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Abstract

Research has shown promise in the design of large scale com-
mon sense probabilistic models to infer human state from
environmental sensor data. These models have made use
of mined and preexisting common sense data and traditional
probabilistic machine learning techniques to improve recog-
nition of the state of everyday human life. In this paper,
we demonstrate effective techniques for structure learning on
graphical models designed for this domain, improving the
SRCS system of (Pentneyet al. 2006) by learning additional
dependencies between variables. Because the models used
for common sense reasoning typically involve a large num-
ber of variables, issues of scale arise in searching for addi-
tional dependencies. We describe how we use data mining
techniques to address this problem and show experimentally
that these techniques improve the accuracy of state predic-
tion. We present techniques to improve prediction the unla-
beled as well as the labeled variable case. At a high level, we
demonstrate progress towards an old goal of AI, learning new
commonsense facts about daily life from sensor data.

Introduction
In recent years, researchers have made increasing progress
in designing systems to recognize the state of the everyday
human environment, orhuman state, from sensor data. Such
systems would be of great use in many areas, such as elder
care, where they could be used to monitor and evaluate pa-
tients with cognitive disorders. Many systems have been de-
veloped that attempt to recognize everyday human activity
through the deployment of dense sensors, e.g. (Wyatt, Phili-
pose, & Choudhury 2005; Tapia, Intille, & Larson 2004;
Lukowiczet al. 2004; Lesteret al. 2005). Developments in
lightweight and inexpensive sensor technology have made
it possible to more easily collect useful information about
everyday life that may be used for inference and reasoning.

In (Pentneyet al. 2006), a system called SRCS, for
State Recognition using Common Sense, was introduced,
which makes use of statistical inference techniques, preex-
isting common sense data, and observations collected from
wearable sensors to reason about human state. To build a
model, SRCS makes use of common sense information from
the Open Mind Indoor Commonsense (OMICS) database
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(Gupta & Korchendorfer 2004), which collects common
sense facts in natural language form from Internet users,
such as “People who are hungry eat” or “A towel is used
in the bathroom”. SRCS uses these facts, along with World
Wide Web data mined with the KnowItAll system of (Et-
zioni et al. 2004), to create a statistical model over ran-
dom variables about human state, such as “The user is in the
kitchen” or “The duster is dirty”. In (Pentneyet al. 2007),
it was shown that conventional machine learning techniques
can improve the performance of the SRCS.

However, considerable room for improvement of the sys-
tem’s prediction exists. The commonsense facts provided
by OMICS offer many useful relationships between objects,
actions, locations, and situations in everyday life. However,
because the OMICS database represents facts collected in
a somewhat haphazard fashion from Internet users, many
gaps in this information exist. For example, the form of the
OMICS database used in SRCS does not provide any rela-
tionship between the use of a pen and the action “write”.

In this work, we consider the improvement of a common
sense reasoning model about human state through structure
learning techniques. Using a small amount of sparsely la-
beled data, we seek to learn new relationships that will be
valuable in human state prediction, effectively filling some
of the “gaps” in existing common sense models, as well as
removing unnecessary relationships. A major issue with
structure learning in graphical models is the scale of the
problem, made worse by the very large SRCS model, which
has thousands of variables and features; we discuss how we
reduce the structural search space for our model using data
mining techniques, and select a set of candidate variables
to search from using sparsely labeled data. In our experi-
ments, we show results demonstrating improved prediction
of queries about daily life with our techniques, and explore
the improvement in performance from using unlabeled vari-
ables in the training data for learning in addition to the la-
beled variables. Our results demonstrate that these tech-
niques have the capacity both to improve prediction of hu-
man state, and to augment models with new common sense
information about daily life. We present some conclusions
and suggestions for future work.



