
Sensor Data Stream Exploration
for Monitoring Applications

Shengliang Xu and Magdalena Balazinska
Department of Computer Science & Engineering

University of Washington, Seattle, WA, USA

{slxu, magda}@cs.washington.edu

ABSTRACT
This paper presents StreamXPlore, a system that enables
users to explore historical stream data in order to de-
termine what events to monitor in the future. At the
heart of StreamXPlore is a new event modeling mecha-
nism. StreamXPlore enables the specification, analysis, and
mining of these new types of events. Event analysis en-
ables event refinement using data-cube-style slice, dice, drill-
down, and roll-up operations. Event data mining consists of
event clustering for pattern identification. Preliminary ex-
periments on a real stream of hydro-sensor data show that
the proposed exploration mechanisms can indeed be helpful
in identifying interesting patterns and are sufficiently fast
for exploration of gigabyte-size stream repositories.

1. INTRODUCTION
Data stream management systems (DSMSs) (e.g., [1, 6,

22, 24]) are effective tools for building sensing applica-
tions. DSMSs greatly simplify the development of monitor-
ing applications because developers or end-users only need
to declaratively express the events they are interested in
monitoring and the DSMS takes care of the rest.

The challenge, however, is that, in a DSMS, users are ex-
pected to precisely specify their queries. A query specifica-
tion includes precise patterns to extract and any parameter
values including window sizes. Users can have difficulty in
specifying such queries directly for several reasons:

Need for task- or subject-specific information. Many mon-
itoring queries need subject- or task-specific information.
Such queries cannot easily be constructed without informa-
tion about the subject or task. For example, in an elder-care
monitoring application, a nurse may want to monitor when
an elder goes to the bathroom too frequently as this can be
an indicator of poor sleep quality and a predictor for falls.
The question here is what is the meaning of “frequently”,
i.e., what should be the value of the threshold in the query.
Different people have different habits at night. It is impossi-
ble for the nurses to set a threshold without familiarity with
the monitored subject.

Vague information needs. A user may be aware that some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
DMSN ’11
Copyright 2011.

conditions need to be monitored, but he may not be able
to give an exact description. For example, a nurse may be
aware that the actions of an elder at night can be indicators
of health problems, but he may be unsure which actions to
monitor: should there be an alert when the total number
of activities at night exceeds a threshold or only the total
number of bathroom visits or both?

Unknown patterns. No matter how profound a user’s ex-
pertise of the monitored environment, a user may still miss
important events that should be monitored. As an exam-
ple, a nurse may have set up queries to monitor an elder’s
total level of activity, diet, and night actions, but she may
be unaware that the elder sometimes forgets to shower.

To address the above challenges, we are building a stream
data exploration system called StreamXPlore. The goal is
to help users identify what monitoring queries to specify by
examining historical stream data. At the heart of StreamX-
Plore is a new modeling mechanism for events. We define an
event to be a subset of a stream. StreamXPlore allows users
to specify events using either a time-window, or a tuple-
window. While windows are known concepts in the stream-
processing literature [2, 5], the novelty of our work lies in
what we do with their contents. Instead of using windows
as a mechanism for bounding stream aggregations, joins, or
pattern matches, we consider the substream within a win-
dow as a first-class citizen. Each substream within a window
becomes an event of its own.

StreamXPlore extracts series of such events and enables
users to study them and refine them through analysis and
mining. During analysis, the events are presented to users
in the form of multidimensional cubes similar to OLAP data
cubes [11] and the user can study them and refine them using
standard slice/dice and roll-up/drill-down operations (e.g.,
an event specified as “All activities between 10pm and 6am”
can be refined to “Only bathroom activities between 11pm
and 5am” or “Count of the number of bathroom activities
every hour between 10pm and 6am”). Event mining can help
identify patterns in a series of events. Currently, our system
enables event clustering (e.g., “There is one bathroom event
on most days, sometimes none, and in a few cases two or
more”), which can help identify groups of similar events.
We leave additional mining algorithms for future work.

