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ABSTRACT
We demonstrate PerfEnforce, a dynamic scaling engine for ana-
lytics services. PerfEnforce automatically scales a cluster of vir-
tual machines in order to minimize costs while probabilistically
meeting the query runtime guarantees offered by a performance-
oriented service level agreement (SLA). The demonstration will
show three families of dynamic scaling algorithms –feedback con-
trol, reinforcement learning, and online machine learning– and will
enable attendees to change tuning parameters, performance thresh-
olds, and workloads to compare and contrast the algorithms in dif-
ferent settings.

1. INTRODUCTION
A variety of data analytics systems are available as cloud services

today, including Amazon Elastic MapReduce (EMR) [1], Red-
shift [1], Azure’s HDInsight [2], and others. With these services,
users have access to compute clusters that come pre-packaged with
data analytics tools. With most of these services, users select and
pay for a given cluster configuration: i.e., number and type of ser-
vice instances. It is well known, however, that users often have dif-
ficultly selecting configurations that meet their needs. Frequently,
users need to test many configurations before finding a suitable
one [6]. Some database cloud services such as Amazon RDS [1]
and Azure [2] offer the ability to scale a database application au-
tomatically, but they require users to manually specify the scaling
conditions, which requires deep expertise and planning. Recent
work offers solutions for automatic cluster resizing but either fo-
cuses on transaction processing [8, 3] or requires a known and pro-
filed workload [6, 10].

An alternate approach is to enable users to purchase not a cluster
size but a performance level. In Personalized Service Level Agree-
ments [12], we developed an approach where users purchase ser-
vice tiers with query time guarantees. Similarly, the XCloud sys-
tem [13] supports SLAs with customer-specific performance crite-
ria. The challenge behind selling performance-focused SLAs for
data analytics is in guaranteeing the query runtimes advertised in
the SLAs.
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Figure 1: PerfEnforce deployment: PerfEnforce sits on top of an
elastically scalable big data management system (e.g., Myria in the
demonstration) in support of performance-oriented SLAs for cloud
data analytics (e.g., PSLAManager in the demonstration).

We design the PerfEnforce system to address the above need.
PerfEnforce works in support of performance-centric SLAs for data
analytics services. PerfEnforce targets services such as EMR or
Redshift, where each user runs the service in his or her own cluster
of virtual machines. Figure 1 shows the overall system architecture.
In our approach, the user purchases a service tier with an SLA that
specifies query runtimes. These runtimes correspond to query time
estimates for specific cluster sizes, which define the tiers of service.
Once the user selects a service tier, the cloud service instantiates
the corresponding cluster. As the user executes queries, prediction
inaccuracies and interference from other tenants using the service
can cause query times to differ from the estimated ones purchased
by the user. To meet the terms of the performance-based SLA,
PerfEnforce automatically re-sizes the cluster allocated to the user.
PerfEnforce seeks to minimize the cluster size allocated to the user
subject to probabilistically satisfying the query time guarantees in
the SLA. In the demonstration, we use the PSLAManager [12] to
generate performance-based SLAs and the Myria system [5] as the
elastically scalable data processing engine.

Several systems have recently studied performance guarantees
through dynamic resource allocation in storage systems [9] using
feedback control, or in transaction processing systems [8] using
reinforcement learning. In this demonstration, we show how ap-
plying these techniques enables PerfEnforce to effectively scale
the cluster by adding or removing nodes. In PerfEnforce, we also
develop a third technique based on online machine learning. In
contrast to feedback control and reinforcement learning, which are
reactive methods, online machine learning enables PerfEnforce to
change the cluster size before running an incoming query, which
can improve QoS. As the user runs more queries in the session,
this approach continuously improves the query runtime prediction
model. In addition, it can compensate for early prediction errors
using a control technique. This demonstration will show how the
three techniques trade off QoS and cost given different databases
and query workloads as exemplified in Figure 3.

http://dx.doi.org/10.1145/2882903.2899402


Live&Mode&
Selected&PSLA: Query&Interface:

Sample&Queries
Selection

Small Join

Master%Node%

Provisioned%

Unprovisioned%

Scaling&
Progress:

Query!ID! 1! 2! 3! 4! 5! 6! 7!

