
1

Access Methods for Markovian Streams
Julie Letchner #1, Christopher Ré #2, Magdalena Balazinska #3, Matthai Philipose ∗4

#Computer Science & Engineering Department, University of Washington
Seattle, Washington, USA

{1letchner, 2chrisre, 3magda}@cs.washington.edu
∗Intel Research Seattle

Seattle, Washington, USA
4matthai.philipose@intel.com

Abstract— Model-based views have recently been proposed as
an effective method for querying noisy sensor data. Commonly
used models from the AI literature (e.g., the hidden Markov
model) expose to applications a stream of probabilistic and
correlated state estimates computed from the sensor data. Many
applications want to detect sophisticated patterns of states from
these Markovian streams. Such queries are called event queries.

In this paper, we present a new Markovian stream storage
manager, Caldera. We develop and evaluate Caldera as a compo-
nent of Lahar, a Markovian stream event query processing system
developed in previous work. At the heart of Caldera is a set of
access methods for Markovian streams that can improve event
query performance by orders of magnitude compared to existing
techniques, which must scan the entire stream. Our access
methods use new adaptations of traditional B+ tree indexes,
and a new index, called the Markov-chain index. They efficiently
extract only the relevant timesteps from a stream, while retaining
the stream’s Markovian properties. We have implemented our
prototype system on BDB and demonstrate its effectiveness on
both synthetic data and real data from a building-wide RFID
deployment.

I. I

Applications that make decisions based on sensor data are
increasingly common, with sensor deployments now playing
integral roles in supply chain automation [5], [39], environ-
ment monitoring [17], elder-care [25], [28], etc. Unfortunately,
building applications on top of raw sensor data remains
challenging because sensors produce inaccurate information,
frequently fail, and can rarely collect data on an entire region
of interest. As an example, consider a Radio Frequency
IDentification (RFID) tracking application [38] in which RFID
readers are distributed throughout an environment. Ideally,
when a tag (carried by a person or attached to an object)
passes close to a reader, the reader detects and logs the tag’s
presence: e.g., Bob’s tag was sighted by reader A at time 7,
reader B at time 8, etc. In practice, however, readers often fail
to detect nearby tags [40], and cannot provide information
about a tag’s position within the reader’s range. Applications
are thus forced to deal with imprecise input streams.

The reduction of errors and gaps in sensor data streams is
the focus of a large body of probabilistic modeling/inference
techniques developed in the AI community [34]. While a
limited number of these techniques can be applied in real time,
the most effective (Bayesian smoothing [13]) can be applied
only as a post-processing step, after the raw data stream is

archived. Our goal is to support archive-based applications
that leverage this smoothed data in order to provide the most
accurate possible answers to historical queries (e.g., “Was Bob
in his office yesterday?”, “Did Margot take her medication
before breakfast every day last month?”, etc.).

The result of any smoothing technique is a probabilistic
stream in which each timestep encodes not a single state,
but a distribution over possible states. In the RFID tracking
example, such a stream might indicate, for each timestep, the
distribution over possible locations of a tag: e.g., at time 7, Bob
was in the hallway with probability 0.8 and in his office with
probability 0.2. Additionally, states at consecutive timesteps
can be correlated: e.g., Bob’s location at time 8 is correlated
with his location at time 7. We call these probabilistic,
correlated streams Markovian streams. They are a materialized
instance of a model-based view [10].

A natural class of queries on Markovian streams are event
queries [1], [9], [33], [43], which find sophisticated patterns
of states in streams. An example event query on an RFID
stream is: “When did Bob take a coffee break yesterday?”
where “coffee-break” is defined as Bob going from the coffee
machine directly to the lounge.

Because of the probabilities and correlations present in a
Markovian stream, archived event queries on these streams
cannot be handled by any existing system. Indeed, stream
processing engines that handle event queries [1], [9], [43]
ignore probabilities. Probabilistic databases [3], [8], [20], [42],
on the other hand, handle data uncertainty but do not support
event queries and many do not handle correlations [3], [8],
[42]. The only existing system able to manage Markovian
streams is Lahar [33], which we originally developed to
support near-real-time event queries over live streams. In order
to preserve correlations, Lahar must currently process every
timestep of the input stream. This full-data scan is grossly
inefficient in archived settings.

In this paper, we present Caldera, a Markovian stream stor-
age manager for Lahar. The extended Lahar+Caldera system is
able to efficiently process event queries on archived Markovian
streams. Caldera’s challenge is to identify and extract only
the relevant portions of a Markovian stream in a manner that
preserves cross-timestep correlations, but without scanning the
entire stream history on disk. Caldera achieves this goal by
using a battery of access methods that leverage pruning and
precomputation strategies.