We evaluate StreamXPlore on a HydroSense dataset [9],
which is a real data stream of water event records for dif-
ferent fixtures, such as shower, bath faucet, kitchen faucet,
etc. collected in four houses over a 33 day period. Prelim-
inary experimental results show that our data exploration
mechanisms are able to help identify interesting patterns in



data and are sufficiently fast for a user to interactively ex-
plore stream warehouses on the scale of at least a gigabyte.
While motivated by exploring sensor data streams, our ap-
proach is applicable to any stream warehouse.

2. RELATED WORK
Existing DSMSs (e.g., [1, 2, 6, 22, 24]) enable users to

ask continuous queries over data streams. Our goal, in this
paper, is to help users explore stream archives in order to
lower the barrier to articulating such queries.

Several systems extend DSMSs with stream ware-
houses [3, 4, 8, 10, 23]. We propose a specific method for
exploring such archives. Liu et al. [19] proposed an E-Cube
system to accomplish near real-time OLAP on stream data
for decision making. Their proposed method shares some
similarity with ours but the goal of our effort is to ease the
query construction for the users, while their approach re-
quires that users know precisely what patterns to extract
from streams. Han et al. [12] and Lo et al. [20] also devel-
oped OLAP techniques for stream data. The former develop
techniques to build a single large cube over an entire stream.
The latter extended the data cube model by adding stream
specific features such as pattern-based sequence summariza-
tion. In this paper, we take a radically different approach
where we enable users to analyze and mine a new type of
stream events all together. In earlier work [4, 17], we pro-
posed the idea of clustering events on streams using complex
context information. While the idea of clustering events is
shared with this paper, our prior work used a different data
model and had a different purpose, that of explaining newly
observed events by showing similar past events.

Database usability has recently gained increased atten-
tion [14, 18]. Most closely related to our work, the QueRIE
system [7] recommends to a user queries asked by other
users. Similarly, in our prior work [16], we developed a
system for auto-completing SQL queries. There also ex-
ists extensive work on visual query specification [25] and
keyword queries [13]. While these systems help users artic-
ulate queries by offering suggestions or simplifying the query
specification interface, we take a different approach in this
paper: we help users explore the raw data in order to find
interesting patterns that can motivate new queries.

3. DATA MODEL
In this section, we present StreamXPlore’s data model.

Definition: Primitive event. A primitive event is a tuple
e conforming to the schema EventType(T, A1, . . . , An).
e represents some real world primitive event such as “Alice
used the kitchen faucet at 10:05am”. T is the time when the
primitive event occurred and A1, . . . , An are value attributes
that describe the primitive event.

A stream of primitive events is an ordered set of primitive
events of the same schema but distinct timestamps (T). Ta-
ble 1 shows an example stream from the HydroSense data
set. A stream database consists of several streams of primi-
tive events and, optionally, standard relations.

Primitive events can be combined to form more complex
events. In this paper, we define an event as follows:

Definition: Event. Given a stream S, an event E is a
subset of primitive events in the stream. Let e1, e2, · · · , en

be the sequence of primitive events in stream S, then E ⊆ S.
That is E ⊆ {e1, e2, · · · , en}.

Table 1: Example stream from the HydroSense
database, where each primitive event corresponds
to the activation of a water fixture in a house

timestamp
value attributes

fixture duration temper.

2010-02-01 08:09:59 Bathroom Sink 26.45097 Cold
2010-02-01 08:20:38 Bathroom Sink 25.30426 Cold
2010-02-01 08:27:25 Kitchen Sink 9.074509 Warm
2010-02-01 20:11:19 Kitchen Sink 7.922266 Cold
2010-02-01 21:50:05 Toilet 27.67681 Cold
2010-02-01 21:50:13 Bathroom Sink 22.66671 Warm
2010-02-01 21:58:01 Shower 927.2068 Warm

Our event definition is purposely general and one could
write a selection query in any of the existing DSMSs (e.g.,
[1, 2, 6, 22, 24]) to extract an event from a stream.

