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Abstract. The ability to recognize human activities from sensory information is essential for de-
veloping the next generation of smart devices. Many human activity recognition tasks are — from
a machine learning perspective — quite similar to tagging tasks in natural language processing.
Motivated by this similarity, we develop a relational transformation-based tagging system based on
inductive logic programming principles, which is able to cope with expressive relational represen-
tations as well as a background theory. The approach is experimentally evaluated on two activity
recognition tasks and an information extraction task, and compared to Hidden Markov Models, one
of the most popular and successful approaches for tagging.
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1. Introduction

Smart systems that assist humans must be able to recognize the current context of the user and the ac-
tivity she is performing in order to suggest or take actions in an intelligent manner. To recognize the
context and activity, such systems can rely on streams of past activities, context, and sensory information
(visual, object-interaction, ...). Recognizing the current activity or context then corresponds to inferring
the activity or context from such sequential information. From a machine learning perspective, this task
is akin to many tagging tasks pursued in statistical natural language processing [1]. For instance, in
part-of-speech tagging, a form of ”shallow parsing”, the words in a sentence are to be labeled with the
corresponding parts-of-speech (word categories). Many techniques have been developed and employed
for this type of task, which has been coined sequential supervised learning by [2]. Two popular tech-
niques for sequential supervised learning are Hidden Markov Models and transformation-based learning
[3]. However, whereas Hidden Markov models have been applied in many different areas, ranging from
speech-recognition to activity recognition and bioinformatics [4], to the best of the authors’ knowledge,
transformation-based learning has only seldomly been applied outside the field of natural language pro-
cessing.

Because the structure of natural language is quite rigid as compared to that of typical activity recogni-
tion tasks, the existing transformation-based learners cannot directly be applied for activity recognition.
Therefore, we develop a more flexible relational transformation-based tagger within the inductive logic
programming paradigm. This does not only provide an expressive representation but also allows one
to easily incorporate background theory during the learning process. Thus the key contribution of this
paper is a relational extension of transformation-based tagging based upon inductive logic programming
principles. It also extends earlier work on relational transformation-based learning by [5] in that it fo-
cuses on tagging rather than classification. More specifically, from inductive logic programming (and the
work by [5]) our technique inherits its search and refinement techniques (including a branch-and-bound
algorithm) and from transformation-based learning the error driven stacking of rules.

The proposed method is evaluated in two activity recognition domains: “Activities of Daily Living”
(ADL) recognition from a stream of “object interaction” data [6], and mobile phone profile prediction
based on data collected by [7]. As the method we develop originates from natural language processing,
we also evaluate it in this context using an information extraction data set [8]. This should allows us to
get insight into the promise of the method for natural language based applications. Experiments show
that the obtained accuracies are competitive with those of HMM-based approaches, and that it is easy
to incorporate human-supplied background knowledge into the learning process. Furthermore, and that
is perhaps the key advantage of the relational transformation-based tagger, the method can easily be
extended to deal with variants of the tagging problem, for instance the prediction of structured output
tags (as in Logical Hidden Markov Models [9]), and to cope with rich background knowledge.

This paper is organized as follows: in Section 2, we introduce the problem of sequence tagging and
briefly review transformation-based tagging and hidden Markov models; in Section 3, we upgrade the
traditional transformation-based tagging approach to the use of relational sequences; in Section 4, we
report on experiments in activity recognition and information extraction, and finally, in Section 5, we
conclude and touch upon related work.
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Algorithm 1 Basic transformation-based tagging algorithm.

tb-tagging(input: sequences S; true sequence tags L)

1 L̂ := initial-tags(S, L)
2 initialize R = []
3 repeat
4 r := find-best-rule(S, L̂, L)
5 update L̂ := apply-rule(L̂, r)
6 update R := append(R, r)
7 until (no improvement)
8 return R

2. Sequence Tagging

Sequence tagging is the task of assigning to each element in a given sequence an appropriate label or
tag. Let W = {w1, ..., wk} denote the vocabulary of sequence elements, and T = {t1, ..., tm} the
vocabulary of tags. The most prominent instance of the tagging problem is part-of-speech-tagging in
natural language processing, where the task is to assign lexical categories t ∈ T to words w ∈ W in
a given natural language sentence [1]. Many other interesting sequence analysis problems can be cast
in this framework, such as activity recognition in user modeling or gene finding and protein secondary
structure prediction in bioinformatics [4, 2].

In natural language processing, the two most common tagging approaches are transformation-based
taggers (rule-based) and probabilistic methods (hidden Markov models or related techniques) [1]. Both
of these approaches yield competitive results, and have received a lot of attention. Before discussing
our extension to transformation-based learning, we briefly review these two approaches in the next two
sections.

2.1. Transformation-based Tagging

Transformation-based learning is a rule-based learning approach that iteratively stacks rules on top of
each other to improve performance [3]. The basic transformation-based learning algorithm for the tag-
ging problem is summarized in Algorithm 1. The algorithm takes as input a set S of sequences with
known true tags L. During learning, it maintains a set of current tags L̂ for all s ∈ S. L̂ is initialized
using some simple scheme, such as assigning to every element w ∈ W its most common tag t ∈ T
in the training data (procedure initial-tags). The algorithm then tries to improve the current tagging L̂
with respect to the true tagging L by learning a list of transformation rules R. Transformation rules
can re-tag sequence elements based on the context they appear in. A transformation rule has the form
t′ ← t : context and simultaneously replaces all occurrences of tag t in all sequences with t′ whenever
the constraint context is satisfied.

Example 2.1. As an example from natural language processing, the word “move” could be initially
tagged as “verb”, but would be re-tagged as “noun” if the preceding word was tagged as “article”. This
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Figure 1. Example lattice generated by unrolling a tagging HMM to a sequence w1, ..., w5. Inference in this
model is carried out with the Viterbi algorithm, which yields the most likely joint state of the hidden variables
t1, ..., t5 given the observations on w1, ..., w5.

can be encoded by the following transformation rule:

noun← verb : word = move, preceding tag = article

The transformation rule languages employed in traditional transformation-based tagging are mostly sim-
ple instantiations of some template—for instance, querying in context the word and tag at the current
position and the next or preceding position(s). We will replace this constraint by a first-order logical
expression in Section 3.

In every iteration, the transformation rule yielding the greatest reduction in error between L̂ and L
is greedily selected (find-best-rule), applied to the current tagging L̂ and appended to the rule list R.
As conditions of rules in R match not only sequence elements but also currently predicted tags L̂, rules
can effectively bootstrap the current predictions. This makes transformation-based learning strictly more
powerful than standard rule learning [3].