Cluster%Size% 4% 4% 6% 8% 4% 8% 8%

Query%SLA% 30% 60% 10% 30% 10% 30% 60%

Query%RunCme% 27% 71% 20% 20% 30% 27% 25%

Large Join

Tier%#1%

Tier%#2%

Tier%#3%

(A)	  

(B)	  

(C)	   (D)	  

Workload&SelecCon:

Scaling&Algorithm&Tuning:

Run

Random%Workload%(20%queries)%

Alpha%%:% .9

Scaling%Algorithm%Selected:%Reinforcement!Learning!

Graphs:

Occasional%Complex%(20%queries)%

Simple%to%Complex%(30%queries)%

StepHWise%Pa_ern%(50%queries)%

Queries%

Cl
us
te
r%S

ize
%

Cluster%Size%

Re
w
ar
d%
Va

lu
e%

4%

6%

8%

10%

12%

4% 6% 8% 10% 12%

Scaling%Algorithm% Ideal%Scaling%

Replay&Mode&
Selected&PSLA:

Query!ID! 1! 2! 3!

Cluster%Size% 4% 10% 10%

Query%SLA% 30% 60% 10%

Query%RunCme% 40% 55% 8%

Reinforcement%Learning%%

Select&a&Scaling&Algorithm&

PI%Controller%%

Online%Learning%%

Online%Learning%+%Control%%

Alpha%%:% .9

Figure 2: Demonstration screenshot described in Section 2.

The demonstration will enable attendees to experiment with the
three cluster-scaling algorithms and experience their benefits and
limitations. The attendees will select a performance agreement, a
query workload, and the scaling algorithm. They will then observe
how the selected algorithm changes the cluster size dynamically
and the resulting query performance. Attendees will also be able
to adjust tunable parameters for these algorithms. The demonstra-
tion will run as an Amazon EC2 cluster in one of two modes: live
and replay. In the live mode, PerfEnforce will add and remove vir-
tual machines (VMs) as the system executes queries on real data.
The replay mode will enable the demonstration of PerfEnforce on
longer queries and bigger workloads by showing only the cluster re-
sizing decisions without actually re-sizing the cluster nor executing
queries. Replay will use previously recorded query runtimes.

The demonstration will make two contributions: It will show
PerfEnforce in action running queries on real data in the Amazon
EC2 cloud. It will also enable attendees to experience different
auto-scaling algorithms including feedback control and reinforce-
ment learning used in prior work, as well as PerfEnforce’s new
approach based on a combination of online machine learning and
feedback control.

2. DEMONSTRATION DETAILS
The demonstration starts with 10GB of TPC-H Star Schema

Benchmark (TPC-H SSB) data [11] stored in Amazon S3 [1].

• Selecting a Performance-Centric SLA: The attendee first se-
lects a service tier available in the SLA generated by our
PSLAManager system for the TPC-H SSB dataset as shown
in Figure 2 (A). Each service tier corresponds to a config-
uration of the service and comes with a price, representing
the cost of the underlying cluster configuration. The query
templates in each tier are grouped by time thresholds, repre-
senting the runtime guarantee for those queries. The demon-
stration uses a set of 5 tiers representing configurations of 4,
6, 8, 10 and 12 workers.

• Scaling Algorithm: The user selects and tunes the scaling al-
gorithm that PerfEnforce will use as shown in Figure 2 (B).
Available scaling algorithms include reinforcement learning,
feedback control, online machine learning and online ma-
chine learning combined with feedback control. The scaling
algorithm affects the number of queries that meet their SLA
and the cloud cost of executing queries.

After making these selections, the user can then execute queries
in either live or replay mode.

Live Mode: In this mode, the user experiences PerfEnforce as
a live service. Starting from the purchased configuration, PerfEn-
force executes queries and resizes the cluster by spinning up and
shutting down service instances. As shown in Figure 2 (C), the
user sees three screens: the chosen SLA tier, a query interface to
write new queries or select pre-defined queries, and a visualization
of the current cluster size including a table describing the query
runtime, the SLA runtime, and the cluster size for the current and
past queries.

