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ABSTRACT
We present a new approach for data analytics with iterations.
Users express their analysis in Datalog with bag-monotonic
aggregate operators, which enables the expression of computa-
tions from a broad variety of application domains. Queries are
translated into query plans that can execute in shared-nothing
engines, are incremental, and support a variety of iterative mod-
els (synchronous, asynchronous, different processing priorities)
and failure-handling techniques. The plans require only small
extensions to an existing shared-nothing engine, making the
approach easily implementable. We implement the approach
in the Myria big-data management system and use our imple-
mentation to empirically study the performance characteristics
of different combinations of iterative models, failure handling
methods, and applications. Our evaluation uses workloads from
a variety of application domains. We find that no single method
outperforms others but rather that application properties must
drive the selection of the iterative query execution model.

1. INTRODUCTION
Whether in industry or in the sciences, users today need to

analyze large datasets. Astronomers, for example, work with
simulations of the universe that produce hundreds of terabytes
of data [34]. They similarly work with telescope images from
sky surveys such as the SDSS [42] or the upcoming LSST [32]
that require the analysis of tens of terabytes of data. Other ex-
amples include the need to process large-scale outputs from
genome sequencers and other high-throughput sensors or de-
vices, the analysis of click streams, or social networks data.

Users need to perform a variety of complex analyses on this
data including traditional relational algebra operations but also
machine learning, linear algebra, and various domain-specific
cleaning and transformation steps. One distinguishing feature
of modern analytics is that it often requires iterative computa-
tions [14]. Graph analytics is the prime example of the need for
efficient iterative processing: shortest path, reachability, con-
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nected components, and hubs and authorities are all iterative
algorithms. The need for iterative computations extends beyond
graphs, though. With astronomy simulations, for example, one
type of analysis traces the evolution of galaxies in the universe
by iteratively following the simulated particles over time.

In response to this need, many existing data processing en-
gines have been extended with support for iterative computa-
tions [14,19,50]. New systems that are built today for data ana-
lytics all include some method to execute iterative queries [49];
And several systems have been developed specifically for itera-
tive computations [21, 35, 36, 38, 39].

Despite this interest, existing solutions for iterative query
processing have significant limitations: most parallel data pro-
cessing engines support only synchronous iterations [9, 14, 33,
35, 49, 50], in which all machines must complete one iteration
before the next begins. Such global synchronization barriers
between iterations are undesirable because they cause faster
machines to wait for the stragglers, slowing down query evalua-
tion. Some engines support parallel and asynchronous iterative
processing but are specialized for graphs [31, 38, 39, 46]. Many
general-purpose iterative query processing systems do not sup-
port declarative queries but instead require users to specify
query plans directly [21,36,46]. Finally, some systems generate
code [38, 39] and thus do not provide a complete and general-
purpose data management system. Datalog engines exist but
are either single-node [4] or use MapReduce as backend [22]
which supports only synchronous iterations.

Based on our experience working with big data users in do-
main sciences through the University of Washington eScience
Institute [43], we argue that none of the above approaches is
sufficient. Modern engines should provide the following set of
capabilities for iterative computations: First, query evaluation
should be performed in parallel in shared-nothing clusters to
ensure scalability. Second, iterative query evaluation should be
incremental, so that each iteration only computes a change to
the final solution rather than recomputing the entire result each
time. Third, the system should provide a variety of iteration
models (synchronous, asynchronous, prioritized) because, as
we will show, different problems necessitate different evalua-
tion strategies. Fourth, engines need to support a broad variety
of application domains, not only graphs. Finally, users should
be able to specify their computation using a declarative query
language for ease of use. The above features should be provided
in an efficient and fault-tolerant manner.

In this paper, we develop such a new query evaluation ap-
proach and implement it in the Myria big data management
system and service [5, 25]. Our query evaluation method sup-



ports incremental, asynchronous or synchronous evaluation of
iterative queries in a shared-nothing cluster. In our system,
users specify their queries declaratively in a subset of Data-
log with aggregation. Importantly, this approach requires only
small extensions to a shared-nothing query processing system,
making it well suited for implementation in other engines. In
addition to developing this query evaluation method, we em-
pirically evaluate how small changes in the query evaluation
strategy can lead to large performance differences for certain
applications. We characterize when each approach leads to the
lowest query run time for different types of queries.

An important problem with iterative query processing is fail-
ure handling. Given the scale of today’s data analysis queries
and the increasing use of preemptable compute resources such
as Amazon Spot instances [1], modern query engines must in-
clude failure-handling techniques. Most query engines that pro-
vide iterative processing capabilities select a failure-handling
method in an ad-hoc fashion. The interplay between iterative
processing method, iterative query, and failure handling method
is poorly understood. We address this problem by empirically
studying this interplay.

An important overall contribution of our work is to answer
the question: How should an existing shared-nothing query
engine be extended to efficiently support powerful iterative
computations that are also easy for users to express? We ad-
dress this question through the following specific contributions:

• We develop a query-plan based approach for efficient,
incremental processing of iterative computations in a parallel,
relational engine. Our approach supports iterative computa-
tions with aggregations and with multiple output results. It
supports both synchronous and asynchronous query evalua-
tion, and different processing priorities. Our approach is easily
implementable as it only requires a small set of extensions to
an existing shared-nothing engine (Sections 3.2 and 3.3).
• We enable users to specify declarative queries in a subset

of Datalog with aggregation extended from prior work [39]
and present an algorithm to automatically convert these pro-
grams into our new query plans (Section 3.1).
• We empirically evaluate different query evaluation meth-

ods on iterative applications from the astronomy, social net-
works, and bibliometrics domains and on real data from these
domains. We characterize when and why each query evalua-
tion method yields the lowest query run time (Section 6.2).
• We study the interplay of iterative query execution meth-

ods, iterative queries, and fault-tolerance techniques. We eval-
uate which failure-handling method yields the fastest recovery
in the presence of failures while imposing a small overhead
without failures (Section 4 and Section 6.3).

Exploring a broad set of applications and techniques, we find
that no single iterative execution strategy outperforms all oth-
ers; rather, application properties must drive method selection.
The wrong choice of execution technique can increase CPU
utilization and network bandwidth by a factor of 6×. Memory
usage can increase by a factor of 2 ×.

2. BACKGROUND
We briefly review how to express iterative queries with ag-

gregation in Datalog and present existing query evaluation
methods for iterative queries in shared-nothing systems.

2.1 Iterative Queries in Datalog

Edges(time,gid1,gid2, :- Particles(pid,gid1,time),
$Count(*)) Particles(pid,gid2,time+1) (1)

Galaxies(1,gid) :- GalaxiesOfInterest(gid) (2)

Galaxies(time+1,gid2) :- Galaxies(time,gid1),
Edges(time,gid1,gid2,c),
c >= threshold (3)

Figure 1: Datalog program for the GalaxyEvolution application.
The inputs are relation Particles(pid,gid,time), which contains the
output of an astrophysical simulation, and a set of galaxies of in-
terest GalaxiesOfInterest(gid) at time=1.