2.2. Hidden Markov Model Tagging

Tagging with hidden Markov models is typically performed with a model in which there is a hidden state
qt for every possible tag t, and state emission symbols correspond to symbols w ∈ W . That is, the
observed sequence of symbols is seen as being generated by the hidden sequence of tags. Formally, the
joint probability of an observation sequence s = w1...wn with hidden tag sequence t1...tn is given by

P (w1...wn, t1...tn) = P (t1)
n−1∏
i=1

P (ti+1 | ti)P (wi | ti)

where P (t1) is an initial probability for tag t1 and P (wi | ti), P (ti | ti−1) are conditional probabilities
for the emitted word wi and next tag ti+1 given the current tag ti. When such a model is applied to a
sequence w1...wn, it is unrolled into a lattice as depicted in Figure 1, and the Viterbi algorithm [10] is
employed to efficiently compute

t̂1...t̂n = arg max
t1...tn

P (t1...tn, w1...wn)

= arg max
t1...tn

P (t1...tn | w1...wn),

the most likely sequence of tags for the given sequence.
This technique has been used successfully for tagging problems in many domains. For instance,

HMM-based approaches are a popular technique for inferring hidden user activities from a stream of
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Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...
sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...
time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge ... ... ... ...

Activity Tag ToastBread FlavorToast BoilWater FlavorTea
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Fig. 2. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

The task is to recover the activity currently performed from the stream of sensor data,
that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language
data: there are no “grammatical rules” which determine the exact sequence of touching
knife, toast, butter and jam when adding flavor to a toast. Nevertheless, context informa-
tion can help determine the right tag. For instance, using a spoon can indicate activities
FlavorTea or EatCereals. This ambiguity can be resolved by looking at the context: the
observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal
structure, as an object observation has a starting point and duration in time. A repre-
sentation in first-order logic allows to capture this structure, and to express flexible rule
conditions such as object x has (not) been observed less than t seconds before/after
the current time-step or the most frequent (currently estimated) tag around the current
time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the
analysis of a continuous, potentially infinite stream of data. In this context, issues such
as online learning (with only one pass through the data necessary) are of considerable
interest. However, we will not address these issues in the paper, and instead assume that
a limited amount of training data is given a priori. Extending the proposed methods to
an online-learning scenario is an interesting direction for future work.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

Figure 2. Relational representation of the ADL recognition problem. While a person is performing activities of
daily living (such as preparing breakfast), a stream of object interaction data is generated from a wearable RFID
reader (“sensor reading”). This can be represented in a relational form by collapsing identical sensor readings to
one sequence element wi, and encoding the starting point and duration of the observation in another predicate.
Furthermore, additional background knowledge can be used to encode prior knowledge about the domain.

object-interaction data in the so-called ADL (“Activities of Daily Living”) problem [6, 11], which will
be described in more detail below.

3. Relational Transformation-based Tagging

The general motivation for our work on relational transformation-based tagging is to apply the
transformation-based tagging methodology to complex datastreams, which are generated, for instance,
by sensors or sensor networks in ubiquitous computing environments. For such complex domains it
is not always possible to represent all available information as flat (or propositional) symbols from a
fixed alphabet. This problem can be overcome by using a more expressive relational representation
for sequence elements. We will therefore extend the template-based rule language traditionally used in
transformation-based learning to a more flexible relational rule language, which can take advantage of
such richer representations for sequence elements. Furthermore, it is easy in this case to incorporate
domain-specific background knowledge into the learning process. Analyzing such relational sequences
has received considerable attention recently, for instance, with relational extensions of Hidden Markov
Models [9] or n-gram models [12].

Example 3.1. As an example, consider the ADL (“Activities of Daily Living”) recognition problem,
which is visualized in Figure 2. In ADL recognition, objects used in activities of daily living such as
making breakfast are equipped with small RFID tags that can be picked up by a wearable reader while a
person performs an activity [6]. The task is to recover the activity currently performed from the stream
of sensor data, that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language data: there are no
“grammatical rules” that determine the exact sequence of touching knife, toast, butter and jam when
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adding flavor to a toast. Nevertheless, context information can help determine the right tag. For instance,
using a spoon can indicate activities FlavorTea or EatCereals. This ambiguity can be resolved by looking
at the context: the observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal structure, as an
object observation has a starting point and duration in time. A representation in first-order logic allows to
capture this structure, and to express flexible rule conditions such as object x has (not) been observed less
than t seconds before/after the current time-step or the most frequent (currently estimated) tag around
the current time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the analysis of a
continuous, potentially infinite stream of data. In this context, issues such as online learning (with only
one pass through the data necessary) are of considerable interest. However, we will not address these
issues in the paper, and instead assume that a limited amount of training data is given a priori. Extending
the proposed methods to an online-learning scenario is an interesting direction for future work.

The next section introduces the formal learning setting for relational transformation-based tagging,
before discussing learning algorithms and experimental results.

3.1. Learning Setting

The learning setting for relational transformation-based tagging can be formalized as follows:

Given

• a relational language W for describing sequence elements, i.e., a set of typed first-order logical
predicates

• a set of tags T ;

• a set of training sequences S = {s1, ..., sm} with sequence elements described in W and corre-
sponding true tags L over T ;

• a scheme for setting initial tags given by a function init;

• a language L of transformation rules t′ ← t : q where t, t′ ∈ T , q = l1, ..., lr and the li are atoms
inW .

Find an ordered lists of transformations R = [R1, ..., Rl], Ri ∈ L, such that applying the initial tagging
scheme and the transformation rules R1, ..., Rl minimizes

error(L̂) =
∑
s∈S

ns∑
i=1

δ(lis, l̂is)

where ns is the length of sequence s and lis, l̂is denotes the tag assigned to element i in sequence s
according to L and L̂.

In contrast to standard (propositional) transformation-based tagging approaches, the languages W
(sequence elements) andL (rules) employed are relational; that is, rule conditions q are first-order queries
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of the form l1, ..., lk where the li are first-order logical atoms. Applying a first-order transformation rule
t′ ← t : q means simultaneously replacing all tags t in L̂ by t′ wherever the first-order context constraint
q matches the relational description of the corresponding sequence element.

Example 3.2. As an example for a relational transformation rule in the ADL recognition domain con-
sider

FlavorTea← EatCereals : sensor(X, spoon), close(X, sugar, 10), not(close(X, bowl, 5))

where the variable X is bound to the sequence element under consideration and the background predicate
near/3 is defined by

close(X, O, T )← time(X, S, E), sensor(X ′, O), time(X ′, S′, E′), dist(S, E, S′, E′, T ′), T ′ ≤ T

and dist(S, E, S′, E′, T ) measures the distance between the intervals [S, E] and [S′, E′]. This rule re-
tags spoon objects from EatCereals to FlavorTea if implied by the context.

