
Affordable Analytics on Expensive Data

Prasang Upadhyaya
University of Washington

prasang@cs.uw.edu

Martina Unutzer
University of Washington

munutzer@cs.uw.edu

Magdalena Balazinska
University of Washington

magda@cs.uw.edu
Dan Suciu

University of Washington

suciu@cs.uw.edu

Hakan Hacigumus
NEC Labs

hakan@nec-labs.com

ABSTRACT
In this paper, we outline steps towards supporting “data
analysis on a budget” when operating in a setting where
data must be bought, possibly periodically. We model the
problem, and explore the design choices for analytic appli-
cations as well as potentially fruitful algorithmic techniques
to reduce the cost of acquiring data. Simulations suggest
that an order of magnitude improvements are possible.

Categories and Subject Descriptors
H.1.0 [Models and Principles]: General

Keywords
data markets; optimization; data costing

1. INTRODUCTION
In the last few years, software tools for data analysis (such

as Fusion Tables [2] and Tableau [6]) have matured while
data has become increasingly easy to obtain (e.g., Windows
Azure Marketplace [3]). Easy access to data and the avail-
ability of tools to analyze that data are enabling small and
medium enterprises and data enthusiasts to increasingly ac-
quire, analyze and visualize datasets [20]. Most commonly,
however, such data must be purchased from vendors who
specialize in curating and selling high quality datasets (e.g.,
Twitter). The cost of data acquisition for analysis can be
substantial, for example, a subset of company information
from D&B [1] goes for more than a $1 per tuple (a company).

In this paper, we first explore techniques to reduce the
cost of casual or exploratory data analysis on priced data.
Subsequently, we estimate the likely impact of these tech-
niques and their ease of use for an unsophisticated data an-
alyst. This lets us identify promising techniques that merit
further algorithmic and usability research.

We make the following two assumptions in order to de-
velop our cost-reduction techniques: (a) data vendors sell
inexpensive, but inferior, versions of data along with the
high-quality, but often costly, version; and, (b) many real-
world analyses can tolerate some degree of imperfection.

Consider the first assumption. Quandl [4] provides, for
free, financial information that might be potentially stale;
while Xignite [8] sells the real-time version of this data for
some (not publicly disclosed) price. In general, multiple
versions of a dataset may be available, and these versions
may differ in accuracy, may come with additional metadata,
or with different freshness, etc. This practice of selling infe-
rior products that are derived from a common higher quality
product is called versioning1 [24] in the economics literature.

To motivate the second assumption, we present various
plausible scenarios. First, the buyers may be executing mul-
tiple analysis, but not all may be equally important. Some,
such as detecting fraudulent customer behavior, must be ac-
curate and fast; but others, such as choosing the items to
order to replenish inventory, may permit larger margins of
errors and may be computed less frequently. For another
scenario, consider the process of constructing a model: one
may use less accurate, but cheap data, for building coarse
models that are gradually refined, followed by purchasing
more accurate data only when the model has high uncer-
tainty. In another scenario, one may use cheap data to get
an overview of the data so as to determine the best subset
of the more accurate, but expensive, data to purchase.

Model for Analyses. We model the analyses as a set ~V ,
where

~V = {(V1, σ1), · · · , (Vk, σk)}

Here, Vi is a query that denotes the ith analysis and each
analysis Vi is associated with a minimum acceptable quality
σi (formalized in Section 3). The views, ~V , are defined over
a database schema and can be evaluated over any one of the
various instances of the data, defined by Dt, where

Dt = {(It1, θ1, pt1), · · · , (Itn, θn, ptn)}

Intuitively, each instance Iti corresponds to a version of
the database (possibly sold by different vendors) at time t,
where different versions have varying quality θi (formalized

1This differs from the notion of versioning in databases that
assigns versions to a sequence of data items.

in Section 2), and pti is a function of time, t′, that gives the
cost of tuples of instance Iti , when accessed at time t′.

Summary of Findings. We run simulations to quantify the
impact that a few simple techniques can have on the total
cost of acquiring data. Our goal is to present a picture of the
magnitudes of improvements that well designed data acqui-
sition systems can achieve and we note that our techniques
are not meant to be exhaustive.