2

Smoothing

Raw
data

Markovian
stream Query

Executor
(Lahar

+Caldera)

Query match
tuples <t, p>

Regular event queries

Applications

Fig. 1. The flow of data in Lahar. Raw sensor data is first smoothed
into Markovian streams and archived on disk. Lahar processes application-
specified Regular event queries on these archived Markovian streams and
returns the result tuples < t, p > specifying the probability p that the query
is satisfied at time t, for each timestep in the stream.

In Section II, we formally define Markovian streams and the
event queries processed by Lahar. An important contribution
in this section is our division of these queries into two
classes, which we call fixed-length and variable-length queries.
We identify the challenges involved in processing each. Our
algorithmic contributions are access methods optimized for
each query class. Specifically, these contributions include:

1) An access method optimized for fixed-length queries,
based upon a novel adaptation of standard indexing
techniques (Section III-A).

2) A top-k optimization for fixed-length queries. This second
access method exploits insights about the structure of
Markovian event probabilities to adapt standard top-
k pruning techniques to Markovian stream data, using
standard B+ trees (Section III-B).

3) A novel index structure (the Markov chain index) and
associated access method for variable-length queries, for
which standard indexing is insufficient (Section III-C).

4) A discussion of practical issues relating to our three
access methods, including predicate evaluation and a
comparison of physical disk layouts (Section III-D).

In Section IV we demonstrate the efficiency of our four ac-
cess methods on both real and synthetic data. We show on real
data that Caldera’s access methods deliver speedups of up to
two orders of magnitude over a naı̈ve stream scan. We then use
synthetic data to push beyond the limitations of our real data
set and confirm that our algorithms continue to provide similar
speedups under a wider variety of stream conditions. Finally,
we identify unique characteristics of location-based Markovian
streams, and we discuss the impact of these characteristics
upon access method performance, disk layout choice, and the
quality of a heuristic-based, approximate access method.

II. P

In this section we give an overview of the queries and data
processed by Lahar+Caldera (see Figure 1). We first sketch
one of the many processes by which Markovian streams can
be generated from sensor data. We then describe event queries
over Markovian streams and outline the major challenges to
processing them in an archived setting.

A. Hidden Markov Models and Markovian Streams

Consider again the example scenario in which RFID readers
track Bob’s location as he moves throughout a building.
Because RFID readers are placed at discrete locations and
because of noise and interference, the raw RFID stream

representing Bob’s location contains errors and gaps. Often,
however, a system can use probabilistic inference to reduce
errors and provide location estimates during times for which
no sensor data is available.

Many of the methods for inferring these location estimates
rely upon a simple and commonly-used graphical model called
a hidden Markov model (HMM) [29]. The HMM is designed
to infer a sequence of hidden state values (e.g. Bob’s locations)
from a sequence of observations (e.g. RFID tag reads). The
HMM incorporates both physical constraints (e.g. a person
cannot go directly from office O1 to office O2, since this would
involve walking through a wall; a tag is most likely no more
than 5 feet from the RFID antenna detecting it, since antenna
ranges are small) as well as statistical likelihoods (e.g. it is
more likely that Bob will enter his own office, rather than his
neighbor’s). The construction of this model is orthogonal to
Caldera’s contribution, so we do not describe it here, but refer
the reader instead to Rabiner’s excellent tutorial [29].

Standard probabilistic inference algorithms—including the
one used in our experiments—can use these models to infer
information missing from raw sensor streams. Fig. 2 illustrates
the key idea behind a popular and intuitive class of these al-
gorithms called sample-based inference techniques. The figure
depicts a small RFID deployment in which readers A, B, and
C are located in the corridors of a building. The figure shows
two timesteps’ worth of samples, which are simply guesses
about Bob’s location. The samples move through space at
each timestep and congregate in areas consistent with sensor
readings received by the system. Both the particle motion and
the notion of sensor consistency are defined by the HMM
parameters. To compute the marginal probability that Bob’s
tag is in a particular location, e.g. H1, at a particular time,
e.g. 7, the system simply counts the number of samples in H1
and divides by the total number of samples. In this example,
80% of Bob’s samples are in location H1.