3.2. A Branch-and-Bound Learning Algorithm

For learning the list R of relational transformation rules, a large space of possible rules has to be searched.
However, the structure on the search space can be exploited to make this search more efficient. More
specifically, the algorithm we use combines ideas from transformation-based learning (branch-and-bound
search based on upper bounds for the error reduction of a transformation rule) and inductive logic pro-
gramming (refinement search in a generalization/specialization lattice). It is closely related to the algo-
rithm presented in [5].

Recall that the goal of learning is to find a list R of transformation rules that minimizes the error(L̂)
on a set of training sequences S with known true labels L. As in propositional transformation-based
learning [3], the rule list is learned greedily: starting with an empty list, the algorithm incrementally adds
one rule after the other, at every step selecting the rule which yields the greatest reduction in error(L̂)
and updating the current tagging L̂ (cf. Algorithm 1).

When searching for an individual rule with maximum error reduction, a significant part of the search
space can be pruned away by computing upper bounds for the error reduction a rule can achieve. One
obvious bound for the reduction achievable by a transformation rule ti ← tj : context is given by the
number of sequence elements whose true tag (in L) is ti and which are currently (in L̂) assigned tag
tj . LetM denotes the current confusion matrix, i.e.,M[i, j] denote the number of sequence elements
with true tag ti currently tagged as tj . This can be exploited by considering rules ti ← tj : context
in (decreasing) order of their potential M [i, j] for error reduction and keeping track of the best error
reduction ∆best found so far. Now, all rules of the form ti ← tj : context for whichM[i, j] ≤ ∆best

can be removed from consideration (cf. [3]).
This idea can be taken one step further if it is combined with a general-to-specific search for the first-

order constraint context [5]. As a complete search in the space of first-order constraints is infeasible
in most cases, we perform a greedy general-to-specific search. To generate the specializations of the
current condition q, a so-called refinement operator ρ under θ-subsumption is employed. A condition
q1 θ-subsumes a condition q2 if and only if there is a substitution θ such that q1θ ⊆ q2. A substitution
is a set {V1/t1, . . . , Vl/tl} where the Vi are different variables and the ti are terms, and the application
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Algorithm 2 Branch-and-bound algorithm for relational transformation-based tagging

rtb-tagging(input: sequences S; true sequence tags L; language bias L)

1 L̂ := initial-tags(S, L)
2 initialize R := []
3 repeat
4 initialize ∆best := 0
5 computeM := confusion-matrix(L̂, L)
6 for all i, j ∈ {1, ..., k}, i 6= j, sorted byM[i, j] descending do
7 initialize Γ :=M[i, j]
8 initialize q := true
9 while (Γ > ∆best) do

10 for all q′ ∈ ρ(q,L) do
11 compute ∆q′ := error-reduction(tj ← ti : q′)
12 compute Γq′ := max-reduction(tj ← ti : q′)
13 end for
14 let q := argmaxq′ ∆q′

15 let ∆best := max(∆best,∆q)
16 let Γ := Γq

17 end while
18 end for
19 let r := ti ← tj : q be a rule with error reduction ∆best

20 update L̂ := apply-rule(L̂, r)
21 update R := append(R, r)
22 until (no improvement)
23 return R

of the substitution replaces the variables V1, . . . , Vl by the corresponding terms t1, . . . , tl. ρ(q) typically
returns all minimal specializations of q within L. For our purposes, the refinement operator specializes
a condition q = l1, · · · , ln simply by adding a new literal l to the clause yielding h← l1, · · · , ln, l. This
operator is monotone in the sense that for q′ ∈ ρ(q) the number of matches in the data can only decrease.
Consequently, the maximum gain achievable from specializations of a transformation rule ti ← tj : q
can be bounded in terms of the current matches. More specifically, assume that a constraint q matches
a number of sequence elements in the training data S, and that for pq of these it has a positive effect
(current tag is tj , but true tag is ti) and for nq it has a negative effect (current and true tag are tj). The
error reduction of applying the transformation ti ← tj : q is ∆q = pq − nq. It is now obvious that no
specialization ti ← tj : q′ with q′ ∈ ρ∗(q) can achieve an error reduction greater than Γq = pq.

A greedy branch-and-bound algorithm exploiting these two bounds is outlined in Algorithm 2. It
takes as input a set of training sequences S, true sequence tags L, and the language bias L. The algorithm
starts with an empty rule list R and initial tags assigned in L̂. Transformation rules are then greedily
added to R, and their effect applied to the current tagging L̂ (lines 3–21). Transformations are considered
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Relation Description
sensor(Id, Object) The object observed at sequence element Id is Object

duration(Id, T ) The object observation at sequence element Id lasted T seconds
close(Id, Obj, T ) The object Obj has been observed within T seconds of sequence element Id

time bin(T, Bin) The time span T falls into the bin Bin ∈ {short, medium, long}

closest tag(Id, Act)
The closest sequence position to Id for which an activity

(i.e., a tag 6= “no activity”) is assigned in L̂ is tagged with Act

close used(Id, Act, T )
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act

Table 1. Example relations used to describe the activity data. Some relations are directly derived from the data
(e.g. sensor, duration, close), others include human-supplied prior knowledge (e.g. close used).

in order of decreasingM[i, j] (line 6). At every step of the search for a single transformation ti ← tj : q
(lines 6–18), the algorithm keeps track of the largest reduction ∆best achieved by a rule so far. During
refinements of the context constraint q (lines 9–17) a bound Γq for the maximum reduction that any
specialization of a rule q can still achieve is computed (max-reduction), and only parts of the search
space for which Γ is greater than ∆best are explored.

4. Experiments

The proposed method was implemented in the RETRO (for RElational TRansfOrmation-based tagging)
system. We first evaluate the system in two different real-world activity recognition domains: recognition
of activities of daily living (ADL) from object interaction data, and mobile phone profile prediction from
traces of provider cells and phone communication events. As our method originated in the area of natural
language processing, we also apply it to a challenging NLP problem that is receiving increasing attention:
information extraction, the automated extraction of relational facts from text sources. More specifically,
we consider the automatic extraction of protein subcellular localization information from thousands of
sentences from the biomedical literature [8].

