variables in this
dataset, are rarely conditionally independent. In fact, many
are highly correlated, leading users to draw spurious con-
clusions about cause and effect. Viska is able to verify that
conclusions are statistically sound.

• Evolving research questions. Viska supports interactive
data exploration, allowing the user to re-evaluate and re-
iterate different hypotheses easily and effectively.

At the heart of the Viska system is a Hypothesis Testing
Module (HTM) that enables users to ask questions about the
causal relationship between selected features and system per-
formance. Viska’s HTM is based on causal inference following
the Neyman-Rubin model [13]. The HTM answers causal-
ity questions based on the set of query execution profiles
and a causal graph produced by Viska’s Graph Generation
Module (GGM), that captures conditional dependence and
independence information between variables.

http://dx.doi.org/10.1145/3035918.3056448

While performance analysis with Viska culminates in hy-
pothesis testing with the HTM, the user must first be able
to identify and refine a hypothesis. Viska supports the end-
to-end task of performance debugging, including data gener-
ation and visualization. The complete system architecture is
shown in Figure 1. As the figure shows, Viska provides an
initial module that facilitates the generation, collection, and
management of performance data for analysis. Viska further
includes a rich and configurable set of visualizations that
enable users to visually explore the data and identify poten-
tial root causes to investigate. Third, Viska enables users
to engage in feature engineering and produce new features
from their initial set of features. Finally, the data is ready
for analysis with the HTM.

In this demonstration, the attendees will go through the
experience of debugging specific performance questions in
two recent versions of PostgreSQL. Attendees will go through
the three key steps of the debugging process: (1) data vi-
sualization and identification of potential root causes of a
suspicious performance behavior; (2) causal inference to de-
termine if a potential cause is an actual cause; and (3) feature
engineering to refine the analysis process.

Overall, this demonstration makes three contributions:
• It presents a new approach for performance debugging in

database systems based on causal inference. It shows both
the theoretical aspects of the approach and its implemen-
tation in the Viska system.

• It demonstrates the components necessary for end-to-end
performance debugging including data visualization, fea-
ture engineering, data collection and generation, and ulti-
mately hypothesis testing. It shows how these components
interact during the performance debugging process.

• It enables conference attendees to experience the challenges
of performance debugging on real data from recent ver-
sions of PostgreSQL and how the Viska system effectively
supports that task.

2. THE VISKA SYSTEM
The Viska system automates and guides the three core

tasks of performance analysis: generating, exploring and
analyzing performance data. In this section, we present an
overview of Viska, and how its various components (shown in
Figure 1) address each of these tasks. As a running example,
we will compare the performance of two recent versions
of PostgreSQL and investigate the causes of the difference.
While this is an intentionally simple example to shorten
exposition, it already presents a number of challenges that
are not easy to address without Viska’s key features.

2.1 Generating performance data
Viska analyzes performance data obtained by benchmark-

ing systems. This data consists of a set of profiles each rep-
resenting a single execution of an experiment. A profile has
a set of input variables that vary between experiments, such
as the types of queries run, data set used, or configuration
parameters. Viska records these along with a set of observed
variables: properties of the execution (e.g., number of rows
processed), system-level metrics (e.g., CPU and disk utiliza-
tion), and outcome variables (e.g., query execution time).
Table 1 gives a simple example of what a dataset might look
like, showing the first four records. We do not describe the
modules for workload generation, system deployment, and
metrics gathering here.

Version TableSize OutputRows CPU DiskIO Runtime

9.4.5 2 GB 800665 77.44 890.00 2.4
9.4.5 8 GB 1 88.89 650.20 16.3
9.6.0 8 GB 47989007 91.21 1420.67 17.0
9.6.0 8 GB 39838415 89.72 1337.10 16.1

Table 1: Example dataset

Version

TableSize

CPU

DiskIO

Runtime

OutputRows Input variables
Observed variables
Outcome variables

Figure 2: Example causal graph generated from the dataset
described in Table 1 using the GGM.

2.2 Exploring performance data
Recent innovations in visual data exploration tools are

able to help users make sense of high dimensional datasets
[17, 5, 16]. Drawing inspiration from this line of work, we
incorporate various visualization techniques into Viska’s In-
teractive Visualization Component (IVC), which provides an
engaging way for users to explore performance results. In con-
trast to general-purposes visualization tools like Tableau, our
choices of visual encodings and charts shown are customized
to support a performance analysis. This workflow includes
selecting subpopulations (e.g. filtering long running queries);
creating new features derived from others (e.g. binning or
merging variables); creating and interpreting a causal model
(described in Section 2.3); and generating and exploring a
causal dependency graph (see example in Figure 2).

The IVC shows coordinated multi-views with distributions
of important variables, which the user can interact with to
discover outliers, trends and correlations. Figure 3 displays
a simplified version of our example dataset, showing the
distribution of input and outcome variables. The user is able
to brush the group of longer running queries and see imme-
diately the distribution of input variables for this selection.
Here, most long-running queries executed on a large input
table, but a few outliers ran on a smaller table. By further
brushing to select those outliers in the TableSize chart, the
user can see that these queries were all executed on the new
version of the database. The user can quickly investigate and
form hypotheses in this manner.