Replay Mode: In the Replay Mode, the user sees four screens.
The first screen shows the selected SLA tier. The second one, en-
ables the user to select a pre-defined query workload. For example,
one workload runs small queries followed by more complex ones.
Another workload is a sequence of random queries. Once the user
picks a workload, the system “runs” the queries by reusing their
previously recorded runtimes. For each replayed query, the bottom
right screen shows a table of the (previously measured) real query
runtime, the SLA runtime, and the cluster size. The last screen also
shows a set of graphs that vary with the selected scaling technique.
If the user selects reinforcement learning, the graphs dynamically
show how the reward changes over time for each cluster state. For
feedback control, the graphs show the error for each current win-
dow as well as the history. For online machine learning, the inter-
face shows predictions of the model compared to the real runtime
of the query. In the tuning screen, the user can tune the scaling
parameters again if desired.

3. THE PERFENFORCE SYSTEM
Figure 1 shows how PerfEnforce interacts with the other com-

ponents of a cloud data analytics service. When a user begins her
query session, she first purchases a performance tier from the cloud
service provider. In our implementation, we use the PSLAManager
system [12] to generate these performance tiers.

The PSLAManager from our prior work helps users select a ser-
vice configuration by displaying a personalized service level agree-
ment (PSLA). A PSLA is based on the user’s data (the user provides
the schema and basic statistics). Each PSLA tier corresponds to a
cluster configuration but the user only sees an hourly price, a set of
query templates, and a set of query runtimes. Intuitively, if a tier
cost is cheaper, the configuration is smaller, and query latencies
are larger. PerfEnforce can be extended to work with other SLA
managers.

Once the user purchases a tier of service, PerfEnforce spins up
the corresponding cluster and ingests the user’s data. For this work,
we use Myria as our data analytics cloud service. Myria is a shared-
nothing parallel database system [5]. The Myria system has a mas-



ter node that is responsible for sending queries to the worker nodes.
The worker nodes ingest the data such that the first four workers
each contain one quarter of the data. The first six workers each have
one sixth of the data and so on. Each worker stores its data locally
using an independent relational management system (RDBMS) in-
stance for local storage. To scale the cluster dynamically, PerfEn-
force schedules queries on the first N of the 12 workers. The re-
maining workers are not used and can be stopped but they need to
preserve the locally stored data in case the cluster needs to grow.

As the user executes queries, the responsibility of the PSLAMan-
ager is to notify PerfEnforce about the query time guarantee asso-
ciated with each user query to drive PerfEnforce’s cluster re-sizing
decisions.

3.1 Problem Description
PerfEnforce’s goal is to minimize the number of cluster instances

subject to probabilistically meeting the query runtime guarantees
of the SLA tier selected by the user. The challenge is that query
runtimes in SLAs are based on estimates, which are not always
accurate due to cardinality estimation errors, differences between
the training and user datasets, and limitations of the features used
in the model. Query runtime prediction is not a contribution of our
work. Instead, we focus on scaling the system in order to meet the
guarantees in the selected SLA.

More formally, given a query session Q, with queries q0
through qn and a cluster C, PerfEnforce trades-off two com-
peting goals: quality of service (QoS) and cost. We define
cost as

∑n
q=0(size(Cq)), where size(Cq) is the number of

instances in the cluster used to execute query q. We de-
fine QoS as 1

n

∑n
q=0 g(qi) where g(q) =

{
1 if tsla(q) ≥

treal(q) ; 0 otherwise
}

. Here, tsla(q) and treal(q) are the SLA
and actual runtimes of a query q, respectively.

QoS and cost are at odds with each other and their combination
defines the SLA offered to the user. In this demonstration, instead
of picking a specific SLA level (e.g., 90% of queries should meet
their SLA), we demonstrate how well different cluster-scaling algo-
rithms can operate the cluster as close as possible to a point where
resources are neither wasted nor missing: For each query, we com-
pute the ratio between treal(q) and tsla(q), treal(q)

tsla(q)
, and strive to

achieve a ratio as close to 1 as possible. If this ratio is above 1, the
cluster is underprovisioned. A ratio below 1 indicates that the clus-
ter is in an overprovisioned state. In the next section, we describe
how each algorithm effectively attempts to reach this goal.