4.1. Activity Recognition

Broadly speaking, the goal in activity recognition is to infer context information about a user, such
as the activity currently performed, from a sequence of sensor observations. The first experimental
domain we consider is a classical activity recognition domain, namely recognition of activities of daily
living (ADL). In ADL recognition, object-interaction data for a user having breakfast at home has been
gathered by a wearable RFID reader and RFID tags on objects such as milk, cereals, kettle, water tap,
cutlery etc. (23 objects in total). The stream of tags picked up by the RFID reader indicates which
object is close (approximately 10–15 centimeters) to the wrist of the user at a particular point in time.
A single object observation is returned at every second—if several tags are within reach, one is returned
randomly. Note that the data is relatively noisy: tags might sometimes be missed, or a tag not related to
a particular activity can be reported by the reader because the corresponding object is accidentally close.
The task is to predict the current activity performed, out of a set of 24 possible activities such as boiling
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Relation Description
sensor(Id, Object) The object observed at sequence element Id is Object
duration(Id, T ) The object observation at sequence element Id lasted T seconds

close(Id, Obj, T )
The object Obj has been observed within T seconds of

sequence element Id
time bin(T, Bin) The time span T falls into the bin Bin ∈ {short, medium, long}

closest tag(Id, Act)
The closest sequence position to Id for which an activity

(i.e., a tag "= “no activity”) is assigned in L̂ is tagged with Act

close used(Id, Act, T )
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act
Table 1. Example relations used to describe the activity data. Some relations are directly derived
from the data (e.g. sensor, duration, close), others include human-supplied prior knowledge
(e.g. close used).

Relational
Representation

cell(w1, 6672) cell(w2, 6671) cell(w3, 6673) ...
time(w1, 1, 15) time(w2, 16, 25) time(w3, 26, 38) ...
usr activity(w1, act) usr activity(w2, idle) usr activity(w3, act) ...
active app(w1, 101) active app(w1, 102) active app(w3, 101) ...
comm(125, sms, incoming) comm(390, call, outgoing) ... ...

Phone profile normal silent normal meeting
Cell 6672 6671 6673 7409 6673 6671 7409 7410 6739

Fig. 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active
applications, and communication events).

In the ADL recognition domain, object-interaction data for a user having breakfast
at home has been gathered by a wearable RFID reader and RFID tags on objects such
as milk, cereals, kettle, water tap, cutlery etc. (23 objects in total). The stream of tags
picked up by the RFID reader indicates which object is close (approximately 10–15 cen-
timeters) to the wrist of the user at a particular point in time. A single object observation
is returned at every second—if several tags are within reach, one is returned randomly.
Note that the data is relatively noisy: tags might sometimes be missed, or a tag not re-
lated to a particular activity can be reported by the reader because the corresponding
object is accidentally close. The task is to predict the current activity performed, out of
a set of 24 possible activities such as boiling water, toasting bread, reading a newspaper
or “no activity”. The sequence data obtained from the RFID reader is represented in a
relational form by collapsing identical observations into one observation with a start-
ing point and duration in time (cf. Figure 2 for an illustration). Furthermore, additional
background predicates have been defined, see Table 1 for examples.

In the Context Phone domain, data about user communication behavior has been
gathered using a software running on Nokia Smartphones. The software automatically
logs communication and context data, such as the current provider cell, incoming and

Figure 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active applications,
and communication events).

water, toasting bread, reading a newspaper or “no activity”. The sequence data obtained from the RFID
reader is represented in relational form by collapsing identical observations into one observation with a
starting point and duration in time (cf. Figure 2 for an illustration). Furthermore, additional background
predicates have been defined, see Table 1 for examples. The dataset contains a total of 20 sequences with
4597 time points to tag.

The second activity recognition task we consider is mobile phone profile prediction (Phone). The
profile of a cellular phone (silent, meeting, or normal) is context information that is related to the activity
a user is currently performing, e.g. whether she is in a meeting and therefore not reachable or in the office
and ready to take calls. If a device was able to anticipate such context information it could adapt to the
current situation, e.g. by turning down the volume of a phone if it suspects the user to be in a meeting.
The data we use was extracted from a dataset1 published within the Context Phone project [7]. In this
project, data about the communication behavior of 12 users has been gathered over a long period of time,
using software running on Nokia Smartphones. The software automatically logs communication and
context data, such as the current provider cell, incoming and outgoing calls and text messages, and other
phone status information. We built a joint model for all users, restricted to logs of at least 100 events
with at least 5 profile changes. The task is to predict the current profile of the phone (silent, meeting, or
normal) at every point in time. See Figure 3 for an illustration of the data and the predicates used. The
dataset consist of 10 sequences with 1735 time points to tag.

To initialize the tagging L̂ in the transformation-based tagger, RETRO simply assigns the most fre-
quent tag given the propositional symbol w ∈W observed at the current sequence position:

init(w) = argmax
t∈T

C(w, t)

where C(w, t) is the number of times symbol w was tagged with t in the training data. The proposi-
tional alphabet W used are the sensor observations (objects) for the ADL domain, the mobile phone
cells for the Phone domain, and the actual words in the information extraction domain discussed in Sec-
tion 4.2. More elaborate initialization schemes (such as using the HMM tagging as an initialization for
the transformation-based tagger) are an interesting direction for future work.

The basic search algorithm described in Section 3.2 performs a greedy search through the space of
rules. However, it is well-known that greedy search suffers from premature convergence in local optima
1http://www.cs.helsinki.fi/group/context/#data
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of the search space. The most straightforward extension of greedy search is to use a beam search, where
the best k candidate rules at every step in the search are kept and refined further. In all experiments, we
use a beam search with beam size k = 10. Furthermore, we keep a set of k best scoring rules, and the
refinement search terminates if this set does not change between two successive steps in the search. The
main loop of the algorithm is terminated if no rule with a gain of at least min gain = 10 is found. The
number of literals in a rule was limited to rmax = 3 for ADL and rmax = 2 for Phone.

RETRO was compared to the following other tagging methods. First, we have conducted experiments
with two propositional approaches: HMMs and conditional random fields (CRFs) [13]. CRFs model
the conditional probability P (Y |X), where X is an input sequence and Y is the corresponding label
sequence, and are trained discriminately. We used the CRF package implementation2 by S. Sarawagi,
which implements the algorithm described in [14]. As it is not possible to encode all relevant information
propositionally, the most relevant information was selected to be used as the propositional alphabet W
for the HMM and CRF taggers. For ADL, this is the sequence of objects observed, and for Phone, it
is the sequence of cells the phone was located in. The CRF tagger was run using standard settings, 50
iterations for the training algorithm, and with features corresponding to the same data representation as
used with the HMM.