In StreamXPlore, we observe that, during stream ex-
ploration, users are often interested in extracting series of
events, where the events in the series are related in some
desired way. The novelty of our data model is precisely in
capturing such event series, where each event in a series
is a substream. For example, in order to study the nightly
activities of an elder, a nurse may want to extract a series
of events, each one showing the activity of the elder during
one night. Events of interest do not always map onto spe-
cific time intervals. For example, a nurse wanting to examine
the morning routine of an elder may want to see events that
start with the first bathroom use in the morning and last
until the last kitchen use that same morning.

In StreamXPlore, we provide two types of event-series
specifications. The first one is based on sliding-windows [2,
6, 22]. Here, StreamXPlore identifies all primitive events
that fall within each window and outputs them as one event
(e.g., all primitive events that fall within 12am and 5am on
a given day form one event). The second specification de-
fines a time window by specifying predicates on the primitive
events that mark the begin and the end of the window [5]
(e.g., first bathroom to last kitchen use in the morning).
We call the latter tuple-windows. Event-series specifications
are currently the only way for users to extract events in
StreamXPlore. We discuss both further when we present
our language in Section 4.

Definition: Event Series. An event series is a sequence of
events extracted from a stream using either a sliding-window
or a tuple-window specification.

Given an event series, during stream exploration, a user
needs the ability to inspect and compare events. To facili-
tate such exploration, StreamXPlore extracts, displays, and
mines event features, which we define as follows:

Definition: Event Feature. A feature f of an event E =
{e1, e2, ..., eN} is an aggregation γ on the primitive events,
{ei}, selected from E by a predicate p. f = γ(σp(E)).

Since the predicate space is infinite, it would clearly be
infeasible to compute all features. To keep the feature-space
tractable, StreamXPlore uses a constrained set of features
based on hierarchies of primitive event attributes. We call
these features, semantic features.

Hierarchy structures have been widely used in the data
management community, such as in OLAP systems. Fig-
ure 1 shows an example hierarchy on the fixture attribute
from the stream in Table 1. An attribute hierarchy can be
seen as a hierarchy of predicates. For categorical attributes,
each leaf node corresponds to a predicate of the form ai



Figure 1: Example hierarchy for the fixture at-
tribute from the stream in Table 1

hx1 hx2 hx3 

hy3 

hy2 

hy1 

Leaf features 

Hierarchy features 
Hybrid features 

Hybrid features 
hx1 hx2 

hx3 

hy2 

hy1 

hy3 

x1 x2 x3 x4 x5 

y1 

y2 

y3 

y4 

Figure 2: Example semantic feature space with two
dimensions each with a three-level hierarchy.

=’value’, where ai is an attribute in the stream and ’value’
is a value from the active domain (e.g., fixture=‘Shower’ ).
Each inner node in the hierarchy corresponds to the predi-
cate pc1 ∨ pc2 · · · ∨ pcn, where pci is the predicate of the ith

child node. For example, the predicate of the node Bathroom
is fixture=‘Shower’ ∨ fixture=‘Toilet’ ∨ fixture=‘Bathroom
Sink’. Similarly, for numerical attributes (e.g., timestamp),
predicates identify increasingly large ranges of values (e.g.,
root node can cover a 24 hour period, inner nodes can cover
groups of hours identifying the main periods of a day, and
leaf nodes can map onto hours).

Definition: Semantic Feature Space. Given hierarchies
h1, h2, · · · , hH defined on the attributes of a stream S, let
{p(h)} be the set of predicates induced from each node in
hierarchy h. The semantic feature space induced from the
hierarchies is the Cartesian product of the hierarchy nodes,
i.e. {p(h1)} × {p(h2)} · · · × {p(hn)}. Each feature in a
semantic feature space is called a semantic feature.

If we treat each hierarchy as a dimension, a semantic fea-
ture space can be represented by a multidimensional cube,
analogous to an OLAP data cube. Figure 2 illustrates a
semantic feature space induced from two hierarchies.

The semantic feature space comprises three types of fea-
tures: (1) Leaf Features are those semantic features where
each predicate pi ∈ p(hi) comes from a leaf of its correspond-
ing hierarchy; (2) Hierarchy Features are those where each
predicate pi corresponds to a non-leaf node in its hierarchy;
(3) Hybrid Features are all other features.