3.2 Scaling Algorithms
We demonstrate the following four cluster-scaling algorithms.

3.2.1 Reactive Scaling Algorithms
We first describe reactive scaling algorithms. These algorithms

take action after they witness either a good or bad event. In PerfEn-
force, we implement proportional integral control and reinforce-
ment learning as our reactive methods.

Proportional Integral Control Feedback control [7] is a com-
monly used approach to regulate a system in order to ensure that it
operates at a given reference point. This approach has successfully
been applied in various contexts including dynamically scaling data
storage engines [9]. We use a proportional-integral controller (PI)
as a method that helps PerfEnforce react based on the magnitude of
the error while avoiding oscillations over time.

At each time step, t, the controller produces an actuator value
u(t) that causes the system to produce an output y(t + 1) at the
next time step. The goal is for the system output y(t) to be equal
to some desired reference output r(t). In an integral controller, the

actuator value depends on the accumulation of past errors of the
system. This can be represented as:

u(t+ 1) = u(t) + kie(t) (1)

where e(t) = y(t)− r(t), with r(t) being the target system output
and y(t) being the observed output. ki represents the gain of the
integral control. Ideally, this parameter is tuned in such a way that
helps drive e(t) to 0.

In our scenario, the actuator value u(t) is the discrete number of
VMs provisioned. It is initialized to the cluster size corresponding
to the SLA tier that the user purchased.

As for the system output, y(t), we use the average ratio of the
real query runtime treal(q) over the query runtime promised in the
SLA, tsla(q), over some time window of queries w(t).

y(t) =
1

|w(t)|
∑

q∈w(t)

treal(q)

tsla(q)
(2)

where |w(t)| is the number of queries in w(t).
Our target operating point is thus r(t) = 1.0 and the error e(t) =

y(t)−r(t) captures a percent error between the current and desired
average runtime ratios. Because the number of VMs to add and
remove given such a percent error depends on the cluster size, we
add that size to the error computation as follows: e(t) = (y(t) −
r(t))u(t).

Integral control alone may be slow to react to changes in the
workload. Therefore, we also introduce a proportional control
component, to yield a PI controller with the following formulation:

u(t+ 1) = u(0) +

t∑
x=0

kie(x) + kpe(t) (3)

Reinforcement Learning As our second reactive method, we
use reinforcement learning (RL). This approach has successfully
been applied in the TIRAMOLA system, which supports elastic
scaling of NoSQL databases [8].

With reinforcement learning, we model cluster scaling as a
Markov decision process, where at each state s1, the model makes
a probabilistic decision to move to another state, s2. The goal is
to move to a state with the highest reward, R(s). As the system
moves between states, the model learns and updates the values of
the rewards. In our setting, each cluster configuration represents a
state in the model. We define the reward function to be the real-
to-SLA runtime ratio. Our goal is to favor states with the reward
closest to 1.0, where the real query runtimes are closest to the SLA
runtimes (see Section 3.1). In RL, every time the system transi-
tions to a state s, it updates the reward function for that state. In
our setting, we use the following equation, where R(s′) denotes
the updated reward for state s:

R(s′) = α ∗ ( treal(q)
tsla(q)

−R(s)) +R(s) (4)

α is the learning rate, which controls how fast learning takes
place: i.e., how much to update the reward based on the observed
runtime value, treal(q), for the latest query q executed in state s.

At the initialization of the model, every state must begin with a
defined reward value, R(s), in order to determine which state to
move to. This implies that the system must have prior knowledge
about the performance of real query runtimes for each configura-
tion. In PerfEnforce, we choose to make no assumptions about
runtimes and initialize the reward for each state to 1.0. However,
we do know that reward values will be lower for larger cluster sizes.
To capture this information, we maintain a set of states called active



states. When the query session begins, active states only contains
the cluster size purchased by the user. If the reward for the current
state goes above 1.0, we add the next larger cluster size to the active
states, unless it was already in that set. If the reward for the current
state goes below 1.0, we similarly add the next smaller cluster size.
We repeat the process until all cluster sizes have been added.