Furthermore, we performed experiments with TILDECRF [15], a relational extension of CRFs.
TildeCRF was given the relational encoding used for RETRO, the same background knowledge, and the
same language bias. It was trained using Gradient Tree Boosting as described in [15] with a maximum
tree depth of 4 for the ADL dataset and 10 for the Phone dataset . To prevent overfitting, we restricted
the model to one tree per class, which made 19 trees in total for ADL and 3 for Phone. The predictions
from TildeCRF were obtained with the forward-backward algorithm, as this gave slightly better results
than the default Viterbi. Finally, we also give results for MAJORITY TAG (most frequent tag observed
in the training data) and MAJORITY TAG PER OBSERVATION (the tag most frequently observed in the
training with the current propositional observation) as two simple baselines.

The systems are evaluated in a leave-one-sequence-out cross-validation. On the respective test data,
precision and recall are calculated. Precision is the number of tags correctly predicted divided by the
total number of tags predicted (i.e., the sequence positions for which a tag t 6=”no activity” was assigned
by the system). Recall is the number of tags correctly predicted divided by the number of sequence
positions for which a true activity t 6=“no activity” was observed. Note that in the phone domain no “no
activity” tag exists, so precision and recall coincide with tagging accuracy. From precision and recall,
we computed the F-measure

F =
2 · precision · recall

precision + recall
,

and averaged over the different folds of the cross-validation.
Table 2 shows the results for RETRO, TILDECRF, CRF and HMM in the ADL and Phone domains.

In the ADL domain, RETRO and HMM perform comparably well, TILDECRF slightly weaker, and
the propositional CRF again weaker. However, the weak result of CRF is due to one relatively short
sequence which is tagged very badly (F-measure of 0 as the tagger fails to pick up any activity). Note that
all tested approaches outperform the simple MAJORITY TAG and MAJORITY TAG PER OBSERVATION

baselines. The second domain, Phone profile prediction, is significantly more challenging. Both the
HMM and CRF/TILDECRF tagger fail to improve upon the MAJORITY TAG prediction, while RETRO

2http://crf.sourceforge.net/
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Algorithm ADL Phone

MAJORITY TAG 19.5± 22.3 56.7± 13.1
MAJORITY TAG PER OBSERVATION 54.5± 10.8 61.4± 11.4
HMM 74.9± 12.5 56.7± 13.1
CRF 61.3± 23.2 57.2± 21.3
TILDECRF 72.4± 12.3 56.6± 15.1
RETRO 75.4± 7.8 67.7± 10.3

Table 2. Average F-measure on the ADL Recognition and Phone problems based on a leave-one-sequence-out
cross-validation.

Learned Rules

ObtainNewspaper ← ReadNewspaper: close(Id, Obj, T ), Obj = door, time bin(T, medium)

FlavorTea ← EatCereals: closest tag(A, F lavorTea)

SteepTeaBag ← DrinkTea: close(Id, Obj, T ), Obj = stove

PourCereal ← ObtainNewspaper: close used(Id, PourCereal, T ),

not(close used(Id, ObtainNewspaper, T ′)), time bin(T, short)

SteepTeaBag ← noActivity: duration(Id, T ), time bin(T, long), closest tag(ID, SteepTeaBag)

Table 3. Examples for rules learned by RETRO on the ADL dataset.

yields a (borderline) significant increase in F-measure compared to MAJORITY TAG (paired two-sided
t-test, p = 0.051).

Experiments in the Phone domain are still preliminary to a certain degree. Predicting the profile of
a user’s phone based on the data currently available appears to be a very hard problem; further exper-
imentation and better data will be needed to obtain models that are accurate enough to be of practical
relevance. Nevertheless, context-recognition techniques such as the discussed phone profile prediction
hold much promise in creating smarter devices if prediction accuracy can be improved. Note furthermore
that although HMM tagging is a standard approach in activity recognition, more advanced probabilis-
tic methods based on dynamic Bayesian networks have recently been developed, which would possibly
yield slightly higher accuracy in this domain [16].

Examples for rules learned by RETRO on ADL are shown in Table 3. For instance, consider the
last rule: it states that if a sequence element corresponding to a long object observation is tagged with
noActivity and the closest currently predicted activity is SteepTeaBag, this sequence element should
also be tagged with SteepTeaBag. This rule is useful for “filling in gaps” as SteepTeaBag only causes
characteristic object observations at the beginning and end of the activity.

4.2. Information Extraction

Another interesting instance of the tagging problem is information extraction. Assume we are given a
set of natural language sentences, for instance from a medical paper, and possibly additional information
such as the grammatical structure of the sentences or a-priori domain knowledge. Information extraction
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subcellular-localization that we would like to extract from
the second sentence. This tuple asserts that the protein UBC6
is found in the subcellular compartment called the endoplas-
mic reticulum. In order to learn models to perform this task,
we use training examples consisting of passages of text, an-
notated with the tuples that should be extracted from them.

In earlier work [Ray and Craven, 2001], we presented
an approach that incorporates grammatical information into
single-level HMMs. The approach described in this paper ex-
tends the earlier work by using hierarchical HMMs to provide
a richer description of the information available from a sen-
tence parse.

Hierarchical HMMs originally were developed by Fine et
al. (1998), but the application of these models to information
extraction is novel, and our approach incorporates several ex-
tensions to these models to tailor them to our task. Bikel et
al. (1999) developed an approach to named entity recognition
that uses HMMs with a multi-level representation similar to
a hierarchical HMM. In their models, the top level represents
the classes of interest (e.g. person name), and the bottom
level represents the words in a sentence being processed. Our
approach differs from theirs in several key respects: (i) our in-
put representation for all sentences being processed is hierar-
chical, (ii) our models represent the shallow phrase structure
of sentences, (iii) we focus on learning to extract relations
rather than entities, (iv) we use null models to represent sen-
tences that do not describe relations of interest, and (v) we
use a discriminative training procedure. Miller et al. (2000)
developed an information-extraction approach that uses a lex-
icalized, probabilistic context-free grammar (LPCFG) to si-
multaneously do syntactic parsing and semantic information
extraction. The genre of text that we consider here, however,
is quite different from the news story corpus on which avail-
able LPCFGs have been trained. Thus it is not clear how well
this intriguing approach would transfer to our task.

2 Sentence Representation
In most previous work on HMMs for natural language tasks,
the passages of text being processed have been represented
as sequences of tokens. A hypothesis underlying our work is
that incorporating sentence structure into the learned models
will provide better extraction accuracy. Our approach is based
on using syntactic parses of all sentences to be processed.
In particular, we use the Sundance system [Riloff, 1998] to
obtain a shallow parse of each given sentence.