Let D be the number of dimensions defined on the stream,
and L the number of leaf features, the number of hierar-
chy features is O(L), but the number of hybrid features is
O(2DL). This number thus quickly grows with D. To re-
duce the complexity, StreamXPlore only uses the leaf and
hierarchy features as the features for the events. Although
the hybrid features are dropped, their information is partly
encoded in the leaf and hierarchy features.

Figure 3: StreamXPlore Overview

EventSeries := FILTER SQLPredicate

SlidingWindowEvts | TupleWindowEvts

[STREAM START SQLDatetimeExpression]

[STREAM END SQLDatetimeExpression]

SlidingWindowEvts := SIZE DurationExpression

SLIDE DurationExpression

TupleWindowEvts := W-START SQLPredicate

W-END SQlPredicate [FIRST|LAST]

WITHIN DurationExpression

[ALLOW OVERLAP]

DurationExpression := ([0-9]+d)?([0-9]+h)?

([0-9]+m)?([0-9]+s)?(\.[0-9]+)?

Figure 4: StreamXPlore’s language

4. THE StreamXPlore SYSTEM
This section presents StreamXPlore’s language and anal-

ysis and mining features. Figure 3 shows how these core
components interact within the StreamXPlore system: event
analysis and mining are mostly independant. While event
mining is a one-way process, event analysis is iterative and
produces the input to event mining.

4.1 Event Specification Language
StreamXPlore’s language enables users to specify event

series using either sliding or tuples windows as defined in
Section 3. The language uses a subset of constructs from ex-
isting stream languages in a manner specialized for extract-
ing event series, where each event is a substreams. Figure 4
shows the language grammar, where SQLDatetimeExpres-
sion and SQLPredicate represent the datetime type in SQL
and the SQL where-clause predicate respectively.

We explain the key language features through two illustra-
tive examples, one for each type of window. As first exam-
ple, an event series, where each event comprises all primitive
events between 10pm and 7am on a given day in house ’H2’,
can be expressed as follows.

FILTER house=’H2’
SIZE 9h

SLIDE 24h
STREAM START 2010-02-01 22:00:00

STREAM END 2010-03-05 07:00:00

In the language semantics, the FILTER clause is applied
to the stream first and then the event-series is extracted
as per the sliding-window specification. Optionally, the ex-



hx1 hx2 hx3 

hy3 

hy2 

hx1 hx2 

hx3 

hy2 hy3 x1 x2 x3 x4 x5 

y4 

hx1 hx2 hx3 

hy3 

hy2 

hy1 

(A) Roll-up from y3, y4 to hy2 

hx1 hx2 

hx3 

hy1 

hy3 

x1 x2 x3 x4 x5 

y1 

y2 

(B) Slice the hy1 sub hierarchy and y3 

Figure 5: Illustration of roll-up and slicing for se-
mantic feature space refinement

traction can be performed on some subset of the stream as
indicated by the STREAM START and STREAM END clauses. In
the absence of the STREAM START clause, sliding windows
start at the first primitive event in the stream.

As a second example, a tuple window for morning routine
events in house ‘H2’ can be defined as follows.

FILTER hour(timestamp) >= 6 AND
hour(timestamp) < 10 AND house=’H2’

W-START room=’Bathroom’
W-END room=’Kitchen’ LAST

WITHIN 4h

Here, LAST indicates that the last (rather than the first)
Kitchen event that follows the Bathroom event within four
hours closes the window. Our language also enables users
to indicate whether tuple-windows are allowed to overlap or
not with the ALLOW OVERLAP clause.

4.2 Event Analysis
To perform event analysis, a user submits an event series

specification, a set of hierarchies on attributes of interest,
and an aggregation function. StreamXPlore returns the list
of events in the series together with the Leaf and Hierar-
chy features. The multi-dimensional semantic feature space
defined by these hierarchies is analogous to an OLAP data
cube and StreamXPlore provides the standard roll-up/drill-
down and slice/dice operations for the user to further ana-
lyze the events in the series.