Iterative queries are naturally expressed in Datalog as this
language supports recursion. As an example, Figure 1 shows
an iterative Datalog program called GalaxyEvolution. The
program computes the history of a set of galaxies in an astro-
physical simulation. The history of a galaxy is the set of past
galaxies that merged over time to form the galaxy of interest
at present day. The input table, Particles(pid,gid,time),
holds the simulation output as a set of particles, where pid is a
unique particle identifier, and gid is the identifier of the galaxy
that the particle belongs to at time, time. The gid values are
unique only within their timesteps, time, but a particle retains
the same pid throughout the simulation.

The program takes the form of a set of rules. Each rule
has a head, an implication symbol :-, and a body. The first
rule computes relation Edges, which contains the number of
shared particles for every pair of galaxies at adjacent timesteps.
The second and the third rules compute Galaxies, which
is the set of earlier galaxies that have merged to form the
galaxies of interest. The second rule states that a galaxy from
GalaxiesOfInterest at present day (i.e., time=1) is a part
of the ancestry. The third rule states that a galaxy (time+1,

gid2) is also part of the ancestry if an adjacent galaxy (time,

gid1) is part of the ancestry, and the number of shared particles
between the two galaxies is above the threshold, threshold.
This last rule is recursive because the relation Galaxies appears
both in the head and in the body of the rule.

In Datalog programs, base data is referred to as Extensional
Database predicates (EDBs) (e.g., Particles). Derived rela-
tions are Intensional Database predicates (IDBs) (e.g., Edges
and Galaxies). EDBs occur only in bodies, while IDBs appear
in the heads of the rules and can also appear in the bodies.

Without aggregations and without negations (i.e., in the case
of conjunctive queries), the result of a Datalog program is its
least fixpoint, which can be computed by repeatedly evaluating
the rules in any order until no new facts (i.e., tuples) are found.

When a positive Datalog program includes aggregations, as
in our example, it is evaluated in a stratified manner, which
means that the program is evaluated one subset of rules at the
time. More specifically, the aggregate function is evaluated
only after all predicates that form the right hand-side of the
corresponding rule have been fully evaluated (i.e., have reached
their fixpoint). In our example, the condition holds trivially
since the rule with the $Count aggregate has only an EDB in
its body rather than one or more IDBs. Similarly, the rules that
use the aggregate value are blocked until the aggregate has been
computed. In the example, rules (2) and (3) are not evaluated
until rule (1), which contains the aggregate function $Count,
has been evaluated.

In this paper, we focus on positive Datalog programs (no
negated predicates) with aggregate functions that only occur



in IDBs. Given an IDB with a set of grouping attributes v and
aggregate functions f , the semantics are those of group by
aggregation: For all tuples that satisfy the body of the rule, the
rule evaluates the value of each function f for each unique
combination of values of v.

2.2 Shared-Nothing Iterative Processing
There exist three common approaches to evaluating iterative

query plans in shared-nothing systems:

• Bulk synchronous: Each iteration computes a completely
new result from the result of the previous iteration. A synchro-
nization barrier separates each iteration.
• Incremental synchronous: Each iteration computes a new

result, then compares it with the result of the previous iteration
and feeds only the delta to the next iteration. This approach
corresponds to semi-naı̈ve Datalog evaluation.
• Incremental asynchronous: New facts are continuously

discovered without coordination between operator partitions
and without any synchronization barriers.

Consider GalaxyEvolution from Figure 1. During the
evaluation of rules (2) and (3), with bulk synchronous exe-
cution, each iteration i takes all the galaxies reachable from
GalaxiesOfInterest within i − 1 timesteps as input, then
joins them with Edges to get all the galaxies reachable within
i timesteps. With the incremental synchronous evaluation, the
input of iteration i is only the set of galaxies that are reach-
able with no less than i − 1 timesteps. The output contains
only newly-discovered reachable galaxies. With asynchronous
execution, operator partitions continuously discover and com-
municate reachable galaxies without synchronization barriers.

2.3 Problem Statement
The recursive query plans that we introduce (Section 3.2)

support all three execution models. The key questions that we
answer in the paper are (1) What class of positive Datalog
queries with aggregation can be evaluated recursively and asyn-
chronously in a shared-nothing systems, (i.e., the aggregate
function can be evaluated inside the iteration) (2) What query
plans to use to evaluate such queries and how to execute these
plans to obtain the best performance? And (3) which fault-
tolerance method imposes a low overhead yet achieves fast
recovery from failures in these iterative plans.

3. ASYNCHRONOUS EVALUATION OF
DATALOG WITH AGGREGATION

In this section, we first introduce an extended class of ag-
gregate functions that can recursively be evaluated in Datalog
programs (Section 3.1). We then show how to generate query
plans for the asynchronous and parallel evaluation of Data-
log programs with this extended class of recursive aggregates
(Section 3.2). Finally, we discuss optimizations that can signifi-
cantly affect query performance and example applications that
illustrate these performance trade-offs (Section 3.3).

3.1 Recursive Bag-Monotonic Aggregation
As described in Section 2.1, the non-recursive method to

evaluate a Datalog program with aggregation consists in evalu-
ating an aggregate function only after all its input IDBs have
converged to their fixpoints. Furthermore, if an IDB with an

aggregate function is used in the body of another rule, the eval-
uation of that rule also blocks until the aggregate function is
evaluated.

In some cases, recursively evaluating these aggregates can
speed-up convergence by pruning unnecessary partial results
early. In contrast, the blocking strategy must evaluate each IDB
in full, which may yield worse performance as we show in Sec-
tion 6.2. The SociaLite work [39] has shown that a small class
of aggregates, meet aggregates, can be evaluated recursively.
These aggregate functions are associative, commutative, and
idempotent binary operations defined on a domain S. These op-
erations, denoted with ∧, induce a partial order � on S, which
is defined as: ∀x, y ∈ S, x � y if and only if x ∧ y = x. The
result of the function on any two elements is the greatest lower
bound with respect to this partial order. $Min and $Max are two
examples of meet operations. Furthermore, if a Datalog pro-
gram comprises a meet aggregate function defined on a finite
set, and the rest of the program is monotonic with respect to
the partial order induced by the aggregate, then the iterative
evaluation of the rules converges to the greatest fixpoint. Fi-
nally, these programs can be evaluated incrementally [39] and
asynchronously [38].

As in SociaLite, we support meet aggregates, which already
enables us to express a subset of our target applications (see
Section 3.3) . We observe, however, that many applications
require aggregates other than meet aggregates, yet can still ben-
efit from the recursive evaluation of those aggregates. Typical
examples of these aggregates are $Count and $Sum. These ag-
gregates are commonly used in analytical applications yet are
not meet aggregates because they are not idempotent.

GalaxyEvolution is one example application that can benefit
from the recursive evaluation of a $Count aggregate, which is
illustrated by the Datalog program from Figure 2. This program
computes the same result as the one in Figure 1 but uses differ-
ent rules, which involve recursive aggregates. Here, the Edges
IDB depends on the recursively defined Galaxies IDB. As
a result, Edges and its $Count aggregate must be recursively
evaluated as well. We show in Section 6.2 that the recursive
version of the application can significantly reduce the run time
because it avoids the computation of unnecessary tuples in
Edges. The clustering algorithm DBSCAN [20] is another ex-
ample application that can benefit from the recursive evaluation
of a $Count aggregate (used during the density estimates).

