
Efficient Iterative Processing
in the SciDB Parallel Array Engine

Emad Soroush1, Magdalena Balazinska1, Simon Krughoff2, and Andrew Connolly2

1Dept. of Computer Science & Engineering 2 Astronomy Department
University of Washington, Seattle, USA

{soroush,magda}@cs.washington.edu
{krughoff, ajc}@astro.washington.edu

Abstract
Many scientific data-intensive applications perform iterative
computations on array data. There exist multiple engines
specialized for array processing. These engines efficiently
support various types of operations, but none includes na-
tive support for iterative processing. In this paper, we de-
velop a model for iterative array computations and a series
of optimizations. We evaluate the benefits of an optimized,
native support for iterative array processing on the SciDB
engine and real workloads from the astronomy domain.

1. INTRODUCTION
Scientific data often takes the form of multidimensional

arrays (e.g., 2D images or 3D environment simulations) and
many data management systems are being built to support
the array model natively [5, 13, 21]. Additionally, to han-
dle today’s large-scale datasets, several engines, including
SciDB [13], provide support for processing arrays in paral-
lel in a shared-nothing cluster. Several benchmark studies
have shown that these specialized array engines outperform
both relational engines and MapReduce-type systems on a
variety of array workloads [2, 18].

Many data analysis tasks today require iterative process-
ing [6] and most modern big data management and analytics
systems (e.g., [7, 19]) support iterative processing as a first-
class citizen including a variety of optimizations for these
types of computations [1, 7, 10].

The need for efficient iterative computation extends to
analysis executed on multi-dimensional scientific arrays. We
describe two applications in Section 2. While it is possible
to implement iterative array computations by repeatedly in-
voking array queries from a script, this approach is highly
inefficient (as we show in Figure 4). Instead, a large-scale
array management systems such as SciDB should support it-
erative computations as first-class citizens in the same way
other modern data management systems do for relational or
graph data.
Contributions: In this paper, we introduce a new model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’15, June 29 - July 01, 2015, La Jolla, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3709-0/15/06. . .$15.00

DOI: http://dx.doi.org/10.1145/2791347.2791362

for expressing iterative queries over arrays. We develop a
middleware system called ArrayLoop that we implement on
top of SciDB to translate queries expressed in this model
into queries that can be executed in SciDB. Importantly,
ArrayLoop includes three optimizations that trigger rewrites
to the iterative queries and ensure their efficient evaluation.
The first optimization also includes extensions to the SciDB
storage manager. More specifically, the contribution of this
paper are as follows:
(1) New model for iterative array processing (Sec-
tions 3 and 4): Iterating over arrays is different from it-
erating over relations. In the case of arrays, the iteration
starts with an array and updates the cell values of that ar-
ray. It does not generate new tuples as in a relational query.
Additionally, these update operations typically operate on
neighborhoods of cells. These two properties are the foun-
dation of our new model for iterative array processing. Our
model enables the declarative specification of iterative ar-
ray computations, their automated optimization, and their
efficient execution.
(2)Incremental iterative processing (Section 5): In
many iterative applications, the result of the computation
changes only partly from one iteration to the next. As such,
implementations that recompute the entire result every time
are known to be inefficient. The optimization, called in-
cremental iterative processing [6], involves processing only
the part of the data that changes across iterations. While
the idea of incremental iterations has previously been de-
veloped for relational systems, its implementation in an ar-
ray engine is very different: For an array engine, the opti-
mization can be pushed all the way to the storage manager
with significant performance benefits. We develop and eval-
uate such storage-manager-based approach to incremental
array processing. Our iterative array model enables the au-
tomatic generation of incremental computations from the
user’s declarative specification of the overall iterative query.
(3) Overlap iterative processing (Section 6): In itera-
tive array applications, including, for example, cluster find-
ing and source detection, operations in the body of the loop
update the value of the array cells by using the values of
other neighboring array cells. These neighborhoods are of-
ten bounded in size. These applications can effectively be
processed in parallel if the system partitions an array but
also replicates a small amount of overlap cells. In the case of
iterative processing, the key challenge lies in keeping these
overlap cells up to date. This optimization is specific to
queries over arrays and does not apply to relational engines.
Our key contribution here lies in new mechanisms for man-