In addition to marginal distributions, probabilistic smooth-
ing algorithms also provide correlations between these dis-
tributions. Such correlations are called conditional probability
tables, or CPTs. To demonstrate their importance, imagine that
at two later timesteps, say 50 and 51, Bob is in either office
O1 or O2, each with probability 0.5. Using correlations, the
probability that Bob is in O1 at time 50 and O2 at time 51 is
0.5 ∗ 0.0 = 0.0. The second term in this product reflects the
physical impossibility of moving directly between these two
offices, and reduces the final trajectory probability appropri-
ately to zero. Ignoring correlations, however, the probability
that Bob moves from O1 to O2 is 0.5 ∗ 0.5 = 0.25! Bob’s
sudden ability to walk through walls highlights the importance
of the correlations in Markovian streams. Not surprisingly,
maintaining these correlations is known to increase the quality
of events [33]. We use the name Markovian stream for the
correlated, temporal data produced by probabilistic smoothing
on a raw input stream.

More precisely, a Markovian stream with value attributes
A1, . . . , Ak (where Ai has domain Di for i ∈ [1, k]) is a
pair (p0, C). Here p0 is a distribution over D1 × · · · × Dk,
representing the initial probability distribution of the stream;
C is a sequence of conditional probability tables (CPTs)

3

O1

O5

H1 H2 H3

O2 O3

BO4

H2H1 H3

O1 O2 O3

O5BO4

Bob 7 O1 0.05

Bob 7 H1 0.80
Bob 7 H2 0.15

p(l)t ltag
Bob 7 8 H1 H1 0.625
Bob 7 8 H1 H2 0.250
Bob 7 8 H1 O1 0.125
Bob 7 8 H1 O2 0.000
Bob 7 8 H2 H1 0.000
Bob 7 8 H2 H2 0.666
Bob 7 8 H2 O1 0.000
Bob 7 8 H2 O2 0.333
Bob 7 8 O1 H1 0.000
Bob 7 8 O1 H2 0.000
Bob 7 8 O1 O1 1.000
Bob 7 8 O1 O2 0.000

t t′ l l′ p(l′|l)tag

p(l)t ltag

Bob 8 O1 0.15

Bob 8 H1 0.50
Bob 8 H2 0.30

Bob 8 O2 0.05

(b1)

(b2) (c)

(a1)

(a2)

A

A

C

C

Hallway
location

Office
locations

RFID
antenna

O1

Fig. 2. (a) A sample-based distribution over Bob’s location at time 7 (a1) when antenna A detects Bob, and at the next time 8 (a2), when Bob is undetected.
(b) The marginal distributions computed from the samples, for times 7 (b1) and 8 (b2) respectively. (c) The correlations between times 7 and 8.

C(A1, . . . , Ak, A′1, . . . , A
′
k,T, P). Each tuple in C uniquely de-

scribes the probability of a specific state transition from time
t to t + 1. For example, a tuple (a1, . . . , ak, a′1, ..., a

′
k, t, p) in

C indicates that p is the conditional probability that the state
of the stream is (A1 = a′1, . . . , Ak = a′k) at time t + 1, given
that the state at time t was (A1 = a1, . . . , Ak = ak). The set
of tuples sharing a value of T = t together define the entire
stream transition (CPT) between t and t + 1. For a full formal
semantic, see Ré et al. [33].

For performance reasons, Caldera explicitly stores the
marginal distributions over the stream state at each timestep,
even though they are derivable from (p0, C). Figures 2(b) and
2(c) show the relational representation of a Markovian stream
in which the single attribute A1 represents Bob’s location. To
further improve performance, zero-valued distribution entries
(e.g. H3 at timesteps 7 and 8 in Figure 2) are not explicitly
stored. Such values occur when inference is sample-based, or
when very small distribution entries are pruned to zero.

B. Regular Queries on Markovian Streams

Streams lend themselves naturally to event queries [9],
which ask questions about sequences of states. An example
event query is, “When did Bob enter his office (300)?”.
In this paper, we look at a subset of event queries called
Regular queries [33]. These queries are analogous to regular
expressions, or equivalently NFAs. An example Regular query
is shown in Figure 3(a). This query is satisfied when Bob is
first in a Hallway, and then in Office300 in the next timestep.
Regular queries comprise only linear NFAs, which means that
the directed automaton edges form a total order.

Regular query NFAs differ from standard NFAs in that they
transition when predicates on the input stream are satisfied,
instead of on static alphabet symbols. For example, the NFA
in Fig. 3(a) transitions from the start state to state S 0 on input

(a)

S0 S1
Hallway Office300

Entered-Office Query:
(Hallway, Office300)

S0 S1
Hallway Coffee Room

¬ Coffee Room

(b)

Coffee-Break Query:
(Hallway, ¬CoffeeRoom*, CoffeeRoom)

Fig. 3. Two two-link Regular event queries in NFA form and written
syntax. (a) Entered-Room query asking when Bob is in the Hallway and
then immediately in Office300. (b) Coffee-Break query asking when Bob is
in the Coffee Room at any time after leaving the Hallway.

timesteps in which Bob’s location is a hallway (many locations
might satisfy this predicate). If Bob’s location is not a hallway,
then this transition is not possible and the automaton dies.