The above examples and other similar examples that we
encountered while working with scientists at the University
of Washington motivate us to extend the notion of recursive
aggregates to a broader class of aggregate functions: We show
that it is possible to recursively evaluate aggregate functions
that are commutative, associative, and bag-monotonic (but not
necessarily idempotent). Examples of bag-monotonic aggre-
gates include $Count, $Sum, which are not idempotent, and
also include $Min and $Max. We start with a definition of a
bag-monotonic aggregate:

DEFINITION 3.1. Let S be a set of bags of tuples, and
x, y ∈ S. A partial order � on S is defined as: x � y if
and only if x ⊆bag y

1. An aggregate function a : S → V is
bag-monotonic with respect to a partial order � defined on
V , if for any x, y ∈ S such that x � y, we have a(x) � a(y).
1⊆bag is bag containment, x ⊆bag y if and only if for any tuple
t that appears n times in x, t also appears m times in y, and
n ≤ m.



We can now define a Datalog program with a recursive,
bag-monotonic aggregate. Let g : T → W be the function
that takes a bag of tuples R ∈ T , does a group by on the set
of grouping attributes, then applies the aggregate function a to
each group k to generate a set of tuples U = {(k, v) . . . }, v ∈
V,U ∈ W . The partial order on T is defined as: R1 � R2 if
and only if R1 ⊆bag R2. The partial order on W is its Hoare
order: U1 � U2 if and only if ∀(k, v) ∈ U1, ∃(k′, v′) ∈ U2,
(k, v) � (k′, v′), where (k, v) � (k′, v′) if and only if k =
k′, v � v′. We refer to the rest of the program as f : W → T ,
and require f to be monotonic with respect to the order defined
on T and distributive. The whole program is then defined as
the recursive application of the function (f ◦ g). Starting with
a set of empty bags of tuples R0, for each i ≥ 0, we have:

Ui+1 = g(Ri), Ri+1 = f(Ui+1).

We illustrate the definition using Figure 2. In this pro-
gram, the $Count aggregate computes the number of particles
shared between any pair of galaxies, (gid1,gid2), at adja-
cent timesteps. As the rules are evaluated, more particles can
be found to satisfy the body of rule (3). As a result, the bag of
particles that serves as input to $Count grows. Each bag is a
superset of the previous bag, thus only causes $Count to be
computed on supersets of the previous inputs. Since $Count
is bag-monotonic, the output of the aggregate only increases.
Furthermore, once a new pair of galaxies is discovered, no new
tuples can cause the pair to be removed. Notice that if the condi-
tion in rule (2) was changed to c < threshold, the program
would no longer be monotonic with respect to the partial order
defined on the input to the aggregate operator.

Finally, we use a similar approach as in SociaLite to show
that the naı̈ve evaluation of such a program converges to a
fixpoint, and that its semi-naı̈ve evaluation is equivalent to the
naı̈ve evaluation. Since R0 consists of sets of empty bags, we
have R0 � (f ◦ g)(R0). Using mathematical induction, if T
is a finite set, then there must exist a finite n such that

R0 � (f ◦ g)(R0) � · · · � (f ◦ g)n(R0) = (f ◦ g)n+1(R0),

where (f ◦ g)n(R0) is the greatest lower bound of the program.
The process of semi-naı̈ve evaluation is the following. Start-

ing from R′0 = R0, for each i >= 0, we have:

U ′i+1 = g(R′i),

∆i+1 = U ′i+1 − U ′i ,
R′i+1 = R′i ∪ f(∆i+1).

We use mathematical induction to show that U ′i = Ui.
Basis: U ′1 = g(R′0) = g(R0) = U1.
Inductive: assuming U ′k = Uk for all k ≤ i, then we have:

U ′i+1 = g(R′i) = g(R′i−1 ∪ f(∆i))

= . . .

= g(f(∆1) ∪ f(∆2) ∪ · · · ∪ f(∆i))

= g(f(∆1 ∪∆2 ∪ · · · ∪∆i))

= g(f(U ′i)) = g(f(Ui)) = Ui+1.

3.2 Parallel and Asynchronous Evaluation
In this section, we show how to translate a Datalog program

with bag-monotonic recursive aggregates into a query plan
that can be executed asynchronously and incrementally. Our

Galaxies(1,gid) :- GalaxiesOfInterest(gid) (1)
Galaxies(time+1,gid2) :- Galaxies(time,gid1),

Edges(time,gid1,gid2,c),
c >= threshold (2)

Edges(time,gid1,gid2, :- Galaxies(time,gid1),
$Count(*)) Particles(pid,gid1,time),

Particles(pid,gid2,time+1) (3)

Join	  

Scan(Par,cles)	  

Join	  

IDBController(Galaxies)	  

IDBController(Edges)	  
(Count	  +	  Filter	  inside)	  

Join	  Scan(GalaxiesOfInterest)	  

Scan(Empty)	  

Figure 2: Datalog program for the GalaxyEvolution application
using a recursive aggregate (top). Query plan for this application
(bottom). Dashed lines indicate shuffling over the network. Note
that: 1. we push the selection into the IDBController as an opti-
mization, 2. since the Edges IDB does not have an initial input, we
link a Scan, which reads an empty relation, to initialize the IDB-
Controller for Edges.

approach can be implemented in a broad class of big data man-
agement systems with only small extensions that we present
in this section. Our approach then enables the asynchronous
evaluation of even complex query plans with multiple recursive
IDBs. The systems that we target are shared-nothing, dataflow,
analytical engines, in which operators and data are horizontally
partitioned across worker processes, and data can be pipelined
from one operator to the next without going to disk and without
synchronization barriers. Examples of such systems include
Flink [2, 21], Dryad [27], parallel database systems [3, 23], and
also our own system, Myria [25]. Spark [49] could also benefit
from our approach if it was extended with pipelined data shuf-
fling, while MapReduce [18] serves as a counterexample. Note
that these specific systems already have their own approach to
iterative processing (see Section 7). We use them as examples
of the class of systems to which our approach also applies.

3.2.1 Recursive Query Plans
The incremental evaluation of recursive Datalog programs

with bag-monotonic aggregate operators requires query plans
that perform several functions: (1) At each iteration, the query
plan must compute new facts based on the incremental changes
to the states of the recursive IDBs since the last iteration. In the
example from Figure 2, each iteration discovers new Galaxies

tuples and new qualifying pairs of Particles tuples that join
together. (2) The query plan must then update the state of the
recursive IDBs based on the new facts. This state update may
require the computation of the aggregate functions if present.
(3) The query plan must compute and output the changes to the
IDB states since the last iteration, such as the newly computed
Edges and Galaxies tuples. (4) The plan must detect whether
all IDBs have reached a fixpoint. We propose to use regular
relational operators for (1). We encapsulate functions (2) and (3)
into a new operator that we call IDBController. We introduce a
second operator, the TerminationController, to check (4).

As shown in Figure 2, an IDBController has two input
children. One child is the initial state of the IDB, which
is not recursive. For Galaxies, this input is the relation
GalaxiesOfInterest, although it can also be empty, as for
Edges. The other child is the recursive input for the new tuples
that are generated during the iterations.