3.2.2 Proactive Scaling Algorithms
Instead of approaches that react to runtime errors such as the PI

controller and reinforcement learning, we also explore an approach
that makes use of a predictive model. For each incoming query,
PerfEnforce predicts the runtime for the query for each configura-
tion and switches to the cheapest configuration that meets the SLA.

PerfEnforce first builds an offline model. For training data, we
use the Parallel Data Generation Framework tool [14] to generate
a 10GB dataset with a set of 2500 queries. Training data consists
of query plan features including the estimated max cost, estimated
number of rows, estimated width, and number of workers.

We observe that we can significantly improve this offline model
if we incorporate information about specific queries that the user
executes on his data. We achieve this goal by using an online ma-
chine learning model: as the user executes queries, PerfEnforce im-
proves the model in an online fashion. We use the MOA (Massive
Online Analysis) tool for online learning [4].

Online Learning (OL). We use the perceptron algorithm for the
online model. The perceptron algorithm works by adjusting model
weights for each new data point. We find that it adapts more quickly
to new information than an active-learning based approach. Per-
fEnforce initiates the perceptron model by learning from the train-
ing set. For the first query, PerfEnforce uses this model to predict
a runtime for each possible configuration. The cluster size with the
closest runtime to the query’s SLA is chosen. Once the system runs
the query and knows the real runtime, it adds this information to the
model.

Online Learning with Control Buffer We find that it takes a
few queries before perceptron is able to start improving prediction
accuracy. We find that we can not simply increase the learning rate
as it causes significant oscillations in the predictions. Instead, to
ensure high quality of service even early on in a query session, we
add a buffer based on the observed prediction errors. We call this
method online learning with control buffer (OL+B). We predict the
runtime of the next query tpred(qt+1) as follows:

tpred(qt+1) =Perceptron(qt+1)

+ kp ∗Avgwt(max(0,PercentError(treal(qt),

Perceptron(qt)))

(5)

Where Perceptron(t + 1) is the runtime prediction for query
tpred(qt+1). PerfEnforce adjusts that runtime if the previous win-
dow of queries resulted in a positive percent error. Based on this
adjusted prediction, PerfEnforce allocates the cluster size with the
predicted runtime closest to the SLA deadline.

3.2.3 Comparing Scaling Algorithms
Figure 3 shows the average performance of each algorithm on

three sets of random query workloads. Each workload contains 100
queries. On the x-axis, we measure a normalized value of money
saved. This value is derived from the cost for each query, Cq . We
calculate the money saved compared with using the largest, 12-
node cluster, for each query. On the y-axis, we measure the percent
of queries that meet their deadline, essentially showing the QoS.

RL-(ALPHA-.9)

RL-(ALPHA-.1)

PI-(W1, High KP, Low KI)

PI-(W1, Low KP, High KI)

PI-(W3, High KP, Low KI)

PI-(W3, Low KP, High KI)

OL (LR = .01)OL (LR = .09)

OL (LR = .01) + B(Low KP)
OL (LR = .01) + B(High KP)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 Q

ue
rie

s M
ee

tin
g 

De
ad

lin
e 

(Q
oS

)

Normalized Cost Savings

Figure 3: Example Trade-off between Scaling Algorithms

As the graph shows, no method clearly dominates the others.
For Proportional Integral Control (PI), we vary the query window
sizes,W , and use a combination of either high or low values for the
gain parameters. From these experiments, higher ki values result
in a slightly higher QoS than using higher kp. For reinforcement
learning (RL), we end up with a higher QoS (75% - 82%) than the
PI control methods. We find that Online learning (OL) yields the
highest QoS (above 85%) for several learning rates, LR. Finally,
Online Learning with Control Buffer(OL+B), has better QoS com-
pared to OL but at an even higher cost. In this experiment, both OL
and OL+B techniques provide the highest QoS, while PI control
leads to largest cost savings.

4. CONCLUSION
In this demonstration, we introduce the PerfEnforce system.

Based on the user’s performance-centric SLA, PerfEnforce scales
the system in order to achieve good QoS at a low cost. PerfEnforce
can scale the system using a variety of scaling algorithms. In this
demonstration, the user will observe and tune the algorithms on a
running cloud service.
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