The representation we use in this paper does not incorpo-
rate all of the information provided by the Sundance parser.
Instead our representation provides a partially “flattened”,
two-level description of each Sundance parse tree. The top
level represents each sentence as a sequence of phrase seg-
ments. The lower level represents individual tokens, along
with their part-of-speech (POS) tags. In positive training ex-
amples, if a segment contains a word or words that belong to
a domain in a target tuple, the segment and the words of in-
terest are annotated with the corresponding domain. We refer
to these annotations as labels. Test instances do not contain
labels – the labels are to be predicted by the learned IE model.

Figure 2 shows a sentence containing an instance of the

“This enzyme, UBC6, localizes to the endoplasmic reticulum, with the catalytic domain
facing the cytosol.”

1 NP SEGMENT DET this
UNK enzyme

2 NP SEGMENT:PROTEIN UNK:PROTEIN ubc6
3 VP SEGMENT V localizes
4 PP SEGMENT PREP to
5 NP SEGMENT:LOCATION ART the

N:LOCATION endoplasmic
N:LOCATION reticulum

6 PP SEGMENT PREP with
7 NP SEGMENT ART the

N catalytic
UNK domain

8 VP SEGMENT V facing
9 NP SEGMENT ART the

N cytosol

(a) (b) (c)

Figure 2: Input representation for a sentence which contains a
subcellular-localization tuple: the sentence is segmented into
typed phrases and each phrase is segmented into words typed with
part-of-speech tags. Phrase types and labels are shown in column
(a). Word part-of-speech tags and labels are shown in column (b).
The words of the sentence are shown in column (c). Note the group-
ing of words in phrases. The labels (PROTEIN, LOCATION) are
present only in the training sentences.

subcellular-localization relation and its annotated segments.
The sentence is segmented into typed phrases and each phrase
is segmented into words typed with part-of-speech tags.
For example, the second phrase segment is a noun phrase
(NP SEGMENT) that contains the protein name UBC6 (hence
the PROTEIN label). Note that the types are constants that
are pre-defined by our representation of Sundance parses,
whereas the labels are defined by the domains of the particu-
lar relation we are trying to extract.

3 Hierarchical HMMs for Information
Extraction

A schematic of one of our hierarchical HMMs is shown in
Figure 3. The top of the figure shows the positive model,
which is trained to represent sentences that contain instances
of the target relation. The bottom of the figure shows the null
model, which is trained to represent sentences that do not
contain relation instances (e.g. off-topic sentences). At the
“coarse” level, our hierarchical HMMs represent sentences
as sequences of phrases. Thus, we can think of the top level
as an HMM whose states emit phrases. We refer to this HMM
as the phrase HMM, and its states phrase states. At the “fine”
level, each phrase is represented as a sequence of words. This
is achieved by embedding an HMM within each phrase state.
We refer to these embedded HMMs as word HMMs and their
states as word states. The phrase states in Figure 3 are de-
picted with rounded rectangles and word states are depicted
with ovals. To explain a sentence, the HMM would first fol-
low a transition from the START state to some phrase state ,
use the word HMM of to emit the first phrase of the sen-
tence, then transition to another phrase state , emit another

Table 4. Representation of a sentence in the Subcellular-Localization dataset, with flattened sentence structure
information and target tags PROTEIN and LOCATION. The sentence contains two subcellular-localization tuples.

now aims at recovering instances of a particular semantic relation, such as the localization of a protein
p in a certain cell compartment l, from such syntactic sentence data. Such a mapping from unstructured
(text) information to structured (relational) information has the potential to increase the utility of text
data, by allowing for easier information retrieval or the automatic population of semantic databases from
text sources.

The information extraction task considered here is to automatically infer the localization of proteins
in the cell from abstracts of medical papers extracted from the MEDLINE database [17]. The dataset,
which we will refer to as Subcellular-Localization, is described in more detail in [8], whose authors
made it publicly available3. It comprises 7129 sentences annotated with instances of the subcellular-
localization relation. In addition to word tokens, information about the grammatical structure of the
sentences is available. More specifically, sentences have been parsed with the Sundance parser [18], and
the resulting parse trees have been flattened into a two-level description: the first level represents the sen-
tence as a sequence of phrase segments, and the second level individual tokens and their part-of-speech
tag. Figure 4, taken from [8], visualizes the representation of sentences. In this figure, rows correspond
to sequence positions 1, ..., 15 in the given sentence. The first column contains phrase segment informa-
tion, the second column part-of-speech tags, and the third column the word tokens. The 7129 sentences
contain a total of 149303 words to tag.

For use in the RETRO system, the data has been represented in a relational form as outlined in
Table 5. The given relational representation allows one to build rich relational rules for tagging sequence
elements (an example of a learned rule set is given below). Note that background predicates such as
alphanumeric(W ) encode some prior knowledge about the domain, namely that proteins typically
carry alphanumeric names (though not all proteins carry such names, and vice versa, not all alphanumeric
words in the dataset are tagged as proteins).
3http://www.biostat.wisc.edu/∼craven/ie/
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Relation Description
pos tag at(Id, POS) The part-of-speech tag at sequence element Id is POS.
phrase seg at(Id, PHR) The phrase segment at sequence element Id is PHR.
word(Id, W ) The word token at sequence element Id is W .
prefix(W, W1, W2) The word W consists of prefix W1 and postfix W2.
alphanumeric(W ) The word W is alphanumeric (characters followed by numbers).
is char(W, CHR) The word W consists of the single character CHR.
location word(W, F ) W is tagged with LOCATION in at least fraction F of the cases in the train data.
location detected(S) Some position in sentence S has been tagged by the system as LOCATION.

Table 5. Relations used for representing data in the Subcellular-Localization domain. Some relations are
directly derived from the data (e.g. pos tag at,word), others include human-supplied prior knowledge (e.g.
alphanumeric).

The experimental setup is now as follows. The available data is split into the same five folds as
in [8], and a cross-validation is performed. On the respective training set, known true instances of the
subcellular-localization relation are tagged with PROTEIN and LOCATION. Note that the dataset is
very unbalanced: only about 10% of all sentences contain any relation instances (“positive sentences”).
We used all of the positive sentences but randomly sampled only 10% of the negative sentences for the
training set. On this training set, RETRO is used to infer a set of tagging rules. Parameters are set as
for the activity recognition tasks, except that min gain = 5 and the maximum number of literals in a
rule is rmax = 7. The learned rules are then applied to tag sequences in the test data with PROTEIN
and LOCATION accordingly. However, note that this does not yet fully solve the information extraction
problem: we are interested in extracting relation instances from the test sentence, and unless there is
exactly one predicted PROTEIN and one predicted LOCATION tag in the sentence it is not clear how to
do this.