We let the IDBController perform the group-by and aggrega-
tion within itself to avoid generating and moving unnecessary
tuples between operators. Instead, the IDBController computes



IDBController(Galaxies)	  

IDBController(Edges)	  

Termina8onController	  

Worker	  1	  

…	  

…	  

…	  

…	  

IDBController(Galaxies)	  

IDBController(Edges)	  

Worker	  n	  

…	  

…	  

…	  

…	  

…	  

Figure 3: GalaxyEvolution query plan with IDBControllers and
an TerminationController. Other operators are omitted.

directly the aggregated state. Additionally, while the IDBCon-
troller accumulates the complete IDB state, it outputs only
changes to that state in order to support incremental evaluation.

An IDBController has two execution modes: synchronous
and asynchronous. In synchronous mode, the IDBController
first fully consumes its initial input, initializes the state of its
IDB, and outputs that state. Second, it accumulates tuples from
the recursive input until the end of one iteration. It then updates
the state of its IDB and outputs changes to that state for the next
iteration. In asynchronous mode, the IDBController consumes
input tuples on either input as they become available. For each
input tuple, it updates the state of the corresponding group,
and outputs the new aggregate value if it has changed. We
explore the performance implications of each execution mode
in Section 6.2. In the rest of this subsection, we focus on the
asynchronous mode.

There is one TerminationController for each iterative com-
putation. This operator collects periodic messages from all
IDBControllers indicating whether the operators produced any
new tuples since the last message. We further discuss the de-
tails of the TerminationController and fixpoint detection in
Section 3.2.2.

Figure 3 illustrates the positions of the two operators in a
query plan by showing the query plan produced for GalaxyEvo-
lution. In all other figures, we omit the TerminationController
(and the parallelism) when showing query plans.

Given these two special operators, we are now able to trans-
late a positive Datalog program into an asynchronous recursive
query plan, as shown in Algorithm 1. Briefly, the procedure
translates the head of each rule into an IDBController, the body
of each rule into a relational query plan. It then connects the
appropriate inputs and outputs. As an example, Figure 2 shows
the generated query plan for GalaxyEvolution, where the two
IDBControllers recursively depend on each other.

3.2.2 Lightweight Termination Check
Evaluating a recursive query asynchronously raises an impor-

tant issue: how to decide if the program has terminated. Since
there are multiple IDBs being evaluated on multiple machines,
and messages are sent through the network with possible delays,
we need a protocol to guarantee a correct termination.

To detect termination, we propose a lightweight protocol that
only requires small extensions to operators. First, we extend all
operators with the ability to propagate a special message called
end-of-iteration (EOI), based on the following three rules. Later
in this section, we show how these messages serve as markers
to determine that the fixpoint has been reached.

1. An IDBController generates the first EOI when its initial
input has been fully consumed, and all the following EOIs
when it receives an EOI from its iterative input.
2. An operator which is not an IDBController generates an

Algorithm 1 Translate a Datalog program into an asynchronous
recursive query plan

1. function GENERATEPLAN(P )
2. Input: Datalog program P
3. R← Set of all rules in P
4. X ← Set of all IDBs in P
5. Y ← Set of all EDBs in P
6. Instantiate an TerminationController E
7. for (x ∈ X) do
8. Instantiate an IDBController Cx with empty inputs
9. Connect control output of Cx to input of E

10. for (y ∈ Y ) do
11. Instantiate a Scan Sy

12. for (r ∈ R with h ∈ X as head) do
13. Translate the body of r into a relational query plan Qr

14. for (x ∈ X that appears in the body of r) do
15. Connect output of Cx to Qr as input
16. for (y ∈ Y that appears in the body of r) do
17. Connect output of Sy to Qr as input
18. if (body of r contains only EDBs) then
19. Union the output of Qr with the initial input of Ch

20. else
21. Union the output of Qr with the recursive input of Ch

22. for (x ∈ X) do
23. if (x has nothing on its initial input) then
24. Instantiate and connect a Scan(∅) to its initial input
25. if (x has nothing on its recursive input) then
26. Instantiate and connect a Scan(∅) to its recursive input

EOSController+

Termina0on+

messages+
IDB+1+Reports+from+

IDBControllers+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#k+ False+ … False+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#k+ False+ … False+

Worker&1& … Worker&n&

Report+#1+ True+ … True+

…+

Report+#i+ False+ … False+

IDB+m+

…+

Figure 4: The internal state of an TerminationController

EOI when it has received at least one EOI from each of its
children since the last time it generated an EOI.
3. The internal design of an operator needs to ensure that,

after it generates an EOI, it does not generate more tuples
until it has fetched some new tuples from its children.
Additionally, an IDBController sends a message to the Ter-

minationController every time it generates an EOI. Each mes-
sage is a triple (R,α, b), where b is a boolean value indicating
whether the IDBController for relation R on worker α gen-
erated any new tuples since the last message. The Termina-
tionController maintains one relation for each IDB with one
column per worker. Whenever it receives a message from a
worker, the TerminationController appends the boolean value
to column α in table R as shown in Figure 4.

When the TerminationController finds a full-false row, in
which which all attribute values in all tables are false, the
TerminationController signals that the query has completed. To
ensure that the above condition correctly identifies the termina-
tion of the query, we need to prove two lemmas:

LEMMA 3.1. When the query terminates, there exists a row
n such that any row i with i ≥ n is a full-false row.

PROOF. The above lemma follows directly from the rules in
the protocol: operators output an EOI in response to receiving
EOIs on all their children and there is no termination condition
for this process. Starting from some time t, if the query will not
generate any more data, then all the following messages must
be false.



LEMMA 3.2. If row k is a full-false row, then any row i,
i > k, is also a full-false row.

PROOF. We prove the lemma by contradiction. Consider
that operators produce EOIs with increasing sequence numbers
(in our protocol, EOIs need not be numbered). We use EOIt,A
to denote the t-th EOI produced by IDBControllerA.A outputs
EOI0,A after consuming its entire initial input. Because an op-
erator only propagates an EOI after receiving at least one EOI
from each of its children, A will be able to produce EOI1,A
only after all IDBControllers B that produce data consumed
by A have produced their EOI0,B . Furthermore, we use s1 to
denote the largest EOI sequence number that A has received
as input before generating EOI1,A, then s1 ≥ 0. 2 By induc-
tion, A outputs EOIi+1,A only after any recursively connected
IDBController B has produced EOIsi+1,B , and si+1 ≥ i.

Consider the case where k is a full-false row but there exist
some true cells following row k. Consider ta, the earliest
tuple that was generated among all the true cells after row k.
By rule 3 in the protocol, ta was generated in response to some
other tuple tb and, by definition of ta, tb must belong to a cell
before row k. On the other hand, since EOIsk,B was generated
before EOIk,A based on the above induction and ta goes after
EOIk,A, then tb must go after EOIsk,B . Since sk ≥ k − 1 and
k is a full-false row, we know tb must live in a cell after row k.
Thus the lemma is proven by contradiction.

3.3 Execution-Time Optimizations
Iterative query processing with aggregation is amenable to

several execution time optimizations. Importantly, as we show
in Section 6.2, selecting different execution strategies for the
same query plan can significantly impact performance.

The first optimization is the decision to execute a query either
synchronously or asynchronously. We use sync and async to
denote these two execution modes respectively. We find that it
is not the case that the latter always outperforms the former for
applications that tolerate asynchrony.