Structure Learning on Undirected Graphical
Models

A Markov random field (MRF)is described by a set of
random variablesX = x1, x2, ...xn, a set of feature
functionsor factors F = {f1, f2, ...fm}, where eachfi

is a function mapping a subset of variablesXfi
⊂ X

to a nonnegative real number, and a set of linear pa-
rametersΛ = λ1, λ2, ...λm. This model can be de-
picted by a graph in which each featurefi represents
a clique amongst all the variables inX it is dependent
upon. The parameterλi represents a linear weight on
the featurefi. The distribution the model represents is
defined byP (X̂) = 1

Z
exp(

∑
i λifi(X̂fi

)), whereZ =
∑

X̂
exp(

∑
i λifi(X̂fi

)) is a normalization constant. Pa-
rameter learning on MRFs is often done using the tech-
nique of maximum likelihood (ML)learning. Given a set
of labeled examplesX1, ...XD, the goal of ML learn-
ing is to find the set of parametersΛ∗ that maximize the
log likelihood LL(X1, ...XD|F, Λ) = log

∏
i P (Xi|Λ) =∑

i log P (Xi|Λ). An additional regularization term is also
commonly used, inducing a tradeoff between likelihood and
simplicity of a model. In (Pentneyet al. 2007), a Gaus-
sian regularization term was used to prevent overfitting and
reduce overflow/underflow issues. The optimized objective
function wasRLL(X1, ...XD|F, Λ) = LL(X1, ...XD|Λ)−
N(Λ|0, η), whereN(Λ|0, η) is a Gaussian function ofΛ
with mean zero and varianceη. To encourage the removal
of features from the graph altogether, one can introduce a
regularization term based on the L1 norm ofΛ, instead of a
Gaussian regularization term, and attempt to maximize the
regularized log-likelihood

RLL(X1, ...XD|F, Λ) = LL(X1, ...XD|Λ) − α‖Λ‖1

The derivative of the L1-norm-regularized likelihood with
respect to a given weightλi will be

∂RLL(X1, ...XD|F, Λ)

∂λi

= fi(Xfi
)−E(Xfi

)−α sign(λi)

Since the gradient of this regularized likelihood contains
a subtracted constant based on the sign ofλi, it can be seen
that the L1-norm regularization encourages all weights in
the graph to move towards zero on each iteration of learning.
α is a parameter controlling the weight of the regularization
term.

L1-norm regularization has been explored by many re-
searchers as a means of reducing the complexity of machine
learning problems and favoring models with minimal pa-
rameters; one notable example is the LASSO algorithm for
linear regression (Tibshirani 1996). L1-norm regularization
for learning in graphical models has been explored in (Lee,
Ganapathi, & Koller 2006) and (Schmidt, Niculescu-Mizil,
& Murphy 2007), among others. There is a slight problem
with this formulation - the gradient function given above is
discontinuous at zero, but proper gradient descent requires a
continuous function and gradient, and this function can thus

not be optimized with this method. We tackled this prob-
lem by using stochastic gradient descent with the continu-
ous approximation∂|Λ|1

∂λi
= 2

π
tan−1( λi

εthresh
) with a small

parameterεthresh and remove features withλi < εthresh.

Incremental Feature Introduction
L1-norm regularization may be used in conjunction with lo-
cal search techniques to define a structure learning algorithm
for undirected graphical models. Many researchers have
performed structure learning on graphical models through
the use ofincremental feature introduction(Della Pietra,
Della Pietra, & Lafferty 1997; McCallum 2003; Lee, Ganap-
athi, & Koller 2006). This involves performing iterations of
parameter learning, perhaps with some form of regulariza-
tion, followed by addition of a single feature of maximal ex-
pected utility according to some measure; this process may
be repeated until added features provide no further utility.
Algorithm 1 defines the conventional incremental-feature-
introduction-based structure learning framework.

