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Abstract
We present several key elements towards elastic memory man-
agement in modern big data systems. The goal of our approach
is to avoid out-of-memory failures without over-provisioning
but also to avoid garbage-collection overheads when possible.

1. INTRODUCTION
Recently, big data analytics systems have been emerging

rapidly. These systems are often deployed in a cluster shared by
multiple systems and users. Within each data analytics system,
there can also be multiple analytics applications (a.k.a., queries)
running simultaneously. Different applications, systems, and
users have different resource requirements. As a result, cluster-
wide resource management is an important problem.

Among all types of resources, memory has become espe-
cially critical in recent years. There are two main reasons for
that: (1) Modern data analytics systems, such as Spark [30], Im-
pala [15], GraphLab [18], Giraph [23], and many more, strive
to achieve high performance by maximally utilizing memory.
(2) Data scientists have increasingly moved to using public
clouds, where they pay directly for the resources that they need,
and thus care to optimize them.

Different systems manage memory allocation in different
ways: Some rely on the operating system to manage mem-
ory [18]. Others use a resource manager, which monitors the
resource usage of the cluster and schedules applications accord-
ingly: Some of those systems [11, 23] use external managers
such as YARN [27] while others [15, 30] implement built-in
resource managers but can also be scheduled by external ones.

The two key goals of resource scheduling are sharing and
isolation. A naïve approach is to simply let all applications com-
pete for resources as needed. This approach shares resources
in the most flexible way, but would cause applications to in-
terfere with each other thus complicating resource and fault
isolation. Most contemporary analytics systems thus pick the
alternate design. To enable a high degree of isolation between
applications, they put applications inside containers with hard
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resource limits such that application resource requirements are
both protected and constrained by the container. When an ap-
plication needs to run, it must estimate its resource needs and
communicate them to the resource manager. The latter then
decides whether or not to schedule the application based on
the amount of available resources. This is the most common
approach used by contemporary systems with resource control,
such as Spark [30], Impala [15] and Naiad [19].

However, it is very hard to estimate the memory needs of a
data analytics application beforehand, which leads to out-of-
memory failures, performance degradation due to disk-spilling,
tedious trial-and-error, or wasteful over-provisioning. These
challenges arise in both systems that self-manage memory,
either C/C++ implementations [15, 18] or Java solutions using
byte arrays [1], and systems that rely on automatic memory
management provided by languages such as Java [11,23,29,30]
and C# [19]. While automatic memory management facilitates
system development, garbage collection (GC) activities add
another layer of unpredictability to query performance. As we
show in Section 3, garbage collection can significantly slow
down query execution in some cases.

To address the above problems, we propose a new approach
where data analytics applications execute in separate containers
but the global resource manager elastically adjusts the memory
allocated to these containers. Our optimization goal is to min-
imize failures and the total execution time of all applications
subject to the physical limit on the total amount of memory.
There are several reasons why this is a difficult problem.

First, elastic memory allocation is not supported in most
systems. For Java-based systems, the maximum heap size of a
JVM stays constant during its lifetime. Even for C/C++-based
systems such as Impala [15], limiting the resource of a pro-
cess is usually done through Linux utilities such as cgroups
or ulimit, which do not have the functionality to change the
quota on-the-fly as well. In this paper, we focus on Java-based
systems and address this problem by extending the JVM to en-
able dynamically changing the maximum heap size at runtime.

Second, in order to elastically and dynamically allocate mem-
ory to data analytics applications, we need to understand how
extra memory can prevent failures and speed up applications.
In this paper, we show how changing the heap size of an appli-
cation can dramatically reduce GC overheads.

Third, given how GC and out-of-memory failures affect an
application’s execution time, we need to develop a model that
predicts the overheads during execution to drive memory alloca-
tion decisions. In this paper, we present a preliminary, machine-
learning based approach to perform these predictions.
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Finally, we discuss an algorithm that uses predicted garbage
collection times and out-of-memory information to orchestrate
memory allocation between different data analytics applica-
tions.