Asynchronous processing has the benefit of resilience against
uneven load distribution because workers process data without
synchronization barriers. This benefit, however, can be offset by
a larger amount of intermediate result tuples generated during
execution. We demonstrate experimentally that, each combi-
nation of iterative application and execution strategy (sync or
async), can generate a different number of intermediate result
tuples, which significantly affects performance. The sync and
async execution modes are supported by the IDBControllers
as described in Section 3.2.1. The system sets the execution
mode when initializing these operators for a query.

A second query execution strategy choice that can yield
dramatically different numbers of intermediate result tuples
is the join pull order. Binary operators, such as joins, can
consume their input data in several ways. One approach is to
fully consume one of the inputs before fetching any data from
the other one. Alternatively, a join can pull from both children
with or without preference if it is a symmetric operator such as
a symmetric hash-join. We observe that, when one child of a
join is an EDB and the other one is a recursive IDB, the join
pull order can significantly affect the number of intermediate

2To see why A can receive EOIs1,B with s1 ≥ 0 before gen-
erating EOI1,A, consider the case where B generates data con-
sumed by A but is itself independent from A.

CC(x,x) :- Edges(x, ) (1)
CC(y,$Min(v)) :- CC(x,v), Edges(x,y) (2)

:- CC(y,v) (3)

IDBController(CC) Scan(Edges) 

Join 

Scan(Edges) 

Figure 5: Datalog query (top) and recursive query plan (bottom)
for connected components. The input EDB Edges(x,y) contains
follower-followee edges.

result tuples. More precisely, we comparatively evaluate three
execution strategies:

• build EDB: The join operator first consumes all data
from one input and builds a hash-table in memory. It then
streams the other input and probes the hash table. Note that it
is only possible to fully consume the input that is not recursive.
• pull IDB: The join only consumes data from its EDB

child if no data is available on the recursive IDB input.
• pull EDB: Opposite to pull IDB, the join only con-

sumes its IDB child if no data is available on the EDB child.
• pull alter: The join pulls alternatively from the two

children without favoring one over the other.

The presence and impact of the intermediate result tuples
depend both on the execution strategy and the application. In
GalaxyEvolution (Figure 2), the number of intermediate result
tuples is the same independent of the execution strategy. How-
ever, for other applications, the number of intermediate tuples
varies when the execution strategy changes. To better illustrate
this point, we consider two additional applications.

Consider the connected components application shown
in Figure 5, which computes the connected components in
a graph. In this application, rule (1) initializes the connected
components: each vertex starts as its own connected compo-
nent with its identifier. Rules (2) and (3) recursively compute
the connected components: For all combinations of facts that
satisfy the bodies, the aggregate function $Min(v) keeps and
propagates only the current minimal component ID v for each
vertex y. The evaluation of $Min(v) is inter-twined with the
discovery of new facts, where intermediate result tuples are gen-
erated until convergence. This is true in both the synchronous
and asynchronous modes, but the number of intermediate result
tuples varies when the join pull order changes in the asyn-
chronous mode. Intuitively, if the join between Edges and the
newly updated component values from CC favors the recur-
sive input (pull IDB execution method), then it prioritizes the
propagation of values closer to convergence, which ultimately
reduces the number of intermediate result tuples.

We also consider another application from the bibliometrics
domain. The application computes the least common ancestor
(LCA) for pairs of publications in a citations graph. An ancestor
a of a paper p is any paper that is transitively cited by p, and
the LCA a of two papers p1 and p2 is the least ancestor of both
p1 and p2. Ancestor order is defined by the triple: (depth, year,
paper id). Figure 6 shows the Datalog and query plan for this
application. The IDB Ancestor uses the aggregate function
$Min to keep the length of the shortest path between two papers.
In the synchronous mode, each iteration i only generates new
pairs of papers with shortest path lengths equal to i. Once such
a tuple is emitted, it will never be replaced by another tuple,
which means there will be no unnecessary intermediate result



Ancestor(b,a,1) :- Cite(b,a), b<seed (1)
Ancestor(p,a,$Min(depth+1)) :- Ancestor(p,b,depth),

Cite(b,a) (2)
LCA(p1,p2,$Min(greater( :- Ancestor(p1,a,d1),
d1,d2),year,a)) Ancestor(p2,a,d2),

Paper(a,year), p1<p2 (3)

IDBController(Ancestor) Scan(Cite) 

Join 

Scan(Paper) 

Join 

IDBController(LCA) 

Join 

Scan(Cite) 

Filter 

Figure 6: Datalog query (top) and recursive query plan (bottom)
for LCA. The inputs are two EDBs: Paper(a,year) and Cite(b,a).
The computation produces two outputs: Ancestor(b,a,depth) and
LCA(p1,p2,depth,year,a).

tuples in this mode. In the asynchronous mode, however, a tuple
of Ancestor may be replaced by another tuple with a smaller
path length, which leads to a larger number of intermediate
result tuples. The number of intermediate result tuples grows
even larger in rule (3) with a self-join on Ancestor.

We evaluate the performance implications of these different
execution alternatives on these three applications in Section 6.2.

4. FAILURE HANDLING
Several techniques exist to handle failures during the execu-

tion of iterative queries. The simplest approach is to restart the
entire computation. The most well-known alternatives include
data materialization at synchronization boundaries [14, 18, 47],
checkpointing the state of the entire computation either syn-
chronously [33,36] or asynchronously [31], and restarting using
lineage tracking and periodic checkpoints [40, 49].

An important goal of our work is to develop synchronous
and asynchronous iterative query processing methods that are
simple to add to an existing shared-nothing engine. For this
reason, we focus on failure handling methods that can be im-
plemented by simply inserting failure-handling operators into
query plans rather than modifying all operators (and queues)
with the ability to checkpoint and recover state. We do not
develop a new failure-handling method. Instead, we study fault-
tolerance methods in the context of iterative query plans.

Similar to MapReduce [18] and Hadoop [47], we focus on
fault-tolerance methods that buffer data on the producer side of
data shuffling operators in the query plan. When a shuffle con-
sumer worker fails, the shuffle producer resends the buffered
data to a newly scheduled instance of the failed worker. Unlike
MapReduce, but similar to the River system [11], the upstream
backup methods developed for stream processing engines [26]
and also used with shared-nothing database management sys-
tems [44], we buffer the data in-memory and without blocking.
Figure 7 illustrates the approach. Buffers can spill to disk but
we did not find that necessary in the applications that we used
in the experiments.

For failure detection, we use simple heartbeat messages from
the workers to the master, but we could also use more sophisti-
cated cluster configuration methods [45].

During normal computation, each worker buffers its outgoing
messages to other workers in memory in these shuffle operator
buffers. If a worker fails, the master starts a new worker pro-
cess and reschedules the failed query fragment on that process.

Operators) Shuffle)
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Worker)1)

Operators) Shuffle)
Worker)n)

Worker)k)

Buffer)of)worker)k)

Buffer)of)worker)k)

Resend)

Resend)

Worker)k’)

Figure 7: Fault-tolerance through data buffering in shuffle pro-
ducer operators. When worker k fails, a new worker is re-
scheduled and all other workers re-send their buffered data.