While visual exploration tools are useful in generating
hypotheses, they have been criticized for encouraging users to
draw conclusions that may not be statistically significant [3].
Viska emphasizes measures of bias and statistical significance
at each step of the workflow to address this problem.

2.3 Analyzing Performance Data
The Hypothesis Testing Module (HTM) enables Viska

to generate statistically sound explanations for observed
relationships between various features of a system, such
as workload parameters, system metrics, and performance
results. It is built upon a long tradition of work in discovering
cause-effect dependencies. In particular, the HTM is based
on the Neyman-Rubin Causal Model [13]. In this model, the
objective is to quantify the causal effect of a binary treatment
on an outcome given a vector of potentially confounding
effects called covariates.

Figure 3: Example interactive visualization of important variables. Blue indicates a filtered sub-population of queries.

out_rows

bin(out_rows, cuts(0,1,10**6,10**7,10**8), labels("None", ...

Figure 4: Screenshot of a user creating a new feature by custom binning, using Viska’s expression language.

To investigate the performance difference between two
versions of PostgreSQL, we might construct our model as
follows: We select Version as our treatment (after making it
binary). We refer to samples from the new version as treated,
and others as the control. We choose Runtime as the outcome
variable, and select the four other potentially confounding
variables in the table as covariates. The goal of the analysis
is to compute the average treatment effect:

ATE = E[Runtime|Version = new]−E[Runtime|Version 6= new]

over the possible values of the covariates. The key challenge
in this computation is that there are unlikely to be samples
representing both the treated and control groups for every
unique set of covariate values. For example, the new version
of PostgreSQL may achieve higher disk throughput, leading
to values of DiskIO not obtainable for the older version.

To draw statistically valid conclusions in spite of this chal-
lenge, Viska’s HTM uses techniques such as matching and
subclassification which aim to prune data in such a way that
the treated and control groups have similar covariate val-
ues [9, 12]. Intuitively, the result of this pruning simulates a
controlled experiment. To obtain statistically efficient estima-
tors for ATE, HTM follows the suggestions of [7], and uses
causal graphs for covariate selection. The Graph Generation
Module (GGM) of Viska is used to infer causal graphs, such
as the one seen in Figure 2, by checking conditional indepen-
dence between variables. We do not describe the techniques
used for graph discovery here.

Finally, the HTM uses one of several statistical tests, such
as the Z-test, to compute the statistical significance of ATE.
To avoid the challenge of multiple hypothesis testing [15],
where excessive analysis of a single dataset risks finding
artificial patterns, Viska takes two approaches. First, it keeps
track of the number of hypotheses that a user has tested and
adjusts statistical significance accordingly. Second, it enables
a user to run new sets of experiments to generate fresh data
and continue an investigation.

3. DEMONSTRATION DETAILS
Our demonstration will allow attendees to explore several

performance questions using Viska. Here, we focus on one
question: Is the newest version of PostgreSQL faster at read

queries than the previous one, and, if so, why? We run
a workload of simple generated queries on a large table,
recording the runtime for each query along with the workload
parameters, database configuration, query plans, and system-
level metrics.

Defining the Population: During the first phase of the
demonstration, the user is shown an overview of the dataset.
Along with basic statistics, the first screen presents the user
with coordinated views of the distribution of both outcome
and input variables, similar to Figure 3. The user can use
brushing to define the population of interest. The tool imme-
diately reflects changes in the outcome variables as different
subpopulations are selected. This allows the user to quickly
gain intuition into which variables are important and form
initial hypotheses as to potential causes on performance.

Feature Engineering: It is often the case that the set
of initial features is not sufficient for analysis. The user can
compute new features as a function of existing ones by writing
recipes in Viska’s expression language. One reason to do this
is that a causal hypothesis needs to be specified as a binary
variable. Thus, users will write a recipe to convert the feature
representing the system version into a new binary variable
(i.e. new vs. old). As another example, recipes can serve
to transform continuous variables into discrete ones using
binning, as shown in Figure 4. Viska also includes techniques
to merge features and thereby reducing dimensionality.

Causal Analysis: Now, the user is presented with the
causal analysis screen. The user is prompted to select the
treatment variable – the possible cause – from the list of all
binary features. In this case, the user selects the newly created
new_version feature. By default, the outcome variable is the
query runtime (though the user can also investigate the
causal effect of database version on other variables). Initially,
the user selects no covariates.

Next, the user is presented with charts showing the distri-
bution of the outcome variable and any selected covariate,
color coded to clearly distinguish between the treated and
control groups. The resulting ATE statistics are displayed,
along with several other statistical metrics (such as imbalance
measures). The user will see a negligible average treatment
effect (0.08 seconds), indicating that the runtime is largely
unaffected by the version.

Average Treatment Effect (ATE): -4.748

Figure 5: Example workflow for causal inference, starting with defining the model parameters, then running coarsened exact
matching, and finally interpreting results.