aging the efficient reshuffling of the overlap data across iter-
ations.
(4)Multi-resolution iterative processing (Section 7):
Finally, in many applications, the raw data lives in a contin-
uous space (3D universe, 2D ocean, N-D space of continuous
variables) and arrays capture discretized approximations of
the real data. Different data resolutions are thus possible
and scientifically meaningful to analyze. In many applica-
tions, it is often efficient to first process the low-resolution
versions the data and use the result to speed-up the pro-
cessing of finer-resolution versions. Our final optimization
leverages this approach to speed up iterative computations.
(5) Implementation and evaluation We implement the
iterative model and all three optimizations as extensions to
the open-source SciDB engine and we demonstrate their ef-
fectiveness on experiments with 1 TB of publically-available
synthetic LSST images [12]. Experiments show that Incre-
mental iterative processing can boost performance by a fac-
tor of 4-6X compared to a non-incremental iterative com-
putation. Iterative overlap processing together with mini-
iteration processing can improve performance by 31% com-
pare to SciDB’s current implementation of overlap process-
ing. Finally, the multi-resolution optimization can cut run-
times in half if an application can leverage this technique.
Interestingly, these three optimizations are complementary
and their benefits can be compounded.

2. MOTIVATING APPLICATIONS
We start by presenting two array-oriented, iterative appli-

cations. We use these applications as examples throughout
the paper and also in the evaluation.

Example 2.1. Sigma-clipping and co-addition in
LSST images (SigmaClip): When analyzing telescope
images, such as those from the LSST survey [8], some sources
(a “source” can be a galaxy, a star, etc.) are too faint to
be detected in one image but can be detected by stacking
multiple images from the same location on the sky. Before
the co-addition is applied, astronomers often run a “sigma-
clipping” noise-reduction algorithm. Sigma-clipping consists
in grouping all pixels by their (x,y) coordinates. For each
location, the algorithm computes the mean and standard de-
viation of the flux. It then sets to null all cell values that lie
k standard deviations away from the mean. The algorithm
iterates by re-computing the mean and standard deviation.
The cleaning process terminates once no new cell values are
filtered out. Throughout the paper, we refer to this appli-
cation as SigmaClip. �

Example 2.2. Iterative source detection algorithm
(SourceDetect): Once telescope images have been cleaned
and co-added, the next step is to extract the actual sources
from the images. A simple source detection algorithm is
to initialize each non-empty cell with a unique label and
consider it as a different object. At each iteration, each
cell resets its label to the minimum label value across its
neighbors. Two cells are neighbors if they are adjacent. This
procedure continues until the algorithm converges. We refer
to this application as SourceDetect. �

3. ITERATIVE ARRAY MODEL
In SciDB, users operate on arrays by issuing declarative

queries using either the Array Query Language (AQL) or the

Algorithm 1 SigmaClip application
1. function sigma-clipping(A,k) . Näıve sigma-clip
2. Input: Iterative Array A <float d>[x,y,t]
3. Input: k a constant parameter.
4. while (some pixels A[x, y, t] are filtered) do

5. T [x, y] = select avg(d) as µ, stdv(d) as σ from A group by x, y

6. S[x, y, t] = select * from T join A on T.x = A.x and T.y=A.y
7. A[x, y, t] = select d from S where µ − k × σ ≤ d ≤ µ + k × σ
8. end while
9. end function

A0	

	 4	 1	 	 1	 1	

	 1	

3	

2	 2	 3	

A1	

1	 1	 1	 	 1	

1	

2	

2	 2	 2	

A2	

1	 1	 1	 	 1	

1	

2	

2	 2	 2	

A3	
 Q Q Q

7	 	 4	 1	 	 6	

	 8	

5	

2	 9	 3	

min()

Figure 1: Iterative array A and its state at each

iteration for the SourceDetect application. {Qf
π,δπ

cells(A) :

∀ci,j ∈ cells(A) i ∈ I1 & j ∈ I2 } where I1 = I2 =
{1, 2, 3, 4} are the sets of dimension values, fπ applies
min() aggregate on each group of cells, δπ simply
stores the aggregated value in each cell ci,j, and π :
(x, y) → [x ± 1][y ± 1]. At each iteration, a sliding
window scans through all the cells.