The approach could also recover the failed fragments in paral-
lel using multiple workers to speed-up recovery [40, 49]. The
newly scheduled fragments process the iterative query from the
beginning, while all other workers resend their buffered data.

The above failure handling methods are known. Our con-
tribution is to study how amenable iterative computations are
to optimizations that are possible for these buffer-based fault-
tolerance methods. We study the following optimizations:
• Append Buffer: Buffer all data in FIFO queues with no

optimization.
• Aggregate Buffer: The idea is equivalent to using

a MapReduce combiner. In the case when the data being
buffered is part of an IDB with aggregation, the data can be
partially aggregated at the sender.
• Prioritized Buffer: Prior work [50] has shown that

prioritizing the execution of specific tuples can speed-up con-
vergence of iterative computations. For example, in the case
of Connected Components, prioritizing tuples with the low-
est component IDs can help to propagate these lower values
faster. The idea of the prioritized buffer is to support such
prioritization during failure recovery be re-ordering tuples in
the buffer based on an application-specific priority function.
For Connected Components, the sort order is increasing on
component ID.
We empirically compare the overhead and recovery time of

the above failure-handling methods in Section 6.3.

5. IMPLEMENTATION
We implement our approach in the Myria [5,25] data manage-

ment system. Myria’s query execution layer, called MyriaX, is
a shared-nothing distributed engine, where there is one master
node and multiple worker nodes. As in HadoopDB [7], datasets
ingested into Myria are sharded into PostgreSQL databases
local to each node. MyriaX can read from other sources but we
use PostgreSQL in our experiments. Once data is read out of
PostgreSQL it is processed entirely in memory.

MyriaX is a relational engine. Query plans comprise re-
lational algebra operators that are partitioned across work-
ers. To distribute data across operator partitions, we use hash-
partitioning and insert data shuffling operators to perform data
re-distribution when necessary. Within each worker, query exe-
cution is pull-based: each operator produces output by pulling
data from its children and returning it to its parent. Commu-
nication between workers is push-based: producer operators
aggressively push data to consumers, with backpressure-based
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Figure 8: A comparison of Spark and MyriaX on four queries:
Select (R(x,y) :- Twitter(x,y), x < 5000000), aggre-
gate (R(x,sum(y)) :- Twitter(x,y)), join (R(x,z) :-
Twitter(x,y), Twitter(y,z)), and connected components.
MyriaX completes these queries 1.5× to 10× faster on average
than Spark. For connected components, Spark (using GraphX)
runs out of memory for small cluster sizes and large data.

flow control used to balance the rates of data production and
consumption while keeping the dataflow pipeline full. MyriaX
processes tuples in batches to remove function call and network
protocol overheads.

To justify our choice of the Myria engine for the implemen-
tation and evaluation of recursive query plans, we compare
Myria’s basic query execution performance to Spark [49], a
state-of-the-art engine that includes support for synchronous
iterative computations.

Figure 8 shows the results 3, 4. Each bar shows the ratio of
query execution time of Spark over Myria. Selection, aggre-
gation and connected components are running on top of the
full Twitter [29] dataset, which contains approximately 41 mil-
lion vertices and 1.5 billion edges of the “follower, followee”
relationships. For join, we use a subset of Twitter, which con-
tains 60 thousand vertices and 1.5 million edges, because Spark
could not produce results when a larger subset was used due to
large memory usage. The join result has around 400 billion tu-
ples. In all cases, Myria outperforms Spark with also a smaller
variance in query execution times. These experiments illustrate
that MyriaX achieves state of the art performance on standard
queries, including iterative queries and is thus a good platform
for the study of the performance differences between recursive
query plan execution methods presented in this paper.

6. EVALUATION
In this section, we evaluate the performance of our recursive

query plans. The experiments address the following: (1) Does
asynchronous query evaluation always lead to the fastest run
times?, (2) Do the variants of asynchronous evaluation (Sec-
tion 3.3) matter? When does each variant lead to the fastest
query run time and why?, (3) Which fault-tolerance approach
yields the best trade-off between run time overhead and failure
recovery time?

We evaluate our techniques using three applications and
datasets:

• Connected Components (Figure 5): We compute the con-
nected components on a subset of the Twitter graph [29],
which contains 21 million vertices and 776 million edges. To
study how the graph degree distribution may affect results, we
also compute the connected components for three synthetic
graphs generated using Snap [30]. These graphs are power-
law graphs obtained by varying the exponent of the power

3Results are generated in memory, not materialized to disk.
4Here we use round-robin partitioning for all datasets in Myria
to make it a fair comparison with Spark and HDFS.
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Figure 9: Connected Components: query run times and resource
consumption.

law distribution. Each graph has 21 million vertices and either
192 (dense), 81 (medium), or 20 (sparse) million edges.
• GalaxyEvolution (Figure 2): We compute galactic merger

graphs on an astronomy simulation [6] that is 80GB in size
with 27 timesteps.
• LCA (Figure 6): We determine the least common ancestor

in a real bibliometrics dataset obtained from a UW collabora-
tor containing 2 million papers and 8 million citations.

6.1 Experimental Method
We run all experiments using our Myria prototype imple-

mentation (Section 5) in a 16-node shared-nothing cluster inter-
connected by 10 Gbps Ethernet. Each machine has four Intel
Xeon CPU E5-2430L 2.00GHz processors with 6 cores, 64GB
DDR3 RAM and four 7200rpm hard drives. We vary cluster
size using 8 or 16 machines with 1 to 4 worker processes each.

In each experiment, we measure the run time and resource
consumption of each query while it executes until convergence.
We report the query run time, total CPU time across all workers,
total network I/O (number of tuples sent), and the maximum
memory consumption for the entire query (number of tuples in
operator states and buffers). All queries are executed five times,
and we report the average values along with min/max values as
error bars. Unless stated otherwise, we use round-robin parti-
tioning for the base data (EDBs), hash-based partitioning for
the operators in the query plans, present resource consump-
tion results for the 32-worker cluster configuration (other sizes
exhibit the same trends), and normalize the figures to the re-
source consumption of the best evaluation strategy to enable
comparison across resource types.

6.2 Execution Model
In this section, we evaluate the performance of the various

execution models described in Section 3.3. In particular, we
evaluate synchronous versus asynchronous execution strategies
and, for asynchronous execution, compare how EDB-first, IDB-
first, or balanced pull orders affect convergence.

6.2.1 Connected Components
Figure 9 shows the query run time and resource consumption

results for Connected Components on Twitter: we find that
using asynchronous execution and preferring new IDB results
((async, pull IDB)) yields both the fastest query run time
and the lowest overall resource utilization. Synchronous itera-
tion is about a factor of 2 slower. This result is expected, as the
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Figure 10: Connected Components on synthetic datasets: rela-
tive resource consumption of different execution models with 32
workers. (Async, pull IDB) serves as reference.

benefits of asynchronous execution for Connected Components
have been widely reported [35, 38].

However, we surprisingly find that synchronous iteration is
significantly faster than (async, pull EDB) and (async,

build EDB). Asynchronous models range from 2× faster to
6× slower than synchronous, depending on how they propagate
data. For this query, pulling from the IDB as much as possible
helps to propagate small component IDs faster across the net-
work to CC on remote nodes. This helps reduce the amount of
intermediate result tuples significantly and thus achieves faster
convergence and lower resource consumption. In contrast, the
strategies that prefer to load the EDB into memory generate
many intermediate tuples that are later replaced; build EDB

is slightly faster than pull EDB because it only builds a single
hash table, saving some computation.