In summary, we make the following contributions:

• We quantitatively demonstrate the negative impact of GC
on the execution time of data analytics queries in a modern,
Java-based system. We show how changing the heap size
directly impacts the execution time (Section 3).
• We show how to modify the JVM to enable dynamic mod-

ifications of the application heap layout and thus enable the
elastic management of its memory utilization (Section 4.1).
• We develop a machine-learning based technique for pre-

dicting the GC overhead for an application and whether that
application is expected to run out of memory (Section 4.2).
• Finally, we discuss an algorithm for dynamic memory

management in a big data analytics system (Section 4.3).

2. BACKGROUND
Automatic memory management simplifies software devel-

opment but the associated garbage collection is known to cause
performance variations that are difficult to control: The GC
policy, while customizable by the programmer to some extent,
is usually controlled by the system. Depending on the policy
and the heap state, the time and frequency of garbage collec-
tions may vary significantly, and, as we show in Section 3, may
significantly impact query performance.

Among the languages with automatic memory management,
Java has been widely used in data analytics systems [11, 23, 29,
30]. Over the past ten years, there have been several Java Virtual
Machine (JVM) implementations with various GC algorithms.
However, most of the contemporary ones share the concept of
generations [2]. With this design, the heap space is partitioned
into two generations for storing objects with different ages.
Initial memory allocation requests go to the young generation.
When the young generation fills up, a GC is triggered to move
objects to the old generation if they survive the collection.
A subsequent old generation collection, if needed, may get
triggered for cleaning up more space. The triggering condition
of a GC differs with different policies. It is possible to have a
collection even if there is still a large amount of free memory.

To simplify the problem definition, we make the following
assumptions in this work: First, we focus on Java and use
OpenJDK as the reference JVM implementation. Second, we
assume that there are two generations: the young generation and
the old generation. Third, we assume that garbage collections
are only triggered when there is not enough heap space. We
argue that even with these assumptions, our approach is broadly
applicable to modern Java-based analytics systems.

3. PERFORMANCE IMPACT OF GC
In this section, we show a concrete example of how garbage

collection can impact query execution time: We execute a sim-
ple, data analytics application with a large memory footprint
while varying its heap-size limit. The application is a self-join
query on a synthetic dataset containing ten million tuples with
two long columns, running on one Myria [11] worker using
default GC collectors (-XX:+UseParallelGC).

Figure 1 shows the query run times for different heap-size
limits. When the heap is large, the query run time converges
to approximately 46 seconds, which is the pure execution time
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Figure 1: Impact of GC: Runs with heap-size limits below 2.4 GB
(red vertical line) run out of memory.

with almost no GC. When we shrink the heap size, however,
the run time increases moderately due to spending more time
on GC, until the heap size is slightly less than 3 GB where the
run time increases drastically to 95 seconds. The query fails
with an out-of-memory error when the limit is 2.4 GB or less.

This experiment demonstrates that the performance impact of
GC depends on the memory limit. More specifically, the query
does not benefit from extra memory when the heap-size limit is
large, but its run time can be dominated by GC when the limit
is too close to the minimum amount of memory necessary to
run the application. Of course, when memory is insufficient, the
application cannot complete unless it spills to disk. However,
we may avoid failures and GC thrashing by dynamic adjusting
the heap size limit.

4. TOWARD ELASTIC MEMORY
We present the three core building blocks to enable elastic

memory management for cloud analytics applications.

4.1 Enabling dynamic heap adjustments
The first building block is the ability to change the memory

size limits of data analytics applications. Since our focus are
Java-based implementations, we do so by modifying OpenJDK.
This enables us to adjust memory limits for JVMs such as Spark
worker processes and YARN containers.

OpenJDK manages an application’s address space as follows:
To launch a JVM process, its maximum heap size needs to be
specified first. The JVM then asks the operating system for the
corresponding address space size and divides the space into
generations based on its internal size policy. The size of the
total memory space then remains constant during its lifetime.

This rigid design, however, is unnecessary. For operating sys-
tems that support overcommitting memory, a logical space does
not occupy any memory until it is used. This property, together
with 64-bit address spaces, allow us to reserve an extremely
large address space when launching a JVM. 1 The actual mem-
ory limits, including generations and other subspaces in the
heap, can be monitored later during runtime.