Algorithm 1 LEARN-STRUCTURE(X, F, Λ, X̂)

Require: MRF with variable setX , initial featuresetF ,
weight vectorΛ and training datâX

1: for all iterationsi in 1, 2, . . . do
2: Learn maximum-likelihood parametersΛ̂ on (X, F )

3: G = GENERATE-CANDIDATE-SET(X ,F ,X̂)
4: for all candidate featuresφ ∈ G do
5: s(φ) = FEATURE-SCORE(g,X ,F ,Λ̂,X̂)
6: end for
7: Select featureφ∗ = argmaxφs(φ) and addφ∗ to F

8: Terminate loop ifs(φ∗) < ε
9: end for

10: return F, Λ

The routine GENERATE-CANDIDATE-SET returns a
set ofcandidate featuresG, each of which is a feature onX
and which may be considered as a possible addition to the
MRF. The routine FEATURE-SCORE returns a score on a
feature according to some appropriately chosen measure. A
common scoring method is thegain-based method, in which
expected utility of a candidate is measured as theinforma-
tion gainof the feature. The information gain of featuref
is argmaxλf

|RLL(X |F ∪ f, Λ∪λf )−RLL(X |F, Λ), i.e.,
the maximal change in log-likelihood when the featuref is
introduced, given the optimal value of the parameterλf . For
our purposes, we will use the gain-based method, which has
been used in other scenarios as well for successful feature
introduction.

The SRCS System
In (Pentneyet al. 2006), a system called SRCS (State
Recognition with Common Sense) was introduced which
provides a framework for inexpensively collecting and rea-
soning over large amounts of commonsense knowledge
about the everyday world. SRCS collects information from
publicly available large-scale commonsense databases such



as the OMICS database, and parses the facts contained
therein to produce a probabilistic graphical model which
may reason over random variables about the state of the hu-
man environment. Additionally, SRCS uses the KnowItAll
web mining system, described in (Etzioniet al. 2004), to
bootstrap its knowledge and evaluate the reliability of the
facts it parses. In (Pentneyet al. 2007) parameter learning
using stochastic gradient descent to maximize likelihood,
with a small amount of labeled data was used to improve
the accuracy of SRCS’s prediction of state. A full descrip-
tion of SRCS may be found in the cited papers; here we will
briefly describe some of its features.

Each random variable in SRCS represents a Boolean
fact relating everyday objects, actions, and states, such
as state(plate, dirty) (the semantic meaning of
which is “The plate is dirty”.) Feature functions repre-
senting Horn clauses, such aspersonIn(hungry) ⇒
action(eat) (i.e. “A hungry person will eat”), con-
nect the random variables; each Horn clause represented has
two 0-1 indicator feature functions, one set to 1 only when
the clause is satisfied, and another only set to 1 when the
clause is violated. These Horn clauses are initially collected
by automatically parsing the OMICS database into a form
reflecting relationships between Boolean variables. The
Horn clausepersonIn(hungry) ⇒ action(eat),
is created from the OMICS factpeople(hungry,eat),
which represents the same basic concept. Each Horn clause
is used to represent two indicator feature functionsfi and
f̄i, one which is only true when the clause is satisfied and
the other only true when the clause is violated. These fea-
tures are each given a weightλi and λ̄i; initial values of
these weights are collected using the KnowItAll system of
(Etzioni et al. 2004), which uses Web data to find correla-
tions between the concepts represented by SRCS’s random
variables.

KnowItAll is an information retrieval system designed
to extract and evaluate widely known facts (and there-
fore also common sense) from the web. At the heart of
KnowItAll is a template-based system that works as fol-
lows. To evaluate instances of a particular relationship, say
people(Action,Context), KnowItAll uses a small
number of examples of the relation to induce a number of
text templates that exemplify the relation. Using normalized
counts of incidences of these patterns in the web, Know-
ItAll is able to produce a measure of how reliable a par-
ticular Horn clausec may be, given as a scorescore(c) ∈
[0, 1]. SRCS uses these scores as an initial model for semi-
supervised learning of human state giving sparsely labeled
data. For featuresfi and f̄i representing clausec, this
initial model is set with parametersλi = score(c) and
λ̄i = −score(c).

SRCS uses a graphical model to represent the state of
the everyday human environment over time, in which the
state of the world at timet will be represented by the set
of Boolean random variablesXt = x1t

, x2t
, ..., xnt

. Ad-
ditionally, feature functions connect each random variable
xit

and xit+1
to represent a conditional dependency be-

tween the state of the variablexi at t and its state att + 1.
In particular, we choose these feature functions such that

time t time t + 1

Figure 1: Outline of the structure of SRCS’s graphical
model. Each variable represents a Boolean variable (e.g.
state(plate,dirty)), and each clique within a time
slice is a 0-1 indicator feature representing a Horn clause.
Directed arrows represent conditional probabilities on a
variablexit+1 givenxit

.