Array Functional Language (AFL). The select statements
in Algorithm 1, which corresponds to the SigmaClip appli-
cation, are examples AQL queries. AQL and AFL queries
are translated into query plans in the form of trees of ar-
ray operators. Each operator O takes one or more arrays as
input and outputs an array: O : A→ A or O : A×A→ A.

To enable the automatic optimization of iterative compu-
tations, such as the one in Algorithm 1, we extend the basic
array model with constructs that capture in greater detail
how iterative applications process arrays.

In an iterative computation, the goal is to start with an
initial array A and transform it through a series of opera-
tions in an iterative fashion until a termination condition
is satisfied. The iterative computation on A typically in-
volves other arrays, including arrays that capture various
intermediate results (e.g., arrays containing the average and
standard deviation for each (x, y) location in the SigmaClip

application) and arrays with constant values (e.g., a con-
nectivity matrix in a graph application). We refer to the
array being modified during the iteration as the iterative ar-
ray. Figure 1 shows a (4×4) iterative array that represents
a tiny telescope image in the SourceDetect application. In
the initial state, A0, each pixel with a flux value above a
threshold is assigned a unique value. As the iterative com-
putation progresses, adjacent pixels are re-labeled as they
are found to belong to the same source. In the final state
A3, each set of pixels with the same label corresponds to one
detected source.

Iterative applications typically define a termination con-
dition that examines the cell-values of the iterative array:
In Figure 1, the termination condition T is the count of
differences between Ai and Ai+1. Our ArrayLoop system
represents T as an AQL function.

An iterative array computation takes an iterative array, A,
and applies to it a computation Q until convergence, where
Q is a sequence of valid AQL or AFL queries. At each step,
Q can either update the entire array or only some subset
of the array. We capture the distinction with the notion of

7	 	 4	 1	 	 6	

	 8	

5	

	 2	 9	 3	

A0	

4	 4	 1	 	 6	

8	

5	

2	 9	 3	

4	 1	 1	 	 6	

8	

5	

2	 9	 3	

A0,1	 A0,2	
 Q0,0 Q0,1 Q0,2

Figure 2: Iterative array A and its state after three
minor steps, each of the form: Qi,j = Qf

π,δπ

ci,j where

ci,j is the cell at A[i][j], fπ applies min() aggregate, δ
simply stores the aggregate result as the new value
in cell ci,j, and π : (x, y)→ [x± 1][y ± 1]

major and minor iteration steps. A state transition, Ai
Q−→

Ai+1, is a major step if the function Q operates on all the
cells in A at the same time. Otherwise it is a minor step. We
are interested in modeling computations where each major
step can be decomposed into a set of minor steps that can
be evaluated in parallel. Figure 1 shows an iterative array
computation with only major steps involved, while Figure 2
presents the same application but executed with minor steps.

We further observe from the example applications in Sec-
tion 2 that the functions Q often follow a similar pattern.
First, the value of each cell in iterative array Ai+1 that is
updated by Q only depends on values in nearby cells in ar-
ray Ai. We capture this spatial constraint with a function π
that specifies the mapping from output cells back onto input
cells:

Definition 3.1. π is an assignment function defined as π :
cells(A)→ P (cells(A)), where cells(A) is the set of all the
cells in array A and P() is the powerset function.

Figure 3 illustrates two examples of assignment functions.
Our ArrayLoop system supports two types of assignment
functions: windowed functions such as those illustrated in
Figure 3 and attribute assignment function. The latter occur
in applications such as K-means clustering where all the cells
with the same label are grouped together.

Definition 3.2. fπ is an aggregate function defined as fπ :
cells(A) → τ . fπ groups the cells of the array A according
to assignment function π, with one group of cells per cell
in the array A. It then computes the aggregate functions
separately for each group. The aggregate result is stored in
tuple τ .

Finally, Q updates the output array with the computed
aggregate values:

Definition 3.3. δπ : (cells(A), fπ) → cells(A) is a cell-
update function. It updates each cell of the array A with
the corresponding tuple τ computed by fπ and the current
value of the cell itself.

These three pieces together define the iterative array com-

putation Qf
π,δπ

C as follows:

Definition 3.4. An iterative array computation Qf
π,δπ

C on
the subset of cells C where C ∈ P(cells(A)) generates subset

of cells C
′
∈ P(cells(A)) such that ∀c ∈ C and c

′
∈ C

′

c
′

= δπ(c, fπ(c)) where c and c
′

are two corresponding cells
in those subsets.