We define a predicate here as a Boolean function on
stream attributes. For example, the Hallway predicate re-
turns true when the input location is a hallway. A Regular
query comprises a list of such predicates organized in a
way that respects the NFA’s linearity. Concretely, a Regular
query is a concatenation of links, where each link is one
of either 1) a single predicate (e.g. Hallway), or 2) a pair
of predicates in which the first contains a Kleene star (e.g.
(¬CoffeeRoom∗, CoffeeRoom). In the latter case, we refer to
the second predicate as the link’s primary predicate or simply
‘predicate’, since this is the predicate that transitions to the
next query link. Because Regular query NFAs are linear, a list
of links uniquely determines a query. Figures 3(a) and 3(b)
show Regular query NFAs and their link expressions.

A technical contribution of this work is to divide the set
of Regular queries into two classes for optimization: (1)
fixed-length queries, whose NFA representations are loop-free,
and (2) variable-length queries, whose NFAs contain loops.
Figs 3(a) and 3(b) show example fixed- and variable-length
queries, respectively. The class of fixed-length queries can be
satisfied only by fixed-length stream intervals (i.e. an n-link
query can be satisfied only by stream intervals of length n). In
contrast, intervals satisfying variable-length queries may span
an arbitrary number of timesteps. As we demonstrate in the
following sections, this distinction allows for very different
optimization of the queries in each class.

The output of a Regular query is a sequence of pairs 〈t, p〉,
where p is the probability that the query is satisfied at timestep
t. Figure 4 graphically illustrates the output of the Entered-
Room query detected in a real RFID data stream. The query
probability spikes when Bob enters his office (t ≈ 1100), and
shows a much lower series of peaks around a false positive
(t ≈ 1600). Applications can use simple thresholding to detect
these event peaks (e.g. Bob is entering an office if p > 0.3).

C. Challenges for Archived Regular Query Processing

In our previous work we presented Lahar, a system that can
efficiently process Regular queries on streaming data (i.e. in
near-real time). Lahar requires as input an entire Markovian
stream, making its use untenable in large-scale, archived
scenarios where a large volume of data must be read from

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800

Q
u
e
ry

 P
ro

b
a
b
ili

ty
 (

N
E

X
T

 s
e
m

a
n
tic

s)

Timestamp (seconds)

Entered-Room.probs

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 950 1000 1050 1100 1150

Q
ue

ry
 p

ro
ba

bi
lity

 (F
ixe

d-
Le

ng
th

)

Timestamp Index

0.383

False
positives

Fig. 4. Probability of the Entered-Room query on a real RFID data stream.
Bob actually entered his office only once, around timestep 1100, but he walked
past the office door again around timestep 1600.

disk. Our current work focuses on Regular query processing
in an archived setting, which poses the following challenges:

Our first challenge is that of adapting classical techniques
(e.g. B+ tree indexing, merge joins, etc. [30], [44]) to the
problem of processing large Markovian stream archives. This
adaptation is non-trivial because only a subset of Regular
queries can be processed using standard techniques. Thus the
challenge is in identifying this class, and in mapping standard
techniques onto the queries within it.

Our second challenge, high-quality event retrieval, arises
from the abundance of low-quality events matching each
query. The uncertainty in Markovian streams creates a large
number of low-quality query matches for each high-quality
peak in the query signal (see Figure 4). Top-k algorithms are
a standard approach for dealing with such noise. The challenge
in adapting top-k approaches to archived Markovian streams
is that query match probabilities are a function of the data
stream, but are not present directly in the stream data itself.
As a result, effective top-k pruning conditions are non-obvious.

Our third challenge, correlation retrieval, arises from the
correlations present in Markovian streams. Variable-length
query matches can span intervals of arbitrary length, and the
probabilities of these matches depend on correlations across
the entire interval—computable only via a scan of all timesteps
in the interval. The challenge in this case is to develop a data
structure that makes effective use of precomputation to allow
efficient lookup of the correlations between any two timesteps,
without requiring excessive storage space.