Roll-up/Drill-down. The roll-up/drill-down operations
serve to refine the feature space of events in a series. Given
a hierarchy on a stream attribute, the effect of roll-up is
to remove some subtrees from the hierarchy. Figure 5 (A)
illustrates a roll-up on the y-dimension of the event from Fig-
ure 2. Drill-down is the reverse. Roll-up and drill-down only
change the semantic feature space and the output shown to
the user. They do not change the events themselves.

Slice/Dice. As in OLAP, the effect of slicing or dicing
events in a series is to drop some subtrees from the hierar-
chies. Figure 5 (B) illustrates a slice that drops the subtrees
rooted at hy1 and y3. Slice/Dice change both the semantic
feature space and the events. They filter-out the primitive
tuples from the events that satisfy the dropped-subtree pred-
icates. As an example, for the hierarchy from Figure 1, if
we slice away the ‘Kitchen’ node, all the primitive tuples
satisfying fixture=‘Kitchen Sink’ or fixture=‘Dish Washing
Machine’ will be filtered out from all the events in the series.

The above operations form the basis for interactive event
browsing and refinement. In our current prototype, users
perform these operations by specifying different attribute
hierarchies and aggregation functions.

… … 

x1,y1 

x1,y2 

x1,y3 

x1,y4 x5,y4 

hx1,hy1 

hx1,hy2 

hx1,hy3 

hx3,hy3 

Leaf Features 

Hierarchy Features 

hx1 hx2 hx3 

hy3 

hy2 

hy1 

x1 x2 x3 x4 x5 

y1 

y2 

y3 

y4 

Figure 6: Feature vector representation of events.

4.3 Event Mining
OLAP-style analysis can help a user explore a series of

events. Event mining can further help organize the events
in the series. In particular, we propose the use of clustering
to group events based on their similarity.

For event mining, StreamXPlore organizes the semantic
features of an event into a feature vector as illustrated in
Figure 6. Event feature vectors serve to calculate distances
between events. Any distance measure in Lp space, e.g.,
Manhattan or Euclidean distance, can be used.

While computing distances, features can be given differ-
ent weights. To compute these weights, we propose to bor-
row techniques from information retrieval (IR), in particular
their popular TF-IDF [15] weighting scheme. In our setting,
for a feature f with predicate p(f) on an event e in the series
of events E, TF-IDF can be defined as:

TFIDF = count(σp(f)(e))× log(
|E|

|Ematch|
)

where Ematch = {e′ ∈ E|count(σp(f)(e
′)) > 0}

For each vector, this weighting scheme highlights the fea-
tures that are most distinguishable: features that are promi-
nent in this vector yet also occur rarely in other vectors have
highest weights.

When data streams come from sensors, they typically con-
tain noise, which affects StreamXPlore in two ways: (1)
some tuple-windows may go undetected and (2) distances
between some events may be incorrect, leading to noisy clus-
tering. These inaccuracies, however, are in fact a system fea-
ture. StreamXPlore’s goal is to help users explore a sensor
data stream as it is. Exploration can thus help uncover and
partly assess the extent and impact of sensor inaccuracies.

In summary, while a user could use existing tools to man-
ually perform the extraction, analysis, and minig of an event
series in a stream, StreamXPlore offers a specialized data-
model and interface to facilitate this task.

5. EVALUATION
In this section, we present details of StreamXPlore’s pro-

totype implementation and report on preliminary results ex-
ploring a real sensor data stream.

System implementation. In our prototype, SQL Server
2008 serves as back-end stream store. Event identification
is implemented by a Python script that executes a series
of SQL queries. Algorithms 1 and 2 show the details of
event extraction for the sliding- and tuple-windows respec-
tively. The data-cube-based event refinement is performed
by directly modifying the event specification, including the



Algorithm 1: SlidingWindow Event Extraction

Input: Event tuple stream S, filter predicate P f , window size
Dw, slide Ds, optional starting and ending timestamps
Ts and Te

Output: A list of sliding window events L
Let L be an empty list, let T ′ = Ts or output of SELECT1
MIN(timestamp) FROM S, and let Te be the output of SELECT
MAX(timestamp) FROM S if Te not given.
repeat2

Execute: SELECT * FROM S WHERE timestamp>= T ′ AND3

timestamp< T ′ + Dw and P f

Assign output to new event E. Append E to L4

Let T ′=T ′ + Ds5

until T ′ > Te ;6

Return L7

Algorithm 2: TupleWindow Event Extraction.