The most elegant solution to this problem would be to use a relational representation for tags as well
as for the sequence data. In this case, relation instances could be directly represented at the level of
tags. However, we leave this approach for future work and instead heuristically derive instances of the
subcellular-localization relation from the predicted tags on the test data as follows. Let S denote a test
sentence, and assume that n elements in S have been tagged as PROTEIN and m elements in S have
been tagged as LOCATION. If n = 0 or m = 0, no relation instances are predicted. If n = 1 or m = 1,
all pairs (protein, location) with protein tagged as PROTEIN and location tagged as LOCATION
are returned as relation instances. Finally, if n = m, n pairs (proteini, locationi) are returned, where
proteini is the i-th sequence element tagged as PROTEIN and locationi is the i-th sequence element
tagged as LOCATION. There are very few test sentences for which none of the above conditions hold;
in those cases it is unclear how to extract relation instances and thus none are predicted.

As outlined in [8], the extracted set of relation instances on the test data can be compared against the
true set of relation instances by computing the precision and recall. Precision is the fraction of predicted
relation instances that are true relation instances. Recall is the fraction of true relation instances that
have been predicted by the system. The set of tagging rules returned by RETRO is deterministic, thus
a rule set only produces a single point in precision-recall space. It is therefore not possible to trade
off recall vs. precision as, e.g. in a probabilistic model by varying a decision threshold. However, the
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words, but are typed with part-of-speech tags so that a
given state can emit words with only a single POS.
Token HMMs: single-level HMMs in which untyped
states emit words.

We evaluate our hypotheses on three data sets that we have
assembled from the biomedical literature.1 The data sets are
composed of abstracts gathered from the MEDLINE database
[National Library of Medicine, 2003]. The first set contains
instances of the subcellular-localization relation. It is com-
posed of 769 positive and 6,360 negative sentences. The pos-
itive sentences contain 949 total tuple instances. The number
of actual tuples is 404 since some tuples occur multiple times
either in the same sentence or in multiple sentences. The
second, which we refer to as the disorder-association data
set, characterizes a binary relation between genes and disor-
ders. It contains 829 positive and 11,771 negative sentences.
The positive sentences represent 878 instances of 145 tuples.
The third, which we refer to as the protein-interaction data
set, characterizes physical interactions between pairs of pro-
teins. It is composed of 5,457 positive and 42,015 negative
sentences. It contains 8,088 instances of 819 tuples.

We use five-fold cross-validation to measure the accuracy
of each approach. Before processing all sentences, we ob-
tain parses from Sundance, and then stem words with Porter’s
stemmer [Porter, 1980]. We map all numbers to a special
NUMBER token and all words that occur only once in a train-
ing set to an OUT-OF-VOCAB token. Also, we discard all
punctuation. The same preprocessing is done on test sen-
tences, with the exception that words that were not encoun-
tered in the training set are mapped to the OUT-OF-VOCAB
token. The vocabulary is the same for all emitting states in the
models, and all parameters are smoothed using m-estimates
[Cestnik, 1990]. We train all models using the discriminative
training procedure referred to in Section 3 [Krogh, 1994].

To evaluate our models we construct precision-recall
graphs. Precision is defined as the fraction of correct tu-
ple instances among those instances that are extracted by the
model. Recall is defined as the fraction of correct tuple in-
stances extracted by the model over the total number of tuple
instances that exist in the data set. For each tuple extracted
from sentence , we calculate a confidence measure as:

Here refers to the END state of the combined model,
is the probability of the most likely path, given by the

Viterbi algorithm, and is the total probability of the
sequence, calculated with the Forward algorithm. We con-
struct precision-recall curves by varying a threshold on these
confidences.

Figures 8, 9 and 10 show the precision-recall curves for the
three data sets. Each figure shows curves for the five types of

1Earlier versions of two of these data sets were used in our pre-
vious work [Ray and Craven, 2001]. Various aspects of the data sets
have been cleaned up, however, and thus the versions used here are
somewhat different. All three data sets are available from
http://www.biostat.wisc.edu/˜craven/ie/.
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Figure 8: Precision vs. recall for the five types of HMMs on the
subcellular-localization data set.
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Figure 9: Precision vs. recall for the five types of HMMs on the
disorder-association data set.

HMMs described at the beginning of this section. We show
error bars for the Context HHMM precision values for the
subcellular-localization and protein-interaction data sets.
For these two data sets, the hierarchical HMM models clearly
have superior precision-recall curves to the baseline models.
At nearly every level of recall, the hierarchical HMMs ex-
hibit higher precision than the baselines. Additionally, the
HHMMs achieve higher endpoint recall values. The results
are not as definitive for the disorder-association data set.
Here, the POS HMMs and the Token HMMs achieve preci-
sion levels that are comparable to, and in some cases slightly
better than, the Context HHMMs. There is not a clear winner
for this data set, but the Context HHMMs are competitive.

Comparing the Context HHMMs to the ordinary HHMMs,
we see that the former results in superior precision-recall
curves for all three data sets. This result demonstrates that
clearly there is value in including the context features in hi-
erarchical HMMs for this type of task. In summary, our em-
pirical results support the hypothesis that the ability our hier-
archical HMM approach to capture grammatical information
about sentences results in more accurate learned models.

Figure 4. Left Figure: precision vs. recall for relational transformation-based tagging on the subcellular-
localization data set. Individual points in PR space are obtained by varying the reweighting factor α, with
α ∈ {0.25, 0.5, 0.75, ..., 4.5}. For α > 4.5 no rules with reasonable coverage on the training set are found.
Right Figure (taken from [8]): precision vs. recall measured on the same splits into training/test set for different
versions of hierarchical and standard HMMs.

trade-off between precision and recall can be influenced, before training takes place; by giving a different
weight to type one errors (or false positives) vs. type two errors (or false negatives). Here, false positives
and negatives refer to the special tag NONE (negative) as opposed to the other two tags PROTEIN and
LOCATION (positives). More specifically, assume that a particular rule R corrects tp false negatives and
tn false positives, but at the same time introduces fn false negatives and fp false positives. Define

gain(R) = tp − fn + α(tn − fp) (1)

as the error reduction achieved by such a rule, where α is a reweighting factor that trades of type one
vs. type two errors. For α > 1, type one errors are weighted higher, which favors rule sets with high
precision but low recall. Accordingly, α < 1 gives a higher weight to type two errors and thus favors
rule sets with high recall but low precision. Note that α = 1 corresponds to the standard error measure.
It is straightforward to adapt the branch-and-bound search methodology discussed in Section 3.2 to
incorporate the reweighting factor α, by weighting the potential error reduction of a rule accordingly.