III. AM M S

Lahar’s query plans comprise three operators as illustrated
in Figure 5(a). At the heart of each query plan is the Reg
operator, which encapsulates Lahar’s event query processing
algorithms [33]. We represent Reg here as a stateful black box
that is initialized with a Regular query Q. During execution
of the query plan, Reg expects as input a series of Markovian
stream timesteps, each labeled either as the beginning of a se-
quence (Reg.startSequence) or as a continuation (Reg.update).
From each input, Reg produces a tuple < t, p > specifying the
probability p that query Q is satisfied at the input timestep.

The Sort operator is a standard operator, for use in top-k
queries. It sorts the 〈t, p〉 tuples produced by the Reg operator
in order of decreasing probability. Finally, the Ex (extract)
operator, which is the focus of this paper, extracts fragments of

Algorithm 2
[B+ Tree]

Algorithm 3
[Top-K B+ Tree]

Algorithm 4
[MC Index]

Algorithm 5
[Semi-

Independent]

Algorithm 4
[MC Index]

Algorithm 5
[Semi-

Independent]

Fixed-
Length

Variable-
Length

General-
Purpose Top-K

(b)

Ex

Reg

Sort

Top-K
termination

conditon
Marginals

& CPTs

Marginals
& CPTs

Satisfying
tuples
<t, p>

(a)

Fig. 5. (a) A Lahar query plan. (b) A breakdown of the space of Regular
event queries and the Ex implementations we develop for each quadrant.

Algorithm 1 Naı̈ve Scan Access Method
• M[i]: The ith timestep in Markovian stream M.
• M[i].t: The timestamp of the ith timestep in M.

Input: Regular query QR, Markovian stream M
Output: Probability that QR is satisfied at each timestamp t ∈ M

1: Reg.startSequence(M[0].marginal)
2: for each timestep i in M do
3: 〈M[i].t, p〉 = Reg.update(M[i].cpt)

Markovian streams from disk using one of the access methods
introduced shortly.

In this section, we present five physical implementations of
the Ex operator. The first, Algorithm 1, is a naı̈ve stream scan.
In the absence of indexes this is the only possible approach.
This is the baseline against which we compare our optimized
implementations.

Figure 5(b) outlines the space of Regular queries and the
novel algorithms that we develop in this section. We first show
how to leverage B+ tree indexes to efficiently answer fixed-
length queries. We then show how to further leverage standard
techniques to optimize top-k variants of these queries. For
variable-length queries, we introduce a new type of index,
called the Markov chain index (MC index) and an access
method that uses this index to efficiently answer any Regular
event queries.

For simplicity of presentation, we first introduce our al-
gorithms under two simplifying assumptions: 1) we assume
that all stream schemas contain only a single attribute A1; 2)
we assume that all predicates are of the form attribute =
constant (e.g. predicates select single attribute values). In
Section III-D we show how our algorithms generalize beyond
these assumptions.

A. Fixed-Length Regular Queries

Fixed-length Regular queries can be processed using simple
adaptions of standard indexing techniques (first challenge,
Section II-C). In particular, we can leverage a standard B+

tree secondary index on a Markovian stream. The B+ tree
uses search keys of the form: (attribute, time). Here
attribute is the stream attribute being indexed and time
is the stream timestamp. For example, a query plan for
the Entered-Office query in Figure 3(a) might leverage an
index on (location,time). We call this index BTC (C for

5

H2, t7 H2, t8 H2, t9 O1, t7 O1, t8 O2, t8

t8
H1 0.50
H2 0.30
O1 0.15
O2 0.05

p(t9 | t8)

H2, t7 O1, t7 O2, t8...

t9
H2 0.65
O3 0.35

p(t10 | t9)

...

t7
H1 0.80
H2 0.15
O1 0.05

p(t8 | t7)

Index

Archived
Markovian

stream

root

(BTC)

Fig. 6. Bottom: Three timesteps’ worth of the Markovian stream representing
Bob’s location, also shown in Figure 2. Top: A portion of BTC on this stream.

“chronological”, since this is the ordering of keys sharing the
same attribute value). An example is shown in Figure 6.

Note that, because each timestep represents a distribution
over states, each timestamp can appear multiple times in this
index. For example, timestamp 7 in Figure 6 appears in three
index keys, with locations H2, O1, and H1 (not shown).
Importantly, the index includes only value/time pairs with
a non-zero marginal probability, since zero-valued marginal
entries are not explicitly stored in the stream.

Recall that a fixed-length query QF comprising n links can
be satisfied only by stream intervals of length n. The goal of
indexing in this case is to efficiently identify these intervals.
For each predicate r in QF , an index such as BTC can be used
to retrieve the set of stream timesteps satisfying r. We define
satisfying timesteps as the set of timesteps in which predicate
r is satisfied with non-zero probability.