The synchronous model achieves a middle ground between
the asynchronous strategies. It is slower than (async, pull

IDB) because of the global barrier between each iteration step.
However, it is able to aggregate away intermediate results at
the barriers, and this reduction in redundant work dominates
the EDB strategies. The sizes of intermediate results are imme-
diately visible among all four techniques when considering the
network I/O: (async, pull IDB) shuffles fewer than one
quarter of the tuples of the other asynchronous methods.

Figure 10 shows the results on the synthetic datasets. We
only show the resource consumption of the dense and the sparse
datasets because the pattern of the medium dataset falls between
them. The dense dataset yields similar results to the Twitter
dataset. In contrast, for the sparse dataset, sync becomes the
slowest strategy in terms of query run time. This is caused
by the long tail of the sparse graph. However, for other types
of resource consumption, sync still sits in between the two
asynchronous strategies, which is similar to the Twitter dataset.

To our knowledge, even though Connected Components is
such a well-studied problem, no prior report has illustrated
the subtleties in how strongly the choice of execution strategy
affects distributed system performance.

6.2.2 GalaxyEvolution
An important benefit of our approach is its focus on general-

purpose Datalog programs as opposed to focusing only on
processing graphs as in the case of SociaLite [38, 39] and
several other engines [31, 46]. In GalaxyEvolution, the input
data is a relation tracking particles through galaxies over time,
and the goal is to compute the historical merger graph for a set
of galaxies of interest at present day. As we described above,
there are two ways to query the data. One approach Figure 1
first computes a full Edges relation for the galaxies in the
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Figure 11: GalaxyEvolution: query run times and resource con-
sumption, two-step versus recursive Datalog.
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Figure 12: GalaxyEvolution: query run times and resource con-
sumption.

simulation, in essence a full graph of galaxies, then extracts
the sub-graphs reachable from the galaxies of interest. The
alternate approach (Figure 2) represents the entire computation
directly using recursive Datalog with our novel support for
bag-monotonic aggregation.

In this experiment, we randomly select one percent of the
present day galaxies as the groups of interest. We compare our
novel recursive Datalog plan (the choice of strategy does not
matter, for reasons we discuss below) to the two-step approach
using two execution models: pull alter for the join in step
1 or build EDB for building the EDB hash table first since
they have different memory consumption on hash tables. As
the results in Figure 11 show, using recursive Datalog leads
to a 25% faster total run time and a lower resource utilization
except for memory. The performance and network I/O gains are
explained because we avoid the computation of unnecessary
Edges. The higher memory utilization comes from having both
recursive join operators active at the same time in one query
rather than computing them one at a time in two separate steps.

Next, we focus on the recursive Datalog approach. Figure 12
shows the performance of different execution methods. To em-
phasize the differences between these models, we change the
selectivity of the GalaxyEvolution query by using all galaxies
in the groups of interest and also lowering the threshold to
ensure that the bottleneck of the query is not the disk I/O.

As we can see, (async, pull EDB) and (async, build

EDB) yield the lowest run time. The latter does so with less
memory because it never builds a hash table for the IDB in-
put. These results are in contrast with Connected Components,
where (async, pull IDB) is the most efficient execution
model. The key reason is that there are no invalid intermediate
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Figure 13: LCA: query run times and resource consumption.

results as GalaxyEvolution converges to a fixpoint; each step
learns new facts about the next timestamp. Hence, prioritiz-
ing the IDB does not help to converge faster, and instead the
symmetric joins employed by pull IDB and pull EDB spend
time updating two hash tables, though pull EDB finishes one
child and switches to a single-sided join earlier. The sync uses
the same amount of resources as the best async methods but it
is slower because of the global barrier.

6.2.3 Least Common Ancestor
Figure 13 shows the performance results for the LCA appli-

cation. As the Datalog program is essentially stratified by depth,
the synchronous execution model always finds ancestors at the
lowest depth and has no unnecessary intermediate result tuples
in the Ancestor relation. In contrast, the asynchronous model
generates many such intermediate result tuples in Ancestor,
and even more such tuples are generated when Ancestor is
joined with itself to compute the LCA relation. Because of the
large number of intermediate result tuples, and their quadratic
impact on result size, all async strategies yield much worse
performance than sync. In general, the three async models
have similar resource consumption numbers when varying the
cluster size, although in this figure, (async, build EDB)

slightly outperforms the other methods.

6.2.4 Summary
In summary, our experiments show the following trends:
• Asynchronous query evaluation does not always lead

to the fastest query run times. For Connected Components
async only works well combined with the right execution
strategy (join pull order), and for stratified applications like
LCA, asynchronous query evaluation performs unnecessary
work that synchronous evaluation can avoid.
• The variants of asynchronous evaluation (Section 3.3)

have a big impact on query run time. Our study of Connected
Components shows, for the first time, that variants can signifi-
cantly affect performance. The system should favor propagat-
ing newly-generated IDB tuples only when it will not generate
many intermediate result tuples; otherwise using single-sided
joins with fewer hash tables saves computation.

6.3 Failure Handling
In this subsection, we evaluate the failure-handling ap-

proaches described in Section 4 on the same three applications.
For each query, we first evaluate the resource consumption
overhead of fault-tolerance in the absence of failures. Then,
we kill one worker during the query execution, and compare
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Figure 14: Connected Components: relative resource consump-
tion of different buffers with 32 workers. Filled bars: no failure,
patterned bars: overhead to recover from a failure. No buffer,
no failure serves as reference. In (b), the memory consumption of
the Append Buffer reaches 9.66 without failures and 9.76 with
failure. It is truncated in the figure.

the total amount of resources used to process the query using
either query restart (No Buffer) or one of the three buffer-
based methods described in Section 4. We measure resource
consumption instead of run time as it measures the total over-
head on the cluster independent of how the recovery tasks are
scheduled. We show the results when killing one worker ap-
proximately 70% of the time into the query execution. Similar
patterns, though with somewhat different values, emerge when
killing a worker earlier during the query execution.

We perform all experiments twice. First, we randomly par-
tition EDBs. These EDBs must be shuffled during the query
execution. Second, we hash-partition EDBs before the query
execution such that they only need to be read locally. The dif-
ference between the two approaches lies only in the number of
shuffle operators and in-memory buffers: when EDBs are hash-
partitioned, shuffles after scans are not needed, which saves
in-memory buffers. We find that all the trends are identical for
both scenarios. The overheads are uniformly somewhat larger
when an extra shuffle operator is added. We thus only show the
results with the hash-partitioned EDBs.

Figure 14 shows the fault-tolerance overheads of the
(async, pull IDB) or (async, pull EDB) execution
methods. Each bar represents the ratio of resource utilization
of one buffer type compared with execution without any failure
handling. The filled portions at the bottom show the ratios in
the absence of failures, while the portions with diagonal stripes
on top show the additional overhead to recover from a failure.