1. In the simplest case (Section 3.1), when |~V | = |Dt| =
1, that is, when a single analysis is conducted over a
dataset with a single version, a simple relaxation in
the answer quality θ can lead to 3× reduction in data
costs. This technique can be easily used with little
buyer effort.

2. In the presence of multiple data versions (Section 3.2),

that is, |~V | = 1 and |Dt| ≥ 2, computing the view over
multiple instances and exploiting correlations can fur-
ther reduce data costs by a factor of 2× to 5×. Unlike
the previous case, this technique requires additional
guidance from the buyer.

3. Reusing data across multiple analyses is the third tech-
nique (Section 3.3) that is applicable when |~V | ≥ 2. In
the special case of a single version, that is, |Dt| = 1,
the best case cost reduction is a factor of k where
k = |~V | is the number of analyses; and the worst case
is of no reduction. This technique requires little buyer
oversight.

4. Lastly, improved support for querying updates (Sec-
tion 3.4), that is, querying the changes from Iti to It+1

i ,
can achieve optimal buying of updates where buyers
can purchase only those updates that provably impact
their analyses.

An appealing feature of these techniques is that more than
one of these techniques may be applicable at a time, with
each leading to independent reduction in the data cost.

2. DATA SELLERS
We model each version of the dataset at time t as an

instance It where the version is associated with a quality
metric θi and a price function pti. APIs [23] are the most
common form of providing access to data, followed by full
downloads and specialized web-interfaces. Although all of
these access methods are amenable to use by a data en-
thusiast, we will adopt an API oriented view of obtaining
data for the rest of this paper for its popularity, its abil-
ity to support updates, and for the ease of combining data
APIs from different sources. When purchasing data via an
API, the buyer specifies parameter values to a parameter-
ized SQL query and pays for the query results. In the D&B
example [1] from the introduction, only one parameter, the
company name, can be provided as input.

We first consider the quality metric, θi. We model the
quality as a set of attribute-value pairs; for example θi =
{latency = 10 minutes, noise = 2, noise type = uniform}
specifies that the data can be at most 10 minutes outdated,
with a uniformly random noise added in the range [−1, 1].
It is not necessary that all instances share the same set of
parameters θi. Commonly found ways of creating versions

of data are: (a) Age: Older data usually costs less than
more recent data, (b) Accuracy: More accurate values are
usually more expensive than less precise ones, and (c) Com-
pleteness: Some sources may only provide a random sample
of the tuples while others might provide the entire data.

We assume that the quality metrics of an instance remain
constant over time and are made known by the sellers (that
is, we do not consider the problem of learning these quality
metrics), say as part of the APIs documentation. This is the
common case, as seen with APIs from Xignite, Quandl, and
for a majority of Twitter APIs. The sample API from Twit-
ter, though, is a notable exception: its sample fraction varies
over time and is difficult to estimate. We leave for future
work the modeling and incorporation, in our techniques, of
such time-varying quality metrics.

For pricing, we assume a pay-per-tuple pricing paradigm.
This is one of two most popular pricing methods in current
use [23, 21], the other being flat-rates2. Further, price of
many datasets reduces over time and it is much cheaper
to obtain historical data than the current data. Thus, we
associate a pricing function, pti, with each instance that also
depends on when the dataset is accessed. As an example,
consider a dataset whose value at creation time is constant
c and is 0 subsequently. Such a pricing function may be
represented as:

pti(t
′) =

∞ if t′ < t

c if t′ = t

0 if t′ > t

Here, the first condition of t′ < t makes sure that a tuple
can not be accessed from a future instance. Thus, the set of
all versions of a database available to a buyer at time t are
given by:

Dt = {(It1, θ1, pt1), · · · , (Itn, θn, ptn)}

Extending the pricing functions to more sophisticated func-
tions and to incorporate other forms of pricing such as flat-
rates, or arbitrage-free pricing [18] is left for future work.

3. OPTIMAL DATA ACQUISITION
Given the various data versions Dt and the set of user

analysis ~V , our goal is to maintain ~V over time, at the min-
imum cost. The problem of optimal data acquisition can be
characterized using the following dimensions:

1. Unique Data vs Data with Versions: That is, if |Dt| =
1 or if |Dt| > 1.

2. Individual vs Shared Analysis: Multiple analyses on
common dataset permits sharing data to reduce cost.

3. Exact vs Approximate Analysis: A lower quality anal-
ysis may be acceptable to the data analyst and may
be generated through various means. The minimum
quality of an acceptable answer for view Vi is provided
through σi. σ may consist of the many metrics and
what follows are common examples of such metrics:

(a) Freshness: The freshness of a view is quantified by
specifying the oldest updated tuple in the input
that is acceptable, specified by τ .