In the example from Figures 1 and 2, which illustrate the
SourceDetect application, the goal is to detect all the clus-
ters in the array A, where each cell p1 = (x1, y1) in a cluster

 Y
X

Z

(a) SourceDetect

X

 Z

Y

(b) SigmaClip

Figure 3: Two examples of window assignment func-
tions: (a) π1 : (x, y, z)→ [x± 1][y± 1][z± 1], the associ-
ated window is highlighted for the cell at (2, 1, 2). (b)
π2 : (x, y, z) → [x][y], the associated window is high-
lighted for all the cells at (x, y, z) with z = 0.

has at least one neighbor p2 = (x2, y2) in the same cluster
such that |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1, if it is not a
single-cell cluster. In this application, π is the 3X3 window
around a cell. We slide the window over the array cells in
major order. At each minor step, at each cell ci,j at the
center of the window, we apply an iterative array computa-
tion Qi,j = Qf

π,δπ

ci,j where fπ applies a min() aggregate over
the 3x3 window, π, and δπ is a cell-update function that
simply stores the result of the min() aggregate into cell ci,j .
Figure 2 illustrates three steps of this computation. Notice
that the output of the iterative array computation Q0,0 be-
comes the input for Q0,1 and so on. Another strategy is to
have many windows grouped and applied together. In other
words, instead of applying the iterative array computation

per cell, we applyQf
π,δπ

C on a group of cells C ∈ P (cells(A))
in one major step. Figure 1 shows the iterative array com-
putation for the latter strategy. The former strategy has
less expensive steps than the latter strategy, but it requires
more steps to converge.

In our model, we encapsulate all the elements of the model
in a FixPoint operator:

FixPoint(A, π, f, δ, T, ε) (1)

With our model, the user specifies the logic of the iterative
algorithm without worrying about the way it is going to be
executed. Our model can be implemented and executed on
top of various array execution engines. In the rest of the
paper, we describe how the queries specified in our model are
rewritten and efficiently run in the SciDB array engine. The
execution strategy in SciDB uses only major steps. Mini-
step iterations, i.e. asynchronous execution, is left for future
work.

4. ITERATIVE ARRAY PROCESSING
We extend SciDB-Py [15] with a python FixPoint() oper-

ator following the model from Section 3. We also develop an
optimizer module that we name ArrayLoop. The user encap-
sulates its iterative algorithm in the FixPoint() operator.
The ArrayLoop optimizer sits on top of SciDB. ArrayLoop
rewrites a FixPoint(A, π, f, δ, T, ε) operator into the AQL
queries in Listing 1 that it wraps with an internal while loop.
is_window helper function in Listing 1 clarifies whether

the window assignment function translates to a window ag-
gregate or a group-by aggregate. ArrayLoop translates a
window assignment function to a group-by aggregate if map-
ping is from a set of input dimensions to one of its subsets.
If mapping is from a set of dimensions to the same set of

Listing 1 Pseudocode for rewriting FixPoint operator
Input:

FixPoint(A,pi,f,delta,T,epsilon)

Output:

While (T(A,A_prev) < epsilon)

// Termination function T is also AQL function.

// Compute the new aggregates from the current iterative array.

If (is_window(pi))

G = SELECT f FROM A WINDOW PARTITIONED BY pi

else

G = SELECT f FROM A GROUP BY pi

// Combine the new aggregate with the old value of the cell.

S = SELECT * FROM G JOIN A ON <matching dimensions>

A_new = SELECT delta(S) FROM S

A_prev = A

A = A_new

Algorithm 2 ArrayLoop version of the SigmaClip application
followed by image co-addition
1. function ArrayLoop-sigma-clipping(A,k) . SigmaClip algorithm with

FixPoint operator provided by the user.
2. Input: Iterative Array A <float d>[x,y,t],
3. Input: k a constant parameter.
4. π : [x][y][z] → [x][y].
5. δ : “A.d ≥ µ − k × σ and A.d ≤ µ + k × σ?A : null”
6. f : {avg() as µ, stdv() as σ}
7. FixPoint(A, π, f, δ, count(), 0)
8. end function

9. function ArrayLoop-incr-sigma-clipping(A,k) . ArrayLoop incremental
rewriting of the SigmaClip.