P (xit+1
= k|xit

= k) = 1 − ε for someε and allk (i.e.
given no other information, variables will stay in the same
state with high probability over time). This structure is rep-
resentable as a dynamic graphical model, with representa-
tions of the state vectorX at time t andt + 1, as seen in
Figure 1. Given evidence vectorsEi ⊂ Xi, this representa-
tion is sufficient for computing the conditional distribution
P (xit

|E1...ET ) via smoothing, not unlike that which can be
performed on dynamic Bayesian networks. In practice, this
distribution is actually approximated using the loopy belief
propagation algorithm of (Pearl 1988); empirically, we find
this approximation to be sufficient, as it often is.

The full SRCS model contains 50,000+ variables and
130,000+ features; for the experiments here, we used a re-
duced model like that used in (Pentneyet al. 2007), which
contained all variables a depth ofd = 2 edges in the model’s
graph from the nodes used for training/testing, resulting in
a model containing 8,764 nodes and 24,465 features per
timeslice.

Reducing Search Space Size with Data Mining
Techniques

One significant challenge in structure learning on a graph of
the scale we are dealing with is the issue ofcandidate gener-
ation- that is, how to find which features to add to the graph
for maximal effectiveness. Certain techniques have been
used for effective generation of candidate features under cer-
tain constraints; these constraints may involve the cardinal-
ity or type of features generated as well as the number of
nodes in the graphical model involved.

Because the timeslice MRF in the SRCS model is very
large, these methods of candidate generation and testing, by
themselves, are infeasible as a means of learning structure
on our timeslice MRF. Even if we restricted feature gen-
eration only to pairwise features of one specific type (e.g.
Horn clauses), there would be millions of potential features
to consider in the graph - too many to consider for repeated
iterations of incremental feature introduction. Adding fea-
tures of larger cardinality or of different types would make
the problem more difficult still. Clearly we need to find an
efficient means of drastically reducing the size of the candi-
date feature space.



Fortunately, we have some foreknowledge of the struc-
ture of our problem. Our feature space consists of Horn
clauses, and the graph contains a great many random vari-
ables that are quite likely to have no significant relationship
of this form to each other. Since our features represent log-
ical rules, however, if we may find a technique for quickly
finding rules that are somewhat likely to be true in our do-
main, this by itself may be sufficient to give us a set of viable
candidate features - we shall call themcandidate candidates.
Finding such rules is a simple matter of finding Horn clauses
that are at leastsomewhatlikely to be true, according to our
training data.

Our issue is thus finding a good set of candidate candi-
dates which covers almost all useful features without being
so large as to be infeasible in practice. The problem of find-
ing frequently satisfied logical sentences in a large database
- a collection of labeled training data may be viewed as
such a database - has been previously considered and re-
searched in the database community. We consider a tech-
nique related to theapriori algorithmof (Agrawal & Srikant
1994), a commonly used algorithm for finding frequently
occuring itemsets in a database. We have a set of timeslices
X̂ = X̂1, ...X̂D each representing an assignment of random
variablesX = x1, ...xn, and we wish to find a subset of
frequently satisfied Horn clauses in the training data relat-
ing the variablesxi. We find a set of candidate candidatesL
through an iterative process. Given a threshold valueγ, we
first find a setL1 of all Horn clauses of length 1 - i.e. single
variables, representing a consequent with no antecedents -
that receive a “score” over some thresholdγ on the training
data. This is the initial set ofcandidate clauses. At each
iterationk, we have a set of candidate clausesLk−1. We
consider every Horn clausec = xi1 ∧xi2 ∧ ...∧xik−1