2Pay upfront, for unlimited access to the data, for a fixed
time duration.

t 0 1 2 3 4 5 6 7 8 9 10
a α0 α1 α2 α3 α4 α5 α6

b β0 β1 β2 β3 β4
x x x x

Table 1: Table shows a series of updates to R until
time t = 10, and the purchased tuples by the two
freshness definitions with a freshness window of τ =
3. Query-based freshness (shown in the last row,
‘x’ denotes when the purchase was made) buys the
latest outstanding updates for both ‘a’ and ‘b’ for
each purchase. Tuple-based freshness buys the over-
lined updates when they are first applied to R.

(b) Accuracy: Accuracy may be defined as the maxi-
mum permissible variance of the error of the val-
ues in the output.

(c) Completeness: It may be defined as the maximum
fraction of tuples or values in the output that may
be missing.

4. Static vs Dynamic Data: For static data, an optimal
data acquisition strategy might be computed offline,
but for dynamic data, an online strategy might lead
to significant cost savings.

We now formalize each of settings and explore their po-
tential to reduce costs.

3.1 Individual Analysis Over Unique Data
This is the simplest case where a single view (V, σ) must

be maintained on a single database instance, which can vary
over time. We denote by It, the instance at time t. Assume
that the buyer can tolerate stale data from instances that
are at most τ time units older. We explore how a tolerance
for staleness can be exploited to obtain cost reductions.

If the database instance is static, that is ∀t : It = I,
then a one time purchase of the data is the optimal plan.
For dynamic instances, an obvious optimization is to only
recompute the view when the view is accessed and the view
had been computed over an instance that is more than τ
time units old. But, a further qualitative relaxation in the
notion of fairness improves significantly over this strategy.
Let Et be the view extant seen by the analyst at time t.
Consider the following two definitions:

1. Query-based: Et is generated from some database in-
stance no older that τ units of time. That is, ∃t′ ∈
{t− τ, · · · , t} : Et = V (It

′
).

2. Tuple-based: Every tuple x ∈ Et is generated from
some database instance in the past τ time units. That

is, ∀x ∈ Et, ∃t′ ∈ {t−τ, · · · , t} : x ∈ V (It
′
). Note that

Et = ∅ is a trivial but valid solution. For meaningful
results, we require that Et be maximal in size.

Example. Suppose we have a binary relation R such that
R0 = {(a, α0), (b, β0)}. The view is V = SELECT ALL FROM

R. Let τ = 3. Table 1 shows the sequence of updates until
t = 10.

Consider the updates at t = 1 and t = 2. By both defini-
tions, nothing needs to be updated since the data from t = 0
is fresh enough.

At t = 3, the query-based definition must purchase (a, α3)
and (b, β1), otherwise, the view would be more than τ units
older for a. But for tuple-based freshness, only (a, α2) needs
to be purchased since b’s value at t = 1 was β0 and is thus
fresh enough.

As R’s cardinality increases, it can be shown that, asymp-
totically, the naive strategy (that updates V after any change
to D) is 3× costlier than the tuple-based freshness; while
the query-based freshness is 2× costlier than the tuple-based
freshness.

Thus, compared to the näıve strategy, a 3× cost reduc-
tion can be obtained by appropriately exploiting a tolerance
for stale answers. Apart from the cost savings, there are
other benefits to the tuple-based definition in the context of
analysis on big data:

• Parallelize-able: Since the decision to update any tu-
ple is independent of the decision for the other tu-
ples, tuple-based freshness guarantees can be provided
easily in a distributed setting with no communication
cost.

• Fine-grained control: One benefit of tuple-based def-
inition is that it can provide different freshness guar-
antees for different tuples.

• Ease of use: This technique is very easy to use, even
for a person who is not a data expert. They need to
provide how stale the data can be and if tuple-based
freshness is acceptable.

The primary drawback of the freshness-based definition is
that the semantics of the views are more complex. This is
the same kind of disadvantage that eventually consistency
presents as compared to ACID.