Input: Event tuple stream S, filter predicate P f , start predicate
P s, end predicate P e, within size Dw, first-or-last flag
F , optional start and end timestamps Ts and Te

Output: A list of events L
If not given, initialize Ts and Te to the beginning and end1
stream timestamps respectively;
Let L be an empty list; Let Tee = Ts2
Let Ls be the list of potential event start timestamps given by3

SELECT timestamp FROM S WHERE P s and P f and timestamp > Ts

and timestamp < Te

foreach timestamp Tes in Ls where Tes > Tee do4
Let Le be the output of SELECT timestamp FROM S WHERE5
timestamp>=Tes and timestamp<Dw+Tes and timestamp<Te

and P f and P e order by timestamp
if the first or last flag F is set to be first then6

Set Tee to be the first timestamp from Le7
else8

Set Tee to be the last timestamp from Le9

Execute SELECT * FROM S WHERE P f and timestamp>= Tes10
and timestamp<Tee

The resultset is an event E. Append E to L.11

Return L12

accompanying concept hierarchy. Vector distances are cal-
culated using Euclidean distance. The clustering algorithm
is K-means, which is borrowed from Scipy and Numpy.

Event Modeling Evaluation. We evaluate StreamX-
Plore using the HydroSense data stream [9]. This stream
comprises water event records for different fixtures, such as
showers, bath faucets, kitchen faucets, etc. collected in four
houses (H1, H2, A1, A2) over a 33-day period from 2010-
02-01 to 2010-03-05. The stream comprises 5956 primitive
events with an average 42.5 events/day/house. In all exper-
iments, events have in the order of hundreds of features.

The first question that we answer is whether StreamX-
Plore can help identify different types of events in
a series, such as normal and abnormal events. We do not
have any manually labeled ground-truth data. However, we
observe that laundry days are one example of objectively
defined abnormal days. These days are characterized by the
use of the washing machine located in the laundry room.
In the dataset, only data from H1, H2 and A2 have laun-
dry events, 2 days for H2, 9 days for H1 and 4 days for
A2. Therefore, we perform clustering only on the data for
these three houses. We use a 24-hour sliding window as
the event specification: (i.e., filter house=‘house name’;

size 24h; slide 24h; start at 2010-02-01 00:00:00;)
We set up separate hierarchies on the timestamp and fix-

ture attributes. The timestamp hierarchy is the same for
all the houses: it has individual hours at the leaves. Hours
are grouped into time-periods of three to five hours, corre-
sponding to the main periods of the day. The root is an

Table 2: Clustering Performance, the % numbers
are the improvements comparing with the .base task

Task Purity F2 RI NMI

H1.base 0.73 0.65 0.48 0.05
H1.wk 0.88/21% 0.89/37% 0.56/17% 0.32/540%
H1.pd 0.85/16% 0.75/15% 0.61/27% 0.25/400%

H2.base 0.97 0.76 0.56 0.31
H2.wk 1.0/3% 0.4/-47% 0.94/68% 0.72/132%
H2.pd 1.0/3% 0.4/-47% 0.94/68% 0.72/132%

A2.base 0.88 0.69 0.55 0.06
A2.wk 0.88/0% 0.73/6% 0.46/-16% 0.13/117%
A2.pd 0.93/6% 0.82/19% 0.70/27% 0.30/400%

entire 24 hour period. The fixture hierarchy is different for
each house and it simply groups fixtures by room.

For all clustering tasks, we use K-means and set the num-
ber of clusters to four.1 We use four because this number
is larger than the two clusters we expect and there may be
unexpected noise in the data.