Figure 4, left plot, shows the precision and recall obtained on Subcellular-Localization for different
α values (as defined by Equation 1). Precision and recall are separately averaged over the five folds of
the cross-validation. For high alpha values, the system fails to learn rules with a reasonable coverage
on the training set. The precision-recall curve has therefore been conservatively extended to the left to
facilitate the comparison.

Figure 4, right plot, shows results obtained by different versions of HMMs in the same setting, as
reported in [8]. The most successful version of HMMs on this task are Context HMMs, a version of hi-
erarchical HMMs specifically tailored to this information extraction problem. The precision-recall curve
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Learned Rules

Location ← None: word(A,D),location word(D,0.67)
Protein ← None: word(A,D),prefix(D,E,F),alphanumeric(E),location detected(A)

Location ← None: word(A,D),location word(D,0.30),prefix(D,E,F),is char(E,’v’),phrase seg at(A,npSeg,-1)
Protein ← None: word(A,D),prefix(D,E,F),alphanumeric(E),location detected(A)

None ← Protein: pos tag at(A,unk,-1),word(A,D),prefix(D,E,F),alphanumeric(F)
None ← Protein: word(A,D),prefix(D,E,F),is char(E,’u’),phrase seg at(A,npSeg,-1)
None ← Protein: word(A,D),prefix(D,E,F),is char(E,’r’),alphanumeric(F)
None ← Protein: phrase seg at(A,npConjSeg,-1),pos tag at(A,n,-2)
None ← Location: pos tag at(A,conj,-1),phrase seg at(A,npSeg,-1)

Location ← None: word(A,D),location word(D,0.20),phrase seg at(A,vpSeg,-2),prefix(D,E,F),is char(E,’c’)

Table 6. An example rule set learned by RETRO on the Subcellular-Localization dataset (alpha = 3.0).

of RETRO shows a similar behavior as for the Context HMM, but achieves slightly higher recall values
at the same precision on average. This is quite remarkable as Context HMMs have been specifically
designed for this problem. On the other hand, we have supplied the RETRO system with hand-crafted
domain-specific background knowledge, which has a similar effect of adapting the system for a partic-
ular task. It is the easy incorporation of prior domain knowledge that makes relational (or logic-based)
approaches so flexible and easy to adapt to different learning domains.

An example for a learned rule set is given in Table 6. The system basically starts by tagging words as
LOCATION if they have been labeled LOCATION in two-thirds of all cases in the training set (rule 1).
It then bootstraps its own prediction on LOCATION, and labels words that start with an alphanumeric
expression as PROTEIN if a LOCATION has already been detected in that sentence (rule 2). Rule 3
will tag more words with LOCATION if the word has been tagged as LOCATION in some cases on the
training set, and a certain grammatical restriction is satisfied. Rule 4 simply re-applies rule 2 to bootstrap
these new LOCATION predictions to generate additional PROTEIN tags. The remaining rules mostly
remove false-positives by looking at the grammatical structure of the sentence.

As a further illustration of how the reweighting factor affects the rule sets found by the system,
Figure 5 shows the number of rules learned by the system depending on different α values. It is relatively
easy to achieve high recall but low precision (low α, small rule set), but a more elaborate rule set is needed
to achieve a high precision (high α).

Finally, note that an obvious disadvantage of a deterministic system such as RETRO compared to
probabilistic approaches such as HMMs is that the precision-recall trade-off has to be determined be-
fore learning takes place, that is, the system has to be re-run to generate every individual point on the
precision-recall curve shown in Figure 4. The systematic experiments needed to generate this curve were
run on the VIC/HPC cluster of the Katholieke Universiteit Leuven, and took about 700 hours (or one
month) of CPU time in total (AMD Opteron 250 cores, 2.2GHz). Averaged over all values of α and all
folds, inducing a single rule set with RETRO took about 7.5 hours.

4.3. Effectiveness of Pruning

Figure 6 visualizes the effectiveness of the pruning schemes based on the two upper bounds discussed
in Section 3.2 for the three tagging problems considered. More specifically, Figure 6, left plot, shows
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Figure 5. Number of rules learned by RETRO on the Subcellular-Localization task as a function of the reweight-
ing factor α. The number of rules is averaged over the models learned on the different folds of the cross-validation.

the fraction of pairs (ti, tj) that have to be considered when searching for rules ti ← tj in lines 6–18 of
Algorithm 2 as a function of the algorithm iteration. This pruning scheme is very effective if the number
of different tags is large, as in the ADL problem. There, it reduces the search space by 93%–99%. On
the other two tasks it achieves a reduction of about 60%. It is also typically more effective in earlier
iterations of the algorithm, when it is easier to find a rule that yields a large reduction in error.

Figure 6, right plot, shows which fraction of refinements is removed from the beam when rules are
refined in lines 10–13 of Algorithm 2 because no further specialization can reach the performance of
the best rule found so far. Note that this form of pruning basically allows for a more thorough search
through the space of possible rules given a limited beam size) by effectively reducing the branching factor
of the search. Indirectly, it can also reduce overall computational complexity if a good error reduction is
achieved more quickly due to the more focused search. This pruning mechanism is particularly effective
in the information extraction task Subcellular-Localization, but also prunes a significant part of the
search space for the two activity recognition tasks ADL and Phone.

5. Conclusions and Related Work

Motivated by the needs of activity recognition problems, we have introduced a relational transformation-
based tagging system. It tightly integrates principles of inductive logic programming (especially search,
representations, operators, background knowledge) with transformation-based tagging (error-driven
search, branch-and-bound idea). The approach has been evaluated on two activity recognition data
sets as well as an information extraction task. The results are competitive with those of hidden
Markov models (in activity recognition) and also extensions of HMMs such as hierarchical HMMs (in
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Figure 6. Effectiveness of the two pruning schemes Bound I (maximum gain attainable from changing a certain
tag into a certain other tag) and Bound II (maximum gain attainable from specializing a given rule). Results
are averaged over a leave-one-sequence-out cross-validation (ADL and Phone) or a five-fold cross-validation
(Subcellular-Localization).

information extraction). Perhaps more important than the experimental results obtained so far is the ease
with which one can extend the transformation-based tagging approach beyond the propositional setting
typically used with HMMs. There are several important directions in this regard. One direction we have
already partially explored is the use of rich sources of background knowledge (that take not only into
account the inputs but also the already available produced tags). Another direction is the prediction of
structured output sequences (predicting sequences of logical atoms, cf. [19], such as a tag call(anna,10)
denoting the prediction that anna will be called in 10 minutes. Finally, relational representations also
allow to relax the purely sequential nature of the output (which can be important e.g. in ADL prediction,
where different activities may overlap in time and therefore ordering them is not always possible).
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