A standard equijoin between the sets of timesteps satisfying
various query link predicates is useless for identifying relevant
intervals. Instead, we require a temporally-aware join that
identifies contiguous sequences of timesteps. We implement
such a join using a separate index cursor on each predicate r.
These cursors are advanced forward in parallel while maintain-
ing the relative offsets required by the ordering of predicates in
QF . We say that the cursors intersect when they together refer-
ence a sequence of n consecutive timesteps, in the appropriate
query-specified ordering. Thus every intersection identifies a
length-n stream interval that is a potential query match. This
process is similar to the standard merge join, and shares the
corresponding linear-time data complexity.

This access method, which we call the B+Tree approach, is
shown in Algorithm 2. Lines 1-2 initialize cursors on the index
entries satisfying the predicates of QF . In line 3 these cursors
are advanced until they intersect on an interval I. Lines 4-6
process I through the Reg operator.

An example of the pruning done by the B+Tree approach
can be seen on the stream segment pictured in Figure 6. On a
two-link, fixed-length query comprising predicates (H2,O2),
the cursors on H2 and O2 first intersect on the interval (t7, t8),
which is passed to Reg. In contrast, the index entry (H2, t8) has
no intersecting entry (O2, t9), so this interval is not retrieved
from disk or passed through the Reg operator.

One convenient feature of our implementation of
temporally-aware index joins is that it retrieves relevant
intervals in chronological order. Overlapping intervals can

Algorithm 2 Fixed-Length Query Access Method (General)
Note: For simplicity, merging of overlapping intervals is not
shown.
Input: Fixed-length query QF comprising n links, Markovian stream
M, B+ Tree index BTC on the single attribute of M.

Output: Probability that QF is satisfied at each timestep t ∈ M
1: for each predicate r j in QF do
2: Initialize cursor C j on predicate r j in BTC
3: for each interval I in the intersection of (C0, ..., Cn) do
4: Reg.startSequence(I[0].marginal)
5: for each timestep i in I do
6: 〈I[i].t, p〉 = Reg.update(I[i].cpt)

thus be combined before invoking Reg. To see this, consider
the fixed-length query (O1,H2) on the data in Figure 6.
The B+Tree algorithm will identify both (t7, t8) and (t8, t9)
as requiring further processing. By instead passing the
single, longer interval (t7, t9), through Reg, it can avoid
double-processing of timestep t8. Thus on the densest data
sets, the B+Tree approach gracefully degenerates into a naı̈ve
stream scan, with additional overhead to handle the BTC

index cursors.

B. Top-K Optimization for Fixed-Length Regular Queries

The B+Tree algorithm efficiently computes the probability
of every query match in a stream; however, recall from
Section II-C (Figure 4) that many of these matches are of
low quality and are thus uninteresting to applications. The
challenge in this case is that of high-quality event retrieval,
in which only the top k query matches, or only those matches
with probabilities above a given fixed threshold, are returned.

The key observation for efficient optimization of these
queries is the following: within a length-n interval, the
marginal probability that the ith link predicate is satisfied
at the ith timestep in the interval is an upper bound on
the probability that the interval satisfies the query (i.e. that
the query has a non-zero probability of being true at the
last timestep in the interval). As an example, consider the
fixed-length query (H1,H2) on the interval (t7, t8) of Bob’s
location stream in Figure 2(b). Both p(H1 at t7) = 0.8 and
p(H2 at t8) = 0.3 are upper bounds on the probability that
the interval (t7, t8) matches the query, which in this case is
0.8 ∗ 0.25 = 0.2. Intuitively, these marginal probabilities are
upper bounds because a sequence of events cannot be more
likely than any of its individual components.

This observation implies that we can adapt the well-known
Threshold Algorithm (TA) and its variants [11], [26] to our
problem. The basic idea is to process fixed-length stream
intervals in decreasing order of marginal probability. For each
interval, we use the maximum marginal probability among
all query predicates to determine an upper bound on the
probability that the interval will match the query; we then
process each interval in order of decreasing upper bound.