Using Viska’s visualization component, the user will dis-
cover that the variable clear_os_cache is imbalanced across
the treated and control groups, i.e. few measurements were
taken for the new version with a warm OS cache. Suspecting
that this could have confounding effects, the user adds this
variable as a covariate, and re-runs the causal analysis. The
results show that the new version is in fact significantly faster
after properly adjusting for clear_os_cache. This workflow
is shown in Figure 5.

Having seen that the new version of PostgreSQL is faster
than the old, the user can now explore different hypotheses as
to why that may be, using different treatments or covariates.
One hypothesis may be that disk read throughput is higher
and the user can indeed verify a 25% increase in the average
treatment effect when that is considered. Considering CPU
utilization shows an increase of 250%, reflecting the multi-
core support introduced in the new version.

4. RELATED WORK
Work on causality in database systems [11] uses provenance

to explain query answers and non-answers. Provenance has
also successfully been used for root-cause analysis in network-
ing applications [4]. These techniques, however, assume that
variables can be connected to their causes through logical
expressions (i.e., query operations). In system performance
debugging, this assumption does not hold.

Taint tracking can help identify configuration variables
responsible for performance regressions [1]. Such an approach
could be integrated with Viska as an additional feature.

In prior work [10], we developed a system to answer com-
parative performance questions for MapReduce jobs. That
approach, however, did not perform causal inference when
generating explanations. Other prior systems that compare
measurements to diagnose performance regressions [14] re-
quire only one variable to be changed at a time because
they do not perform causal analysis. DBSherlock [18], unlike
Viska, requires that users specify domain-knowledge rules
or indicate the true causes of anomalous events to build a
causal model. Additionally, DBSherlock focuses on explaining
anomalous events while Viska enables more general reasoning
about the effect of different variables on performance.

Many techniques exist for predicting query performance
and automatically tuning database systems [8, 6, 2]. These
approaches build models of query runtime in order to find
configurations that yield high performance, rather than pin-
point root causes for specific performance behaviors.

5. CONCLUSION
We demonstrate Viska, a system for automating and guid-

ing the generation, analysis, and exploration of performance
data. Viska builds on techniques from big data analytics,
data visualization, and causal inference.

Acknowledgements: We thank Helgi Sigurbjarnarson and the
anonymous reviewers for their feedback. This work is supported in
part by the National Science Foundation through NSF grants IIS-
1247469, AITF 1535565, IIS-1524535, IIS-1614738, and CNS-1615102,
and gifts from the Big Data ISTC and Facebook. Helga Gudmunds-
dottir is also supported by a Microsoft Research Women’s Fellowship.

6. REFERENCES
[1] M. Attariyan et al. X-ray: Automating root-cause diagnosis of

performance anomalies in production software. In OSDI ’12,
2012.

[2] P. Barham et al. Using Magpie for request extraction and
workload modelling. In OSDI ’04, 2004.

[3] C. Binning et al. Towards sustainable insights: or why
polygamy is bad for you. In CIDR’17, 2017.

[4] A. Chen et al. Data provenance at internet scale: Architecture,
experiences, and the road ahead. In CIDR’17, 2017.

[5] F. Chirigati et al. Data polygamy: the many-many relationships
among urban spatio-temporal data sets. In SIGMOD’16, pages
1–15, 2016.

[6] I. Cohen et al. Correlating instrumentation data to system
states: A building block for automated diagnosis and control. In
OSDI ’04, 2004.

[7] X. De Luna et al. Covariate selection for the nonparametric
estimation of an average treatment effect. Biometrika, 2011.

[8] H. Herodotou and S. Babu. A what-if engine for cost-based
MapReduce optimization. IEEE Data Eng. Bull., 36(1):5–14,
2013.

[9] S. M. Iacus et al. Cem: software for coarsened exact matching.
Journal of Statistical Software, 30(9):1–27, 2009.

[10] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain:
Debugging mapreduce job performance. PVLDB, 5(7):598–609,
2012.

[11] A. Meliou et al. WHY so? or WHY no? functional causality for
explaining query answers. In MUD in conjunction with VLDB,
pages 3–17, 2010.

[12] P. R. Rosenbaum and D. B. Rubin. The central role of the
propensity score in observational studies for causal effects.
Biometrika, 70(1):pp. 41–55, 1983.

[13] D. B. Rubin. The Use of Matched Sampling and Regression
Adjustment in Observational Studies. Ph.D. Thesis,
Department of Statistics, Harvard University, 1970.

[14] R. R. Sambasivan et al. Diagnosing performance changes by
comparing request flows. In NSDI’11, 2011.

[15] J. P. Shaffer. Multiple hypothesis testing. Review of
psychology, 46:561, 1995.

[16] Tableau. http://www.tableau.com, 2003.

[17] M. Vartak et al. Seedb: Automatically generating query
visualizations. PVLDB, 7(13):1581–1584, 2014.

[18] D. Y. Yoon, N. Niu, and B. Mozafari. Dbsherlock: A
performance diagnostic tool for transactional databases. In
SIGMOD’16, pages 1599–1614, 2016.

http://www.tableau.com

	Introduction
	The Viska System
	Generating performance data
	Exploring performance data
	Analyzing Performance Data

	Demonstration Details
	Related Work
	Conclusion
	References