For each house, we perform three clustering tasks to
test the effect of event refinement (roll-up and slicing).
‘${house}.base’ clusters events using the whole hierarchy
structures. ‘${house}.wk’ clusters events after removing the
Kitchen sub-hierarchy (hierarchy slicing), thus dropping all
features related to the Kitchen. We expect this operation to
improve clustering quality, since we focus on laundry days,
and thus kitchen events add noise to the clusters. Finally,
‘${house}.pd’ is clustering after rolling-up the time hierar-
chy by one level, i.e., the time hierarchy becomes: 0:24{ 0:5,
5:10, 10:14, 14:17, 17:20, 20:24}. This operation drops all
the features that are the most detailed in time. We also ex-
pect this operation to improve cluster quality because laun-
dry events are rare and sparsely distributed. The operation
will not impact the laundry features significantly, while it
will dramatically smooth other daily-routine features and
thus reduce their impact during clustering.

Table 2 shows the clustering results. To measure the clus-
ter quality, we use the following standard measures: purity,
F2, RI, and NMI [21]. As the table shows, in all three ex-
periments, the clustering quality is high. As expected, re-
fining events by rolling-up and ignoring unnecessary details
or slicing and removing unnecessary features significantly
improves the cluster quality overall.

The second question that we answer is whether
StreamXPlore can help identify appropriate param-
eters to use in a monitoring query. As mentioned in
Section 1, an important elder-care query is to identify ab-
normal night activities: “Raise an alert when the number
of fixture utilizations between times T1 and T2 exceeds X”.
We use StreamXPlore to identify the three parameter values
for house H2. For this, we find that a sliding-window spec-
ification for the [10pm,7am] time-frame every day, followed
by a roll-up to get a total count of fixture utilizations every
hour suffice to identify that most nights see no activity in
the [2am,5am] time-period, three nights have only one event,
and one night had an unusually higher three events. This
scenario exemplifies StreamXPlore’s ability to help a user
quickly identify key query parameters (X = 1, T1 = 2am,
and T2 = 5am in this example).

Finally, we study the difference between sliding and

1It is an open problem to select the optimum number of
clusters in any clustering method both manually and auto-
matically. We do not address this problem in this paper.



Table 3: System Performance

table size duration of
event extraction

#tuples #answer
events

4M 2s 18,028 32
100M 2s 546,584 999
1G 2m42s 5,408,400 9,899
10G >32m 45,070,000 82,499

tuple windows using the morning routines of H2. A quick
event extraction for [6am,10am] reveals that most mornings
start with a bathroom event and are followed by bathroom
and kitchen events. We thus define a tuple-window using
the second sample query from Section 4. Scanning through
the resulting 24 events is tedious. However, clustering the
events readily reveals two high-level morning patterns: (1)
16 days see activity both in bathrooms and the kitchen
within the first hour of the event, (2) the remaining 8 days
comprise only bathroom activity for the first hour and then
the kitchen starts being used. Interestingly, while StreamX-
Plore does not perfectly cluster events along these two pat-
terns, it groups similar events together sufficiently to expose
these key trends. Using a sliding- instead of a tuple-window
returns an extra 9 days with no kitchen use in the morning
(1 day with no morning activity), thus providing extra infor-
mation. Events, however, become more difficult to compare
because fixture uses occur at a variety of times rather than
only within the first hour or two of the event start.

Performance. We assess whether our approach can sup-
port interactive exploration. Table 3 shows the time for
our prototype to extract 24h sliding windows for H2 from
an increasingly large, synthetically replicated HydroSense
stream. Our prototype extracts events within a few seconds
in streams up to 100 MB in size and also provides accept-
able performance at 1 GB, which we posit should suffice for
many applications. Performance drops for larger streams
because StreamXPlore extracts each event using a separate
SQL query. With a maximum of 1000 iterations and a 0.001
threshold, clustering takes 0.5s for 4MB, 18s for 100MB,
224s for 1GB, and 2724s for 10GB. However, k-means con-
verges quickly in the initial rounds: 100 iterations produce
acceptable results and reduce processing times to 1.65s for
100M, 21.98s for 1GB and 274.32s for 10GB.