10. Input: Iterative Array A <float d>[x,y,t],
11. Input: k: a constant parameter.

12. Local: Iterative Array C <int c,float s,float s2>[x,y],
13. Local: Array S <float σ,float µ>[x,y],

14. ∆A− ← A
15. while (∆A− is not empty) do

16. T [x, y] ← select count(d) as c, sum(d) as s, sum(d2) as s2 from ∆A− group
by x, y

17. if (first iteration) then
18. C ← T [x, y]
19. else

20. merge(C,T ,C.c − T.c)

21. merge(C,T ,C.s − T.s)

22. merge(C,T ,C.s2 − T.s2)

23. end if

24. S[x, y] ← select T.s
T.c

AS µ,
2
√
T.s2
T.c

− (T.s
T.c

)2 AS σ FROM ∆+C

25. merge(A, S, S.µ − k × S.σ ≤ A.d ≤ S.µ + k × S.σ?A : null)

26. end while
27. end function

co-addition phase:
28. R[x, y] ← select sum(A.d) as coadd from A group by x, y

dimensions with additional offsets per dimension, then Ar-
rayLoop translates it to window-aggregate.

In addition, ArrayLoop also implements a set of query re-
writing tasks in order to leverage a series of optimizations
that we develop: incremental iterative processing, overlap it-
erative processing, and multi-resolution iterative processing.

ArrayLoop acts as a pre-processing module before exe-
cuting the iterative query in SciDB. Currently the majority
of the ArrayLoop implementation is outside the core SciDB
engine. ArrayLoop relies on SciDB for features such as dis-
tributed query processing, fault-tolerance, data distribution,
and load balancing. In the following sections, we describe
each of the three optimizations in more detail.

5. INCREMENTAL ITERATIONS
Incremental iterative processing [6] is a well-known op-

timization, e.g. in semi-naive datalog evaluation, and has
been shown to significantly improve performance in rela-
tional and graph systems. ArrayLoop leverages the iterative
computation model from Section 3 to automatically apply
this optimization when the semantics of the applications per-
mit it. The SigmaClip application described in Section 2.1
(and shown in Algorithm 1) is an example application that
can benefit from incremental iterative processing.

In ArrayLoop, we show how the incremental process-
ing optimization can be applied to arrays. As shown in
Algorithm 2, the user provides a FixPoint operator in
ArrayLoop-sigma-clipping function. ArrayLoop automat-
ically expands and rewrites the operation into an incremen-
tal implementation as shown in the ArrayLoop-incr-sigma-
clipping function.

Given the FixPoint operator, ArrayLoop performs two
tasks: (1) it automatically rewrites aggregate functions, if
possible, into incremental ones and (2) it efficiently com-
putes the last state of the iterative array using the updated
cells at each iteration. The automatic rewrite is enabled by
the precise model for iterative computations in the form of
the three functions π, f , and δ. Given this precise specifica-
tion of the loop body, ArrayLoop rewrites the computation
using a set of rules that specify how to replace aggregates
with their incremental counter-parts when possible. To ef-
ficiently compute incremental state updates, we introduce
a special merge operator. We omit the description of the
operator and the optimization that pushes incremental com-
putation into the storage manager due to space constraints
but refer the reader to the full version of this paper for de-
tails [17].

In our example, the rewrite proceeds as follows. Incre-
ments between iterations translate into updates to array
cells and can thus be captured with two auxiliary arrays: a
positive delta array, ∆A+, which records the new values of
updated cells and a negative delta array, ∆A-, which keeps
track of the old values of updated cells. If the aggregate
function f is incremental, ArrayLoop replaces the initial ag-
gregation with one over one or both of these delta arrays. For
example, for ArrayLoop-incr-sigma-clipping, only nega-
tive delta arrays are generated at each iteration(there is no
∆A+). So the rewrite produces a group-by aggregate only
on ∆A− (line 16). Next, ArrayLoop merges the partial ag-
gregate values with the aggregate results from the previous
iteration (lines 20 through 22). The aggregate rewrite rules
define that merge logic for all the aggregate functions. In
this example, ArrayLoop will generate one merge statement
per aggregate function computed earlier. Finally, on Line
24, ArrayLoop does the final computation to generate the
final aggregate values for this iteration. Note that this fi-
nal phase in the aggregate computation is always done on
positive delta arrays (∆C+), which generates the same re-
sult as computing on negative delta array ∆C− followed
by a subtract merge plus computing on positive delta array
∆C+ followed by an addition merge. Line 25 leverages the
δ function to generate the ∆A− of the next iteration.