We modify the source code of OpenJDK to implement this
feature. We set the initial heap size to be a large number and add
a socket-based API through which the JVM receives commands
to report its memory usage and adjust memory limits. To control
GCs directly, we also disable internal policies and make the
JVM wait for an external command to trigger a GC. If more
memory is needed but is unavailable given the current limits,
we provide options for the JVM to either fail immediately or

1To avoid performance degradation due to virtual memory
swapping, we disable swap in our experiments.



sleep until more memory is available.

4.2 Estimating GC costs
The second building block is the ability to estimate the im-

pact of GC on a data analysis application. In this section, we
develop a machine learning model that predicts the duration of
the next GC for a given query. We define the GC cost as the
total CPU time spent on GC.

The GC time depends primarily on the number and total size
of the live and dead objects in the collected region. Unfortu-
nately, getting such detailed statistics is expensive, as we need
to traverse the object graph similarly as in a GC. Paying such
a cost for each process at every prediction defeats the goal of
avoiding GCs in the first place. What we can access more easily
is the state of the execution plan: Data analytics queries consist
of operators with large in-memory data structures, such as hash
tables and buffers, which dominate the state of the heap and
thus determine the GC time. Additionally, operator statistics
determine the data structure sizes. Hence, our approach is to
predict GC times based on operator statistics.

In this paper, we focus on two operators with large data
structures in Myria: join and aggregate. We wrap these data
structures with the functionality to report statistics, and instru-
ment them during query execution. The statistics that we collect
are: the number of input tuples processed (total and the delta
since the last GC), the number of distinct join or aggregation
key values (similarly, total and delta), and the number and the
data types of the input columns. We then build models to predict
GC times using these features.

We first build a model for each operator by running each
operator independently with varying input datasets. We pick
the M5P model with default settings among several models
in Weka [10] since it gives us the most accurate predictions
overall. We predict the user and the system space times spent
on each generation separately, then sum them up to produce
the total predicted GC CPU time. Figure 2(a) 2(b) show the
results for aggregate and join respectively. The experiments
were done on Amazon EC2 using r3.xlarge instances on
synthetic datasets with different schemas (# of columns, data
types) and different # of tuples and # of keys (total and delta).
We use two metrics, namely root relative squared error (RRSE)
and relative absolute error (RAE), to measure the accuracy of
the predictions. Testing is done using 10-fold cross-validation.
As the figures show, our per-operator models are able to predict
GC times with good accuracy.

To predict the GC time for a query, we predict and add the
GC time for each operator in the query. Figure 2(c) shows the
result for predicting the GC time for a query containing one join
followed by one aggregate. Although the error rates, comparing
to single operator models, have increased, we posit that the
precision suffices to make memory allocation decisions. We are
studying more complex queries in ongoing work.

4.3 Dynamically allocating memory
The last component of elastic memory management is a

global scheduler that monitors concurrently executing queries
and makes dynamic memory re-allocation decisions to maxi-
mize a global objective function.

Making decisions based on the total future GC time for
all queries is difficult because prediction errors increase for
predictions far into the future. Instead, we propose to make
decisions adaptively at each timestep t for some small period

Query Timestep 1 Timestep 2 Timestep 3

Q1 5, 1, NOGC 5 ⇒ 4, 1.5, 4 ⇒ 2, 2,
NOGC NOGC⇒ GC

Q2 5, 2, NOGC 5 ⇒ 6, 3, GC⇒ NOGC 6, 4, NOGC

Q3 5 ⇒ 10, 4, 10, 6, NOGC 10 ⇒ 12, 9,
GC⇒ NOGC OOM⇒ GC

Table 1: Dynamic memory allocation example.

[t, t+ δt]. A query may transition into the following states in
time δt: run out of memory (OOM), experience a GC (GC), or
have no GC triggered (NOGC). To know which state the query
will be in, we estimate the size of all the live objects and the
used heap space at t+ δt based on past statistics.