More specifically, we introduce an additional secondary B+

tree index on the Markovian stream. We call this index the
BTP (p for “probability”) index. It uses search keys of the form
(attribute,prob), where attribute is the stream attribute
being indexed and prob is the marginal probability that the

6

Algorithm 3 Fixed-Length Query Access Method (Top-K)
Input: Fixed-length query QF comprising n links, Markovian stream
M, B+ Tree index BTP on the single attribute of M, and k

Output: Top k timesteps at which QF is satisfied in M.
1: currTopK.initializeEmpty
2: for each predicate r j in QF do
3: Initialize cursor C j on predicate r j in BTP
4: for each timestep M[t] w/ max prob. referenced by any C j do
5: if M[t].marginal.prob(r j)<= currTopK.min then
6: Terminate
7: I = {M[t − j], ..., M[t − j + n]}
8: if I[l].marginal.prob(rl)> currTopK.min, ∀ 0 ≤ l < n then
9: Reg.startSequence(I[0].marginal)

10: for each i in I do
11: 〈I[i].t, p〉 = Reg.update(I[i].cpt)
12: currTopK.evaluate(p)

attribute value is true at the indexed timestep. Within the BTP

index, keys sharing an attribute value are ordered in decreasing
order of marginal probability. As with the BTC index, the BTP

index includes only keys with non-zero probability.
Algorithm 3 outlines an access method (the top-k B+Tree

approach) that leverages the BTP index and the TA technique
to efficiently process top-k queries. After initialization (lines 1-
3), the algorithm scans in parallel all leaves of the B+ tree that
match the different query predicates, returning the entry M[t]
with the highest remaining marginal probability (line 4). The
algorithm terminates when the maximum marginal probability
of all remaining index entries (e.g. the marginal probability of
predicate r j in timestep M[t]) is below the probability of all k
of the current best query matches (lines 5-6). If this condition
is not met, the marginal probability of each predicate in the
interval I is examined (lines 7-8). If none of these is low
enough to prune the interval, the interval is processed through
the Reg operator (lines 9-12) and the resulting probability is
incorporated into the top k matches if appropriate.

As mentioned above, the marginal probability of each pred-
icate in a length-n interval is only an upper bound on the prob-
ability that the interval matches the query; the actual match
probability may be much lower or even zero. In data where this
is common, the top-k B+Tree algorithm has little opportunity
for pruning, and the B+Tree implementation of Ex based on
the BTC index, followed by a sort on the output tuples, will
often outperform the top-k B+Tree approach because of its
ability to combine the processing of overlapping intervals.
The top-k approach, by contrast, significantly outperforms the
standard B+Tree approach on queries with clear peaks, such as
that shown in Figure 3(b). We further explore the relationship
between these two algorithms in our evaluation (Section IV).

C. Variable-Length Regular Queries

The fixed-length access methods in the previous section
are inapplicable to variable-length queries, because variable-
length queries can be satisfied by stream intervals of arbitrary
length. A full stream scan can be avoided in this case using the
following insight: while query match intervals may be arbitrar-
ily long, generally only a small number of timesteps in each
interval contain data relevant to the query (i.e., satisfy at least
one query predicate with non-zero probability). Furthermore,

p(t2 | t1)t1 t2 t3 t4 t5t0 p(t1 | t0) p(t3 | t2) p(t4 | t3) p(t5 | t4)

p(t2 | t0) p(t4 | t2)

p(t4 | t0) ...

...

i=0

i=1

i=2

p(t5 | t0) = p(t1 | t0)p(t2 | t1)p(t3 | t2)p(t4 | t3)p(t5 | t4)

 = p(t4 | t0)p(t5 | t4)

 ≈ p(t5)

Exact: requires scan of raw data
 (5 conditionals of bottom row)

Exact: requires O(log n) lookups in the MC index (shaded
 index conditionals)

Independence assumption: requires lookup of a single marginal (t5)

Fig. 7. Markov chain index for α = 2. The bottom row (i = 0) is the raw
data, abstracted here. The two index entries required to compute the CPT
between timesteps t0 and t5 are shaded; without the index, a scan of the raw
data would be required. The semi-independence assumption requires lookup
only of the marginal at time t5, but computes an approximate result.

the query NFA changes state only on these relevant inputs. In
fact, the “irrelevant” intermediate timesteps require processing
only because together they contain the correlation information
relating each relevant timestep to the next. Thus we arrive at
the final, correlation retrieval challenge: to develop an efficient
(in both space and time) method for retrieving the correlations
between distant stream timesteps.

We now introduce a novel Markov chain index (MC) that
achieves this goal, along with an Ex implementation that
leverages it.

1) Markov Chain Index: The Markov chain (MC) index is
a tree-structured index that provides efficient lookup and/or
computation of the CPT relating any two Markovian stream
timesteps. The index stores a small set of precomputed CPTs
organized in the tree structure shown in Figure 7. The lowest
level of the tree (i = 0) is simply the set of all M CPTs in
the raw, length-M Markovian stream. The density of additional
levels of the tree is controlled by an integer parameter α. Each
additional index level i contains a set of M/(αi) entries, each
of which relates a pair of timesteps separated by a distance
of αi. The total number of levels in the index is logα(M), and
each index entry is the product of α entries of the index level
below it. The example in Figure 7 is drawn for α = 2; larger
values of α decrease the storage requirements of the index.