⇒ xik

of lengthk, where eachxij
∈ X , such that every clause of

lengthk− 1 that may be generated from the variables inc is
found inLk−1. LetLk consist of all such Horn clauses scor-
ing γ or higher. Say we are given variable setX , labeled
dataX̂ = X̂1, ...X̂D, where eacĥXi is a labeling ofX , and
γ. Let count(c) = |{X̂i ∈ X̂|c is satisfied byX̂i} be our
scoring function. The algorithm is thus as follows:

Algorithm 2 GENERATE-CANDIDATE-SET(X, F, X̂, γ)

1: L1 = {{xi}|xi ∈ X, count({� ⇒ xi}) ≥ γ}
2: for all (k = 2; Lk−1 6=; k + +) do
3: Ck = {(xi1 ∧ ... ∧ xik−1

⇒ xik
) : xi1 , ...xik

∈
X, ∀s ⊂ {xi1 , ...xik

}, |s| = k − 1 we have s ∈
Lk−1}

4: Lk = {c ∈ Ck|count(c) ≥ γ}
5: end for
6: return L = (

⋃
k Lk) − (F ∩

⋃
k Lk)

We use this routine for GENERATE-CANDIDATE-SET,
with parameterγ added, in LEARN-STRUCTURE. Each
Horn clause generated represents a candidate 0-1 indicator
feature for incremental feature introduction; clauses already
represented by a feature in the model are discarded. This
algorithm is not guaranteed to find every Horn clause result-

ing in information gain - an event requiring many variables
set to “true” as a precondition might plausibly be missed
by this routine. Intuitively, however, we suspect that such
complex relationships will be uncommon, and we find that
the apriori algorithm discovers a great many clauses offering
significant benefit, and which are intuitively sensible. For
example, when run in our experiments, it discovers the re-
lationshipused(pen) ⇒ action(write with), a
relationship not collected from the parsed OMICS data.

Having selected a set of candidate candidates with the
apriori algorithm, we may then score each feature for in-
clusion for an iteration of incremental feature introduction.
However, in our context, we have a very large number of
variables, many of which may not be labeled in the train-
ing data. We would like to identify a subset of variables for
which candidate candidate generation would be particularly
beneficial.

Selecting Variables for Candidate Search

We also seek to narrow the number of variables to consider
in our candidate search, which we will callcandidate vari-
ables. Variables that are labeled for any time slice in the
training data may be considered for inclusion in candidate
candidates; as mentioned, the training data we deal with will
generally be sparsely labeled, so the set of such variables
will be rather small.

In addition, however, we will consider some of the
unlabeled variables as well. The parameter learning
model presented in (Pentneyet al. 2007) made use of
the initial model given by KnowItAll mining, combined
with Gaussian regularization, to compute maximum like-
lihood on sparsely labeled data. To expand the candidate
variable space, we will also seek to add variables that
are not labeled, but are predicted with a generally high
degree of confidence by this learned model. If a learned
model predicts such variables well, it may be useful to
apply maximum a posteriori (MAP) labeling to these
variables and include them in structure learning. To
compute the confidence of the labeling of nodes, we
compute themean entropyof the distributions given by
filtering. Given partially labeled time slicesE1, ...ED, for
each fully unlabeled variablexi, we computeH(xi) =
− 1

D

∑
t=1...D

∑
xit

P (xit
|E1, ...Et) log P (xit

|E1, ...Et).
The higher the confidence in the labeling ofxi by the
learned model, the lower the value ofH(xi). (If xi is fully
labeled, thenH(xi) = 0). We will select a threshold̄h.
The set of variablesV to consider for candidate candidate
generation will consist of (1) all labeled variables, and
(2) all variables whose mean entropy, as computed from
a model with trained parameters, falls below̄h. As we
increasēh, the set of candidate variables grows; Figure 2
graphs the quantity of variables whose mean entropy falls
below h̄ as a function of̄h given a trained SRCS model on
our data set, showing how the candidate variable set size
increases with̄h.
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Figure 2: Graph of mean entropyh̄ vs. variables with mean
entropy below̄h with trained model.