6. CONCLUSION
We presented StreamXPlore, a system for data stream

exploration. StreamXPlore’s key contributions are (1) a new
model for events on streams and (2) a system that enables
the specification, extraction, analysis, and mining of these
new types of events. Preliminary experiments on real data
show that the approach is a promising step toward helping
users identify relevant monitoring queries over sensor data.

Acknowledgments. We thank the anonymous reviewers
for their helpful comments. This work is supported in part
by the National Science Foundation through NSF grant IIS-
0713123 and NSF CDI grant OIA-1028195.

7. REFERENCES
[1] Abadi et. al. . The design of the Borealis stream processing

engine. In Proc. of the Second CIDR Conf., Jan. 2005.

[2] Abadi et. al. Aurora: a new model and architecture for data
stream management. VLDB Journal, 12:120–139, 2003.

[3] Ahuja et. al. Peta-scale data warehousing at Yahoo! In
Proc. of the SIGMOD Conf., pages 855–862, 2009.

[4] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee. Moirae:
History-enhanced monitoring. In Proc. of the Third CIDR
Conf., Jan. 2007.

[5] Botan et al.. Extending XQuery with window functions. In
Proc. of the 33rd VLDB Conf., pages 75–86, 2007.

[6] Chandrasekaran et. al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. of the First
CIDR Conf., Jan. 2003.

[7] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
Proc. of the 21st SSDBM, pages 3–18, 2009.

[8] Franklin et. al. Continuous analytics: Rethinking query
processing in a network-effect world. In Proc. of the Fourth
CIDR Conf., 2009.

[9] Froehlich et. al. HydroSense: infrastructure-mediated
single-point sensing of whole-home water activity. In Proc.
of the 11th Ubicomp Conf., pages 235–244, 2009.

[10] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream warehousing with DataDepot. In Proc. of the
SIGMOD Conf., pages 847–854, 2009.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1:29–53.

[12] Han et. al. Stream cube: An architecture for
multi-dimensional analysis of data streams. Distrib.
Parallel Databases, 18:173–197, September 2005.

[13] V. Hristidis and Y. Papakonstantinou. Discover: keyword
search in relational databases. In Proc. of the 28th VLDB
Conf., pages 670–681, 2002.

[14] Jagadish et. al. Making database systems usable. In Proc.
of the SIGMOD Conf., pages 13–24, 2007.

[15] K. S. Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of Documentation,
28:11–21, 1972.

[16] N. Khoussainova, M. Balazinska, W. Gatterbauer,
Y. Kwon, and D. Suciu. A case for a collaborative query
management system. In Fourth CIDR Conf. – Perspectives,
Jan. 2009.

[17] Y. Kwon, W. Y. Lee, M. Balazinska, and G. Xu. Clustering
events on streams using complex context information. In
Proc. of the 4th MCD Workshop, Dec. 2008.

[18] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng. DBease:
Making database user-friendly and easily accessible. In
Proc. of the Fifth CIDR Conf., pages 45–56, 2011.

[19] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta,
S. Wang, I. Ari, and A. Mehta. E-cube: multi-dimensional
event sequence analysis using hierarchical pattern query
sharing. pages 889–900, 2011.

[20] Lo et. al. OLAP on sequence data. In Proc. of the
SIGMOD Conf., pages 649–660, 2008.

[21] C. D. Manning, P. Raghavan, and H. Schtze. Introduction
to Information Retrieval. 2008.

[22] Motwani et. al. Query processing, approximation, and
resource management in a data stream management
system. In Proc. of the First CIDR Conf., Jan. 2003.

[23] Tufte et. al. Travel time estimation using NiagaraST and
latte. In Proc. of the SIGMOD Conf., pages 1091–1093,
2007.

[24] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In Proc. of the SIGMOD
Conf., pages 407–418, 2006.

[25] M. M. Zloof. Query by example. In Proc. of the May 19-22,
1975, nat. computer conf. and exp., AFIPS ’75, pages
431–438, New York, NY, USA, 1975. ACM.