6. ITERATIVE OVERLAP PROCESSING
To process a query over a large-scale array in parallel,

SciDB (and other engines) break arrays into sub-arrays
called chunks, distribute chunks to different compute nodes
(each node receives multiple chunks), and process chunks
in parallel at these nodes. Frequently, the value of each
output array cell is based on a neighborhood of input ar-
ray cells. To efficiently process such operations, some have
suggested to extract, for each array chunk, an overlap area
ε from neighboring chunks, store the overlap together with
the original chunk [13], and provide both the core data and
overlap data to the operator during processing [4]. This
technique is called overlap processing.

6.1 Efficient Overlap Processing
The SourceDetect application described in Section 2.2 is

an example application that can benefit form overlap pro-
cessing. To efficiently update overlap array cells during the
iterative computation, our approach is to leverage SciDB’s
bulk data-shuffling operators as follows: SciDB’s operator
framework implements a bool requiresRepart() function
that helps the optimizer to decide whether the input array
requires repartitioning before the operator actually executes.
We extend the SciDB operator interface such that Array-
Loop can dynamically set the returned value of the opera-
tor’s requiresRepart() function. To update overlap data,
ArrayLoop sets the requiresRepart() return value to true.
ArrayLoop has the flexiblity to set the value to true either at
each iteration or every few iterations as we discuss further
below. In case an operator in SciDB is guided by Array-
Loop to request repartitioning, the SciDB optimizer injects
the Scatter/Gather [14] operators to shuffle the data in the
input iterative array before the operator executes.

6.2 Mini-Iteration Processing
We observe that a large subset of iterative applications

have the property that overlap cells can be updated only ev-
ery few iterations. These are applications, for example, that
try to find structures in the array data, e.g. SourceDetect
application. These applications can find structures locally
and eventually need to exchange information to stitch these
local structures into larger ones. For those applications, Ar-
rayLoop can add the following additional optimization: Ar-
rayLoop runs the algorithm for multiple iterations without
updating the replicas of overlap cells. The application iter-
ates over chunks locally and independently of other chunks.
Every few iterations, ArrayLoop triggers the update of over-
lap cells, and continues with another set of local iterations.
The key idea behind this approach is to avoid data move-
ment across array chunks unless a large enough amount of
change justifies the cost. We call each series of local itera-
tions without overlap cell synchronization mini iterations.

7. MULTI-RESOLUTION OPTIMIZATION
As discussed earlier, many algorithms search for struc-

ture in array data. One example is the extraction of celes-
tial objects from telescope images, snow cover regions from
satellite images, or clusters from an N-D dataset. In these
algorithms, it is often efficient to first identify the outlines of
the structures on a low-resolution array, and then refine the
details on high-resolution arrays. We call this array-specific
optimization multi-resolution optimization.

To initiate the multi-resolution optimization, ArrayLoop
initially generates a series of versions, Ai, Ai+1, . . . , Aj , of
the original iterative array A. Each version has a different
resolution. Ai is the original array. It has the highest resolu-
tion. Aj is the lowest-resolution array. The coarser-grained,
pixelated versions are generated by applying a sequence of
grid followed by filter operations represented together as
gridp(), where p is the predicate of the filter operator.
The size and the aggregate function in the grid operator
are application-specific and are specified by the user. The
SourceDetect application has a grid-size of (2 × 2) and an
aggregate function count with a filter predicate that only
passes grid blocks without empty cells (in this scenario all
the grid blocks with count=4). This ensures that cells that
are identified to be in the same cluster in a coarsened version

of the array, remain together in finer grained versions of the
array as well. In other words, the output of the iterative al-
gorithm on the pixelated version array Aj should be a valid
intermediate step for Aj−1. ArrayLoop runs the iterative
function Q on the sequence of pixelated arrays in order of
increasing resolution. The output of the iterative algorithm
after convergence at pixelated version Ai is transformed into
a finer-resolution version using an xgrid operator (inverse
of a grid operator). It is then merged with Ai−1, the next
immediate finer-grained version of the iterative array. We
represent both operations as xgridm(). By carefully merg-
ing the approximate results with the input array at the next
finer-grained level, ArrayLoop skips a significant amount of
computation.