Weighted Probabilistic Apriori Algorithm
To integrate the partially labeled variables into our candi-
date candidate generation process, we introduce a proba-
bilistic version of the apriori algorithm. We are given a
set of partially labeled time slicesE1, ...ED, where each
Ei ⊂ Xi. We are given candidate variable setV ⊂ X .
For eachxi ∈ Ci and each timeslicet, we may compute
P (xit

|E1, ...Et). (If xit
is labeled asy, then P (xit

=
y|E1, ...Et) = 1.) To computecount(c) for a Horn clause
c = xi1 ∧xi2 ∧ ... ⇒ xi|c| in this version of the apriori algo-
rithm, we use the MAP labeling given for each of the nodes
xi1 ... xi|c| by the learned model, and use that to determine
whetherc is satisfied. Let1c,t be the indicator showing that
c is satisfied under this labeling. Computing the conditional
distributions for eachP (xit

) requires performing inference
over the labeled data set, which is not computationally ex-
pensive relative to the learning process.

Additionally, we make one other modification. Because,
in practice, true instances of variables are relatively rare in
the data (most random variables are false at any given time),
this count metric may inappropriately favor clauses which
are often satisfied by false antecedents, providing increased
accuracy, but not increased precision or recall with respect
to true settings. To address this, we use a technique sim-
ilar to that used in(Pentneyet al. 2007) for weighting in
parameter learning. We thus give more weight to certain
slices containing true instances of queries that are less fre-
quently true in the training data. For the labeled variables
q1...ql, let tqi

be the number of true appearances ofqi in

a timesliceXi in the training data, andα(qi) =
D−tqi

tqi

.
In computing counts, we then weight the term represent-
ing slicet in count(c) by multiplying it by

∑l

j=1
1qj ,tα(qj)

where1qj ,t is 1 if qj is labeled true in slicet and 0 other-
wise. This gives more weight to a slice if it contains true
instances of a query, particularly if true instances of that
query are uncommon. Thus the count for clausec is com-
puted ascount(c) = 1

Zc

∑D

t=1
1c,t

∑l

j=1
1qj ,tα(qj), where

Zc =
∑D

t=1

∑l
j=1

1qj ,tα(qj).
Our structure learning algorithm thus runs as follows:

• Run parameter learning as in (Pentneyet al. 2007), with
a Gaussian prior for regularization, to learn a model for

prediction. Compute the mean entropies of all unlabeled
variables using this model.

• Compute a candidate variable setV given mean entropy
threshold̄h.

• Run the weighted probabilistic apriori algorithm to select
a set of candidate candidatesG.

• Perform structure learning with incremental feature intro-
duction using the set of candidate features given byG at
each iteration.

This version of the algorithm, combined with our method
of selecting variables, thus presents us with parameters to
set to set for learning: the thresholdγ for acceptance of a
clause as a candidate candidate and the entropy thresholdh̄
for inclusion of a variable in the candidate variable set. We
choseγ = .5 and h̄ = 30, on the basis of their empirical
performance; this choice provided a reasonably large set of
candidate candidates (≈600) while still making the resulting
learning problem tractable.

Experiments
For our experimental evaluation, we used 70-75 minutes of
traces of household object use in an experimental setting as
worn by three users while performing various daily activities
in a simulated home environment, as used in (Pentneyet
al. 2006). These traces were divided into time slices of 2.5
seconds; reasoning was to be performed over each slice.

For these activities, we then selected a set of 24 Boolean
variables in the collected SRCS database which represented
these variables, or were semantically very close to them,
such asstateof(cereal, prepared). We then
recorded their “truth” value as being true or false for each
interval of time in the trace.

We measured the accuracy of our system in predicting the
value of the 24 queries, measuring prediction accuracy, pre-
cision and recall with respect to specifically labeling the true
instances of each query (since variables are usually false,
these measures are often more relevant), and compute the
F-measure, the harmonic mean of these two values. We per-
formed training on≈25% of the data using parameter learn-
ing as described in (Pentneyet al. 2007), and performed
prediction with the learned model. We then tested SRCS’s
prediction on the same setup, but with the use of structure
learning with the weighted probabilistic apriori algorithm
as described. We used the parameterα = 4 for our L1-
regularized learning. The results may be seen in Figure 3.
We see that structure learning significantly improves preci-
sion and recall of prediction. In using structure learning,we
also found that the number of features in the model learned
through structure learning was reduced from 24,465 in the
initial model to 17,719, demonstrating that our model is sim-
pler, yet offers better performance.