3.2 Individual Analysis over Data with Ver-
sions

In this case, although there is a single view to maintain,
the analyst has a choice of different versions of the same un-
derlying data to choose from. For example, versions might
be stale by a certain amount of time, or only have approxi-
mate values, or may have missing entries.

Intuitively, if the view’s quality permits working with such
approximate or stale data, the data should only be pur-
chased from the cheapest source that provides acceptable
quality. We explore some of the potential benefits of using
such approximate sources through the following example.
We focus on the trade-off between cost and quality.

Weather Application. Consider an application that pro-
vides the maximum temperature observed in the state of
Washington in the USA. We use the historical dataset of
weather metrics3 for the state of Washington from 1890
to 2012, available from NOAA [7]. We call this the exact

dataset.
To examine the effect of purchasing lower-quality but cheaper

values instead of the exact values, we artificially create two
low quality versions of exact: (a) rounded, where we round
the maximum temperature to the nearest multiple of ten
(for example, 33 rounded to 30); and (b) uniform, where a

3The metrics were: maximum temperature, minimum tem-
perature, rainfall, snow, snow depth.

Dataset Price Variance
actual 12.0 0.08
rounded 0.122 8.17
uniform 0.120 8.30

Table 2: Prices of a tuple in the dataset and vari-
ance of the noise for the actual data and its two
approximate version rounded and uniform.

uniformly random float from [−5, 5] is added. Note that
for both uniform and rounded, the true value lies within ±5
of their respective values.

The lower-quality data is priced according to its variance
as proposed in recent work [19] on pricing noisy values: the
price of each tuple is 1/v, where v is the variance of the
noise4. Table 2 shows the prices and the variance.

As expected, purchasing values with a larger noise de-
creases cost (almost by a factor of 100 in our case). But the
view may require temperature values with lower variance
than that provided by rounded and uniform. The näıve
solution is to then only buy tuples from the exact dataset.

In this case, however, it is possible to further reduce costs.
Consider the following hybrid strategy: each day, we buy the
rounded value r from rounded and u from uniform. The true
value must lie in the intersection of the r±5 and u±5. If the
size of the intersection is more than the accuracy threshold,
ε, defined in the view’s quality metric σ, we buy the exact
value from actual. Otherwise, we return the mid-point of
the intersection.

Figure 1 shows the distribution of the rounded absolute
difference between the hybrid strategy outlined above and
the actual values, for various values of the threshold of er-
ror, ε. We compute this distribution over each day from
1890 to 2012. As can be seen, the number of days for which
the expensive exact value must be computed decreases ex-
ponentially as the ε increases. Figure 2 shows the trade-off
between the standard deviation of the error of the hybrid
strategy and its relative price (compared to the price of only
purchasing from the exact dataset), for the various values of
ε. As seen, even if a standard deviation of 1.0 for the error
is acceptable, the prices reduce by 2×; and for the error’s
deviation of 2.0, the prices are 50× lower.

Challenges. The primary challenge of using such techniques
is to develop an easy way for the user, who may not be a
database expert, to specify various possible ways of com-
bining the set of data sources to obtain desired answers for
cheap. Although it may be possible to automatically in-
fer such cost-saving combinations, we know of no algorithm
that can do so.

3.3 Shared Analyses Over Unique Data
Unlike the previous cases, we now have more than one

view over a single shared instance of the database. That is,
|~V | ≥ 2 and |Dt| = 1.

The näıve solution would be to treat each view in isolation
and make purchases accordingly. This can easily lead to
repeat purchases. In general, it should be possible for the

4For the exact data purchases, we estimate the variance
from the significant digits in the data: since all numbers
are rounded to integers, so the noise is akin to a uniform
distribution with range 1.

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

0	 1	 2	 3	 4	 5	

N
um

be
r	 o

f	 d
ay
s	

Absolute	 temperature	 difference	 from	 the	 true	 value	

	 0	
	 2	
	 4	
	 6	
	 8	
	 10	
	 Uniform	 noise	

Figure 1: The distribution of the absolute differ-
ence between the approximate temperatures (from
noisy sources) and the true temperatures, for vari-
ous acceptable error ranges. “Uniform noise” is the
distribution for the source that uniformly adds noise
in the range: [−5.0, 5.0].