In the absence of failures, maintaining buffers in shuffle op-
erators adds overhead. Basic Append buffers add significant
memory overhead, especially for (async, pull EDB) as it
generates more intermediate tuples. The Aggregate and Priori-
tized buffers dramatically cut memory and network I/O over-
heads while only minimally increasing CPU overheads. These
two methods have even lower network I/O than no buffering
due to the data aggregation they perform before shuffling.

In the case of failure, all three buffer-based methods incurred
negligible overhead due to failure recovery. Because this over-
head is negligible, the extra work of sorting tuples in the buffer
to prioritize the execution is unnecessary. As a result, the Aggre-
gate Buffer delivers the best trade-off in terms of total resource
consumption with or without failures.

Figure 15 shows the results for the GalaxyEvolution applica-
tion. Aggregate Buffer and Prioritized Buffer are not applicable
to this application since the only aggregate function is $Count.
Similar to Connected Components, using Append Buffer con-
sumes more memory during normal execution, but saves CPU
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Figure 15: GalaxyEvolution: relative resource consumption of
different buffers with 32 workers. Filled bars: no failure, pat-
terned bars: overhead to recover from a failure. No buffer, no
failure serves as reference.

Priori:zed$Buffer$ Aggregate$Buffer$ Append$Buffer$ No$Buffer$

CPU	   Network	  I/O	   Memory	  
0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

Ra
#o

	  

14.44	  (+0.53)	  

(a) Pull from IDB
CPU	   Network	  I/O	   Memory	  

0	  

0.5	  

1	  

1.5	  

2	  

2.5	  

Ra
#o

	  
13.92	  (+1.76)	  

(b) Pull from EDB

Figure 16: LCA: relative resource consumption of different
buffers with 32 workers. Filled bars: no failure, patterned bars:
overhead to recover from a failure. No buffer, no failure serves
as reference. The memory consumption of the Append Buffer
reaches 14.44 without failures and 14.97 with failure in (a), and
13.92 without failures and 15.68 with failure in (b). They are trun-
cated in the figure.

time and network bandwidth in case of failures. Once again, the
total resource consumption is nearly identical for an execution
without failure or one with one failed worker.

Finally, Figure 16 shows the results for LCA. The trends are
the same as for Connected Components. An interesting effect is
that the early aggregation in the recovery buffers reduces total
CPU consumption even in the absence of failures. Importantly,
total resource utilization in the presence of a failure is, once
again, nearly identical to the resource utilization without failure
for all three buffer-based methods showing that prioritization
during recovery is not necessary.

In summary, a lightweight buffer-based method for failure
handling yields only a small increase in CPU utilization in
the absence of failures, yet can recover from failures with
negligible added CPU cost. The memory overhead of data
buffering can be large but extending the buffers with early
aggregates dramatically cuts these costs, which stay within
2X in all three applications tested. Interestingly, the failure-
handling extensions reduce network I/O even without failures.

7. RELATED WORK
Adaptive Query Processing. The Eddy query processing

mechanism [12] dynamically reorders operators in a query plan.
It detects places where the reordering can happen, and routes
tuples iteratively through operators based on costs. In contrast,
our work focuses on query plans that are static but have loops.

Iterative MapReduce. MapReduce [18] and Hadoop [47]
are known to be inefficient for iterative applications and sev-
eral systems have been developed to address this limitation
including HaLoop [14] and Twister [19]. Besides supporting
iterations, PrIter [50] also provides the ability to prioritize the
execution of subsets of data. OptIQ [37] uses program analysis
to detect loop-variant data and evaluate it incrementally. [8]
observes that recursive tasks only deliver output at the end

and thus increases the cost of fault-tolerance. In contrast to
our work, systems that extend Hadoop can only support syn-
chronous iterations.

Synchronous-only systems. Beyond MapReduce, multiple
systems have been designed for iterative applications and have
introduced their own programming models. Some of them fo-
cus on graph applications, while others have more general
programming models. In Pregel [33], a program consists of
iterations, and in each iteration vertices can receive messages
from the previous iteration, update states, and send messages
out. Pregelix [15], which is built on top of Hyracks [13], is
similar to Pregel but also supports both in-memory and out-of-
core workloads efficiently. GraphX [24] is a graph processing
framework built on top of Spark [49], a distributed in-memory
dataflow engine. REX [35] provides a programming model that
focuses on delivering deltas across iterations. All these systems
focus on synchronous iterative computations.

Systems that also support asynchronous iterations.
These systems generally have programming models that are
based on message passing between units, such as graph vertices.
They typically provide a set of low-level interfaces for users to
implement their own applications. Some of these systems are
specialized for graph processing, such as GraphLab [31] and
Grace [46], while others are more general. Stratosphere [21]
focuses on incremental iteration evaluation with different gran-
ularities: superstep for a full iteration and microstep for a single
tuple. Naiad [36] proposes a general-purpose dataflow frame-
work that supports nested loops. epiC [28] adopts the Actor-like
programming model to encapsulate various parallel processing
models into one system. To choose between a synchronous
and asynchronous model, PowerSwitch [48] does the first com-
parison and comes up with a cost model to guide the switch
between the two models. In contrast, our approach generates
query plans from Datalog programs and these plan require only
small changes to an existing shared-nothing system.

Datalog Evaluation Systems. Several systems focus on
evaluating Datalog (with extensions) or equivalent high-level
declarative languages. LogicBlox [4] is a single-machine com-
mercial system that focuses on Datalog evaluation. In con-
trast, we focus on a shared-nothing implementation. GLog [22]
provides a language similar to Datalog with extensions, then
translates such a program into MapReduce jobs, which support
only synchronous iterations. SociaLite [38, 39] is a distributed
system that evaluates Datalog programs with meet aggregate
functions. Asynchronous execution is supported within each
epoch but not for the entire program. More importantly, the
implementation is based on code-generation instead of having
a general-purpose query engine. DeAL [41] is a single-machine
Datalog evaluation system with support for aggregate func-
tions such as Min/Max and Sum/Count. CALM [10] is a set
of principles that connect distributed consistency with logical
monotonicity, which leads to the Bloom [10] language. Bloom
helps users identify unnecessary coordination. BloomL [16] is
an extension to Bloom [10] with lattices, but without support
for asynchronous evaluation on them.

Iterations in Scientific Workflows The Orbit [17] opera-
tor provides support for the iterative processing of workflow
fragments. In contrast, our work focuses on Datalog programs.

Failure handling. Discussed in Section 4.

8. CONCLUSION AND FUTURE WORK



This paper developed an approach for large-scale iterative
data analytics that combines the benefits of many existing sys-
tems: Users express their analysis in recursive Datalog with
aggregation, which simplifies the expression of analytics from a
variety of application domains. The system executes the analy-
sis using parallel query plans that require only small extensions
to an existing shared-nothing engine yet deliver the full power
of incremental synchronous and asynchronous query evaluation
even for query plans with multiple recursive IDBs. Finally, we
empirically evaluate when different variants of query execution
and failure handling methods deliver the fastest query run time
for different applications. We find that no single method out-
performs others. An important area of future work is thus to
develop a cost-based optimizer to select the least-cost plan for
each application including choosing between synchronous and
asynchronous execution and selecting the pull order for each
join operator. An alternate approach is to explore an Eddy [12]
style executor that dynamically changes these choices based on
the observed query performance.
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