In addition, we may consider some of the candidate fea-
tures that are introduced. A sampling of some of the fea-
tures discovered and added to the model may be seen in Fig-
ure 4. These features represent intuitively useful concepts,
and some of these features appear to significantly aid in the



Learning
method

Accuracy Precision Recall F-measure

Parameter,
no struc-
ture

94.87% 69.31 43.53 53.47

Structure,
apriori

95.67% 76.86 50.23 60.75

Figure 3: Results for experiments with and without structure
learning, as described.

• used(spoon) ⇒ action(eat)

• location(pantry) ⇒ used(cereal)

• used(pill) ⇒ action(swallow)

• used(shampoo) ⇒ location(shower)

• likelyaction(shower with) ∧ used(soap) ⇒
location(bathroom)

• used(pen) ⇒ action(write a letter)

Figure 4: Some of the features added to the SRCS model by
the apriori algorithm.

prediction of some queries for which good features are miss-
ing, compared to parameter learning alone.

We would also like to determine whether structure learn-
ing can help on unlabeled queries, further demonstrating the
benefit of a common sense model over one which merely
measures . To do this, we perform an additional experiment
in which we will train SRCS on data in which only twelve
of the 24 queries are labeled, and perform testing on seven
other labeled queries whose labels were not given. The same
experiment was performed in (Pentneyet al. 2007), but with
only parameter learning; we compare to those results. To
see if we benefit from the addition of unlabeled variables
to the learning, we will compare structure learning in two
setups: one in which unlabeled variables are not added to
the candidate variable set for learning, and one in which we
add unlabeled variables using a mean entropy threshold of
h̄ = 30. In Figure 5, we compare prediction with respect to
precision, recall, and F-measure. We see that learning pro-
vides improvements in prediction on some of the unlabeled
queries; adding unlabeled variables improves certain queries
as well. This indicates that we may learn a more general
model of the everyday environment from sparse information
with a good prior model - in our case, the model given by
KnowItAll. Furthermore, it demonstrates that, given confi-
dent predictions with a good model, there can be value in
adding unlabeled variables for structure learning.

How general are these results? To determine how general,
we collected further results in which we randomly selected
12 of the 24 queries to use for training, and tested on the
other 12. We performed structure learning withh̄ = 30,
and then evaluated the results. The mean and variance of
accuracy and F-measure on the 12 testing queries over 20
such randomized trials are shown in Figure 6. We see
that performance is inconsistent. This is not surprising; in
many random partitions, many of the training queries are un-

Mean Acc Var Acc Mean F-meas Var F-meas
93.21% 23.16% 37.86 71.19

Figure 6: Mean and variance of accuracy and F-measure
over twenty randomized trials.

helpful in providing improved information about the testing
queries, which may not be adequately inferred by the ini-
tial parameter-trained model (e.g. information about brush-
ing teeth is generally unhelpful in predicting that the user
is in the kitchen). In the previous experiment, by contrast,
some training queries were contextually related to the test-
ing queries. This suggests that structure learning with our
technique can improve performance on unlabeled queries as
well, but that this performance may rely upon some depen-
dence in the initial trained model between those variables
being trained and those being tested upon. In future work,
we would like to consider the use of other techniques to
better find dependencies between variables, even with very
sparse labeling, and hone SRCS’s model of common sense.
Additionally, we would like to consider means of finding op-
timal choices of parameters for regularization and learning.

Conclusions
We have presented a means of performing structure learn-
ing on a large scale model of human state. Using labeled
data for feature introduction, we are able to learn new depen-
dencies in a large graphical model, learning more efficiently
by reducing the search space of features. Through the use
of these techniques, we can efficiently perform structure
learning that significantly improves prediction on a common
sense reasoning system about human state, as well as collect
new common sense data about daily life.
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