0.01	

0.1	

1	

10	

-‐0.5	 0	 0.5	 1	 1.5	 2	 2.5	

Re
la
%v

e	
Pr
ic
e	

Standard	 Devia%on	

Figure 2: The observed trade-off between the aver-
age price (y-axis) of using the approximate sources
(relative to buying only from the original source
with no noise) and the observed standard deviation
(x-axis) of the error in the approximate answers.
The markers from left to right are for error ranges
of {0, 1, . . . , 10}.

views to share data with each other as long as the data being
shared is not too stale for a view. Note that this staleness is
not a property of the data, but of the fact that a view may
have purchased a data before another view requested it. If
the data was purchased too long ago, such data sharing may
not be possible, given the quality metrics σis.

Theoretically, if all views are identical, sharing data leads
to a k-fold reduction in data costs, where k is the number of
views. Alternatively, if the views do not access any tuples
that are common, there is no benefit of this technique. In
practice though, the cost savings would depend both on the
amount of data shared as well as the quality requirements
σ. We show an example.

Example. Consider relation I = {(1, a), (2, b), (3, c), (4, d)}
and two views V1 and V2. V1 selects the first three tuples
(with first attribute in the set {1, 2, 3}), while V2 selects the
last three tuples (with first attribute in the set {2, 3, 4}). Let

the update threshold for V1 be τ1 = 2 and for V2 be τ2 = 3
(all in seconds and using query-based freshness).

Let all the tuples be updated every second.
If the views are updated after the end of their respective

freshness thresholds, V1 is updated every τ1 seconds, while
V2 is updated every τ2 seconds. Note that since the data is
updated every second, V2 can not always reuse the common
tuples from the tuples purchased for V1 otherwise V2 would
violate query-based freshness semantics. Thus, on average,
this strategy purchases 3

τ1
+ 3

τ2
= 2.5 tuples per second.

On the other hand, if both V1 and V2 are updated simul-
taneously every τ1 seconds, the average is 4

τ1
= 2 tuples per

second.
Thus, the former is 0.25× costlier than the latter.

Challenges. It is easy to compute closed-form solutions for
when to update each view if it is known which views use a
given tuple. In the example above, if the cardinality of V2’s
input shared with V1 is n12 and the total cardinality of V2 in
n2, then the second strategy is preferred when τ2

τ1
< n2

n2−n12
.

The problem with this solution is that the entire data
may not be updated every second and the optimal schedule
would depend on the exact tuples updated.

Further, sharing data with tuple-based freshness is, sur-
prisingly, much harder to solve optimally since each tuple is
effectively a separate view and thus, the number of potential
overlaps to consider becomes exponential in the size of the
query answer and the number of views.

3.4 Identifying Relevant Updates
The last aspect we consider is that while purchasing data

that is updated, it is not required to buy all the updates.
Unfortunately it is not always obvious without buying the
update if it is relevant. Formally, the problem is: given a
view V over instance It, what new tuples must be purchased
from It+1 to update the V (It)?

If the only way to know of updates is by purchasing the
tuples themselves, there is little possibility for cost reduc-
tion apart from only buying those tuples that are in the
provenance of the view5. Thus, to use this technique, addi-
tional support from the data seller is needed. We consider
the following features:

• Row updates: In this case, the keys of the updated
rows are freely available.

• Cell updates: In this case, both the keys and the columns
of the updates are freely available.

• Counting-based: In this case, the count of any query is
available for free. An example is the Salesforce Con-
tactCount API [5]. If only one cell update is made at
a time, one can keep counting the cardinality of the
view’s output and buy an update when the cardinality
changes.

We explain through an example.

Example. Let I0 = {(1, α1, β1), (2, α2, β2)} be an instance
of relation R at time t = 0 and the view V be the result of
the query Q(x) :- R(x, y, z), y = α1. Here the first attribute

5We must buy all newly inserted tuple the first time they
are inserted.

is the key. In our notation, V (R) denotes the evaluation of
the view on database R.

If an update changes β1 to β′1 in tuple 1, V (I0) changes
and hence, the update must be purchased.

If we only have row updates, we can only know that tuple
1 was updated, we must buy the update and check. But with
cell updates, we can infer that we need not buy the update
since the change is to a column that is not relevant for V .