The scheduler can change the heap size limit of a query at t
to affect its states at t+ δt. Assuming two query states s1 and
s2, we define the benefit of switching from s1 to s2 as:
• 0: if both s1 and s2 are OOM or NOGC,
• the difference of predicted GC times: if both s1 and s2

are GC, and
• ∞: if s1 is OOM and s2 is GC or NOGC. 2

The scheduler can then adjust per-query memory limits by
maximizing the total benefit within the physical memory con-
straint. We explore the promise of such a scheduler through a
detailed example. Consider the queries from Table 1. The state
of each query at a timestep is a triple of: memory limit, used
memory size, and predicted state in the next δt. Assuming a
total of 20 GB of memory, we assign each query 5 GB (e.g.,
initial assignments could be based on prior knowledge of the
queries) in the beginning and have 5 GB left. At timestep 1,
since we think that Q3 will experience a GC, we assign the
5 GB free memory to it to increase its limit to 10 GB to prevent
the GC. Then at timestep 2, we decide to shift 1 GB from Q1
to Q2 to avoid the predicted GC of Q2 while not affecting the
state of Q1. At timestep 3, since Q3 is predicted to be out-of-
memory, we shift 2 GB from Q1 to save Q3. Although Q1 will
have to GC, it is still better than having Q3 fail according to
our objective function, and we pick Q1 instead of Q2 since the
estimated GC time of Q1 is shorter. All the state changes are in
bold. We prevent one OOM and save two GCs by paying the cost
of triggering one GC with relatively small cost.

5. RELATED WORK
There is a rich body of work on memory allocation within a

single machine. Generally, the performance models of single
components are first built, then a scheduler makes decisions
accordingly to maximize an objective function. The difference
is in the components. Several approaches focus on queries.
Some [5,8,21] make buffer allocation decisions based on query
page access models. Others [4, 22] try to meet query perfor-
mance goals in real-time database systems. A third set of meth-
ods [26] manages application resources in NUMA platforms
by measuring performance counters. More recently, Narasayya
et al. [20] develop techniques to share bufferpool with multiple
tenants. Within a query, several approaches focus on opera-
tors. Anciaux et al. [3] discuss how to allocate memory among
operators for memory-constrained computing devices. Davi-
son et al. [7] develop models to sell resources to competing
operators to maximize profit. Garofalakis et al. [9] schedules
operators in parallel with multidimensional resource constraints
in NUMA systems. Finally, Storm et al. [25] manage memory
2Here, we treat all OOMs equally for simplicity, but we could
give them different costs based on query properties.
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(a) One aggregate operator. RRSE:
16.69%, RAE: 22.44%.
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(b) One join operator. RRSE: 10.77%,
RAE: 14.44%.
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(c) A query containing one join and one
aggregate. RRSE: 31.60%, RAE: 28.68%

Figure 2: GC time estimations for single operators and a query containing multiple operators.

across database system components. Although they share the
idea of memory management across multiple components for
an overall goal, their focuses are single machine problems and
do not investigate the impact of garbage collection.

In the world of cloud-based data analytics, the resources of
a cluster are shared by multiple users and queries managed by
a global resource manager. Some techniques schedule queries
before execution. Li et al. [17] investigates how to partition
queries on heterogeneous machines based on system calibra-
tions and query optimizer statistics. Herodotou et al. [12, 13]
tune Hadoop application parameters based on machine learn-
ing models built by collected job profiles to predict job run
times. To save different systems from self-scheduling, sev-
eral general-purpose resource managers and schedulers have
emerged [14, 27, 28]. However, these techniques all lack the
ability to adjust memory allocations dynamically.

Finally, some techniques make decisions adaptively. Lang
et al. [16] develop a system to schedule transactional work-
loads on heterogeneous hardware resources for multiple ten-
ants. Schaffner et al. [24] aim at minimizing the tail latency of
tenant response times in column database clusters. However,
their focuses are short-lived requests and do not study garbage
collection. For adaptive GC tuning, Cook et al. [6] provide two
GC triggering policies based on real-time statistics, but do not
investigate memory management across applications.

To the best of our knowledge, we are not aware of any similar
effort of modifying a JVM implementation to have dynamic
memory sizes.

6. CONCLUSION
In this paper, we argue for elastic memory-management in

big data systems supporting analytics applications and show
preliminary results for the three necessary building blocks:
dynamic heap-size adjustment, garbage collection overhead
estimation, and dynamic memory allocation.
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