8. EVALUATION
In this section, we demonstrate the effectiveness of Ar-

rayLoop’s native iterative processing capabilities including
the three optimizations on experiments with 1TB of LSST

images [12]. The images take the form of one large 3D array
(2D images accumulated over time) with almost 44 billion
non-empty cells. We run the SigmaClip application on the
large 3D array and SourceDetect on the co-added 2D ver-
sion of the whole dataset. The experiments are executed on
a 20-machine cluster. (Intel(R) Xeon(R) CPU E5-2430L @
2.00GHz) with 64GB of memory and Ubuntu 13.04 as the
operating system.

Incremental Iterative Processing: We first demon-
strate the effectiveness of our approach to bringing incre-
mental processing to the iterative array model in the con-
text of the SigmaClip application. Figure 4 shows the to-
tal runtime of the algorithm with different execution strate-
gies. As shown, the non-incremental “sigma-clipping” al-
gorithm performs almost four times worse than any other
approach. The manual-incr approach is a manually-written
incremental version of the “sigma-clipping” algorithm. This
approach keeps track of all the points that are still candi-
dates to be removed at the next iteration and discards the
rest. efficient-incr and efficient-incr+storage are the
two strategies used by ArrayLoop (ArrayLoop-incr-sigma-
clipping function from Section 5). efficient-incr repre-
sents ArrayLoop’s query rewrite for incremental state man-
agement that also leverages our merge operator. efficient-
incr+storage further includes the storage manager exten-
sions. Figure 4 shows the total runtime in each case. Ar-
rayLoop’s efficient versions of the algorithm are competitive
with the manually written variant. They even outperform
the manual version in this application. All the incremen-
tal approaches beat the non-incremental one by a factor
of 4 − 6X. Interestingly, our approach to push some in-
cremental computations to the storage manager improves
efficient-incr by an extra 25%.

Overlap Iterative Processing: Figure 5 shows the ef-
fectiveness of the overlap processing and mini-iterations op-
timization in the context of the SourceDetect application,
which requires overlap processing. T1 refers to the policy
where ArrayLoop shuffles overlap data at each iteration, or
no mini-Iteration processing. As expected this approach
incurs considerable data shuffling overhead, although it con-
verges faster in the SourceDetect application (Figure 5). At
the other extreme, we configure ArrayLoop to only shuffle
overlap data after local convergence occurs in all the chunks.
Interestingly, this approach performs worse than T1. Al-

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

1	 2	 3	 4	 5	 6	 7	

po
st-‐
pro
ce
ss	

Ru
n4

m
e	
in
	 se

co
nd

s	

Itera4on	 number	

SigmaClip,	 Incremental	 Itera4ve	 Processing	

non-‐incr	 manual-‐incr	 efficient-‐incr	 efficient-‐incr+storage	

non-incr manual-incr efficient-incr efficient-incr+storage
40957 10975 8007 6096

Figure 4: Runtime of the SigmaClip application with
and without incremental processing. Constant k = 3
in all the algorithms.

294	

239.5	

204	

313	

0	

50	

100	

150	

200	

250	

300	

350	

T1	 T5	 T10	 converge	

To
ta
l	 R

un
7m

e	
(m

in
ut
es
)	

SourceDetect:	 Overlap	 Processing	 with	 Mini-‐itera7on	

Overlap	 Update	 Overhead	 Itera7ve	 Computa7on	 Overhead	

T1 T5 T10 converge
Mini# 51 57 60 94
Major# 51 11 6 3

Figure 5: SourceDetect application: Iterative overlap
processing with mini-iteration optimization. The ta-
ble shows the number of major and mini iterations.
Major# is the number of times that overlap data is
reshuffled and Mini# is the total number of itera-
tions.

though this approach does a minimum number of data shuf-
fling, it suffers from the long tail of mini-iterations (Figure 5:
94 mini-iterations). T5 and T10 are two other approaches,
where ArrayLoop shuffles data with some constant interval.
We find that T10, which shuffles data every ten iterations,
is a good choice in this application. The optimal interval
is likely to be application-specific and tuning the value is
beyond the scope of this paper.