Of course, not all vendors may support querying updates
one-at-a-time. Consider now two updates and one inser-
tion to I0 that collectively swap the value of the second at-
tribute between the two tuples and adds a third unrelated
tuple. Now, I1 = {(1, α2, β1), (2, α1, β2), (3, α3, β2)}. V (R)
has changed but its cardinality has not and it is impossi-
ble to infer the meaningful updates now through any of the
techniques in isolation or together.

As seen from the example, batched updates are signifi-
cantly more challenging to analyze for inferring the updates
to purchase. But individual processing of updates can add
a significant performance penalty.

Updates and Freshness. Of course, if the view can toler-
ate stale data, that is, updates must only be purchased every
τ time units, for certain classes of views, batch updates may
be the preferred purchasing method. We briefly analyze the
following cases. Here, batch updates refers to buying the
updates only from instances at every τ time units and serial
updates refers to those that may buy tuples from intermedi-
ate instances too.

1. Full queries with selections: Consider queries of the
form:

Q(x, y) :- R(x, y), C(x)

Here, C is a predicate that performs a selection on
attribute A. With row updates, every update must be
purchased unless C(x) does not exist (no selections).

With column updates, if the update is to column A,
it must be bought; if the update is to B and the cor-
responding value of A, say a, is such that C(a) was
true and hence was part of the computed view, then
also the update must be bought; else the update can
be discarded. Here too, collapsing the updates (i.e.,
batching) outperforms serial update purchases.

The counting-based approach can be applied only in an
update-at-a-time case. In such a case, it can avoid buy-
ing new tuples that evaluate to false to the predicate
C, but it may end up purchasing additional updates if
updates overwrite a previously updated tuple.

2. Projections with selections: Consider queries of the
form:

Q(y) :- R(x, y), C(x)

In the bag semantics, this is equivalent to full queries
with selections. Thus we consider set semantics. As
shown in the example previously, any update to either
of A or B must be purchased if row updates or cell
updates are used.

With update-at-a-time and the counting-based approach,
we can only purchase the tuples that are relevant.

Challenges. Incorporating a tolerance for approximations
can be a potentially fruitful technique. One way to do so is
to use models for updates to compute approximate answers.
For instance, the updates to the current temperature change
slowly on an hourly basis. This information can be used to
avoid doing additional data purchases.

4. RELATED WORK
The techniques outlined in this paper touch upon many

areas of database research and we summarize some of the
important connections.

Freshness. The notion of freshness (or currency) has been
explored in the context of querying asynchronously main-
tained replicas in distributed and replicated databases [13,
16], using query-based freshness. Supporting finer-grained
freshness and optimizing for prices as opposed to perfor-
mance is a significant difference in goals and assumptions.

Approximate Query Answering. It is an active area of re-
search, deeply explored in the context of streaming data [12,
9], sensor data [15], and approximate answers on relational
data [17, 10]. We expect that such techniques should be
directly usable in the context of the problem in this paper.

View Maintenance. Prior work has focused on computa-
tionally efficient incremental view maintenance techniques [14,
11], given the updates. The main constraint in this paper’s
case is that the we must determine if an update is relevant
for a view with restrictions on what part of the update is
known, and neither class of research answers this.

5. DISCUSSION
We envision that the eventual goal of this line of work is

to support data analysis given a budget for data acquisition.
This paper takes one step to the realization of such systems,
by outlining the opportunities for cost reduction in the set-
ting of shared data analyses, and given the constraints of
the APIs that current data providers employ.

Future work falls into two categories. First, buyer-side op-
timizations and buyer-side estimation of goodness of sources [22]
is likely to drive significant improvement in the quality of
data analytics while containing costs in a predictable man-
ner (say a fixed budget).

The other direction of work is improvements in data provider
APIs. There is significant experimentation [23, 21] under-
way in the markets comprising of data sellers. It would be
fruitful to research the design of better data APIs (for exam-
ple, APIs that allow for cheap determination of updates)jsto
ease customizations and optimizations for the buyers, but
that are still efficient for the sellers to support.

6. CONCLUSION
We formalize the problem of optimal data acquisition in a

setting where the data analyst must purchase the data from
vendors who sell data for profit. We outline, and explore
through simulations, various promising design choices and
techniques that can provide an order of magnitude reduction
in costs. We find that the most promising avenue for cost
reductions is the use of approximate answers and allowing
for fine-grained freshness of answers. Smaller savings in data

costs are obtained with optimizing for updates and sharing
data across multiple views.

7. ACKNOWLEDGMENT
This work is supported in part by NSF grant IIS-1115188

and a gift from NEC Labs.

8. REFERENCES
[1] Company Firmographics Industry and Sales. http:

//datamarket.azure.com/dataset/dnb/companyfirmographics.

[2] Google Fusion Tables. tables.googlelabs.com/.

[3] Microsoft Azure Marketplace. http://datamarket.azure.com/.

[4] Quandl. http://www.quandl.com/help/api.

[5] Salesforce ContactCount API.
https://www.data.com/export/sites/data/common/assets/pdf/
DS_Datadotcom_Connect_API_Docs.pdf.

[6] Tableau. http://www.tableausoftware.com/.

[7] United States Historical Climatology Network (USHCN) Daily
Dataset. http://cdiac.ornl.gov/ftp/ushcn_daily/.

[8] Xignite. http://www.xignite.com/Products/.

[9] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: A new model and architecture for data stream
management. The VLDB Journal, 12(2):120–139, Aug. 2003.

[10] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: Queries with bounded errors and bounded
response times on very large data. In Proceedings of the 8th
ACM European Conference on Computer Systems, EuroSys
’13, pages 29–42, New York, NY, USA, 2013. ACM.

[11] Y. Ahmad and C. Koch. Dbtoaster: A sql compiler for
high-performance delta processing in main-memory databases.
Proc. VLDB Endow., 2(2):1566–1569, Aug. 2009.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings of
the Twenty-first ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’02,
pages 1–16, New York, NY, USA, 2002. ACM.

[13] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and
P. Tamma. Relaxed-currency serializability for middle-tier
caching and replication. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’06, pages 599–610, New York, NY, USA, 2006. ACM.

[14] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey.
Algorithms for deferred view maintenance. In Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pages 469–480, New York,
NY, USA, 1996. ACM.

[15] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. VLDB ’04, pages 588–599, 2004.

[16] H. Guo, P.-Å. Larson, R. Ramakrishnan, and J. Goldstein.
Relaxed currency and consistency: How to say “good enough”
in sql. In SIGMOD Conference, pages 815–826, 2004.

[17] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the dbo engine. In
Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’07, pages
725–736, New York, NY, USA, 2007. ACM.

[18] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and
D. Suciu. Query-based data pricing. In PODS, pages 167–178,
2012.

[19] C. Li, D. Y. Li, G. Miklau, and D. Suciu. A theory of pricing
private data. In ICDT, pages 33–44, 2013.

[20] K. Morton, M. Balazinska, D. Grossman, R. Kosara, and
J. Mackinlay. Public data and visualizations: How are many
eyes and tableau public used for collaborative analytics? In
SIGMOD Record, 2014.

[21] A. Muschalle, F. Stahl, A. Löser, and G. Vossen. Pricing
approaches for data markets. In BIRTE, pages 129–144, 2012.

[22] T. Rekatsinas, X. L. Dong, and D. Srivastava. Characterizing
and selecting fresh data sources. In SIGMOD Conference,
pages 919–930, 2014.

[23] F. Schomm, F. Stahl, and G. Vossen. The data marketplace
survey revisited. Technical report, ERCIS European Research
Center for Information Systems, 2014.

[24] H. Varian. Markets for information goods. Technical report,
University of California, Berkeley, 1998.

http://datamarket.azure.com/dataset/dnb/companyfirmographics
http://datamarket.azure.com/dataset/dnb/companyfirmographics
tables.googlelabs.com/
http://datamarket.azure.com/
http://www.quandl.com/help/api
https://www.data.com/export/sites/data/common/assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf
https://www.data.com/export/sites/data/common/assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf
http://www.tableausoftware.com/
http://cdiac.ornl.gov/ftp/ushcn_daily/
http://www.xignite.com/Products/

	1 Introduction
	2 Data Sellers
	3 Optimal Data Acquisition
	3.1 Individual Analysis Over Unique Data
	3.2 Individual Analysis over Data with Versions
	3.3 Shared Analyses Over Unique Data
	3.4 Identifying Relevant Updates

	4 Related Work
	5 Discussion
	6 Conclusion
	7 Acknowledgment
	8 References