8.1 Multi-Resolution Optimization
We omit the evaluation result for multi-resolution opti-

mization due to space constraints but refer the reader to the
full version of this paper for details [17].

9. RELATED WORK
Several systems have been developed that support iter-

ative big data analytics [1, 6, 7, 16, 20]. Twister [3] and
HaLoop [1] extend MapReduce to add a looping construct
and preserve state across iterations. In contrast, we focus
on iterative processing in a parallel array engine.

PrIter [20] is a distributed framework for fast itera-
tive computation on top of MapReduce. ArrayLoop also
supports a form of prioritized processing through multi-
resolution optimization.

REX [11] is a parallel shared-nothing query processing

platform implemented in Java with a focus on supporting
incremental iterative computations in which changes, in the
form of deltas, are propagated from iteration to iteration.
Similar to REX, ArrayLoop supports incremental iterative
processing. However REX lacks other optimization tech-
niques that we provide and is not specialized for arrays.

A handful of systems exist that support iterative computa-
tion with focus on graph algorithms including Pregel [9] and
GraphLab [7]. Similar to our work, GraphLab has a notion
of ghost nodes. However, the granularity of computation is
per node, while ArrayLoop supports overlap iterative pro-
cessing per chunk. Our system also supports prioritization
through the novel multi-resolution iterative processing.

10. CONCLUSION
We developed a model for iterative processing in a parallel

array engine and presented three optimizations to improve
the performance of these types of computations in the con-
text of that model and type of engine.

Acknowledgments: This work is supported in part by
NSF grant IIS-1110370 and the Intel Science and Technology
Center for Big Data.

11. REFERENCES
[1] Y. Bu et al. HaLoop: Efficient iterative data processing on

large clusters. PVLDB, 3(1), 2010.

[2] Cudre-Mauroux et. al. SS-DB: A Standard Science DBMS
Benchmark. http://www-conf.slac.stanford.edu/xldb10/
docs/ssdb benchmark.pdf, 2010.

[3] J. Ekanayake et al. Twister: a runtime for iterative
MapReduce. In HPDC, pages 810–818, 2010.

[4] E.Soroush, M.Balazinska, and D.Wang. ArrayStore: A
storage manager for complex parallel array processing. In
SIGMOD, pages 253–264, June 2011.

[5] Baumann et. al. The multidimensional database system
RasDaMan. In SIGMOD, pages 575–577, 1998.

[6] S. Ewen et al. Spinning fast iterative data flows. In VLDB,
pages 1268–1279, 2012.

[7] Y. Low et al. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. In VLDB,
pages 716–727, 2012.

[8] Large Synoptic Survey Telescope. http://www.lsst.org/.
[9] G. Malewicz et al. Pregel: a system for large-scale graph

processing. In SIGMOD, 2010.
[10] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.

Differential dataflow. In CIDR., 2013.
[11] S.R. Mihaylov et al. REX: Recursive, delta-based

data-centric computation. In VLDB, 2012.
[12] UW-CAT.

http://myria.cs.washington.edu/repository/uw-cat.html.

[13] J. Rogers et al. Overview of SciDB: Large scale array
storage, processing and analysis. In SIGMOD, 2010.

[14] SciDB Guide.
http://scidb.org/HTMLmanual/13.3/scidb ug/.

[15] Scidb-py. http://jakevdp.github.io/SciDB-py/tutorial.html.
[16] Shaw et. al. . Optimizing large-scale semi-naive Datalog

evaluation in Hadoop. In In Datalog 2.0, 2012.
[17] E. Soroush et al. Efficient iterative processing in the SciDB

parallel array engine. Technical Report UW-CSE-15-06-01,
University of Washington, 2015.

[18] Taft et. al. Genbase: A complex analytics genomics
benchmark. In SIGMOD, pages 177–188, 2014.

[19] M. Zaharia et al. Spark: cluster computing with working
sets. In HotCloud’10, 2010.

[20] Y. Zhang et al. PrIter: a distributed framework for
prioritized iterative computations. In VLDB, 2011.

[21] Zhang et. al. RIOT: I/O-efficient numerical computing
without SQL. In Proc. of the Fourth CIDR Conf., 2009.