CPTs not stored directly in the MC index can be computed
as the product of existing entries, using the chain rule of
probabilities: p(t j|ti) = p(t j|tk)p(tk |ti). The upper bound on
the number of CPTs that must be multiplied to compute a
CPT spanning n timesteps is 2 logα(n), since at most two
entries from each applicable index level must participate. In
comparison, without the index this number would be simply
n. In Figure 7, the two shaded index entries represent those
whose product is the CPT relating t0 and t5.

2) Variable-Length Algorithm: The Markov chain index
naturally yields a simple algorithm (Algorithm 4, which we
call the MC index approach) for processing variable-length
queries. In lines 2-3, a separate index cursor on BTC is
initialized on each query predicate. Line 4 advances these
cursors forward in parallel, entering into the loop once for

7

Algorithm 4 Variable-Length Query Access Method (MC
Index)
Input: Variable-length query QV comprising n links, Markovian

stream M, B+ Tree index BTC on the single attribute of M, Markov
chain index MC

Output: Probability that Qv is satisfied at each timestep t ∈ M
1: tprev = Ø;
2: for each predicate r j in QV do
3: Initialize cursor C j on predicate r j in BTC
4: for each timestep M[t] referenced by any C j do
5: if tprev == Ø then
6: Reg.startSequence(M[t].marginal)
7: else
8: cpt = MC.computeCPT(tprev, t)
9: 〈M[t].t, p〉 = Reg.update(cpt)

10: tprev = t

each timestep M[t] satisfying any of the query predicates.
Upon the first entrance into this loop, execution jumps to
line 6. Upon subsequent iterations, line 8 uses the MC index
to lookup/compute the CPT between the previous relevant
timestep (tprev) and the current one (t). In line 9 this CPT
is used to update the Reg operator. In this way the algorithm
performs a single conceptual pass over the entire stream, but
leverages the MC index to avoid retrieving large spans of
irrelevant data from disk.

When a variable-length query contains loop predicates that
are not negations of non-loop predicates (e.g. (O1,H1∗,O2)),
the MC index and algorithm as presented above appear in-
sufficient. In this case, the large stream intervals requiring
summarization are not those containing irrelevant data, but
instead are those that continuously satisfy the query loop
predicate (H1 in the example of the previous sentence). These
conditionals are not present in the MC index as described
above; however, they can be captured for a given predicate
(e.g. H1) in a separate instance of the MC index whose entries
are conditioned on satisfaction of the predicate. The details
of the index construction and associated access method are
extremely similar to those presented for the general case, and
we omit them due to space limitations.

D. Practical Details

In this section we address several practical details which
until this point have been abstracted away or simplified for
the sake of presentation.

1) Indexing Predicates: Thus far we have assumed that all
query predicates are expressed as trivial equality selections on
a single stream attribute. However, Caldera can also support
multi-attribute schemas and more sophisticated predicates.
Caldera is designed to work with a star schema, analogously
to data warehouses: the Markovian stream corresponds to the
(multi-attribute) facts table, while separate dimension tables
provide extra information about stream attributes. Consider
as an example the RFID-derived Markovian stream with
schema (tagID,locationID,time,probability). Addi-
tional information about individual locationIDs could be
stored in a dimension table called LocationType, with schema
(locationID,locationType) and tuples of the form

(“Room300”, “CoffeeRoom”), (“HallwaySegment3”, “Hall-
way”), etc..

As in a data warehouse, Caldera supports join indexes
between the stream relation M and one or more dimension
relations D. Conceptually, the join index extends the tuples in
M with the attributes of D and indexes the resulting relation. In
practice, we create the index directly on M without modifying
it (e.g., the BTC and BTP indexes).

When the probability of a predicate Pi at a particular
timestep t is required (e.g., to create the index entries of
BTP for time t), it is computed by summing the marginal
probabilities of all tuples whose attribute values satisfy Pi

at t; this construction is valid because tuples with the same
timestamp are disjoint.

In the case where a Markovian stream is defined over
multiple attributes, it is possible that indexes exist on only a
subset of these attributes. Our fixed-length access methods can
simply use whatever indexes are available. Our variable-length
access method, however, requires indexes on all attributes
involved in any of the query predicates. If any of these indexes
is unavailable, a naı̈ve full data scan is the only processing
option supported by Lahar+Caldera.

Finally, with the exception of the top-k implementation, all
access methods support both equality and range predicates.

2) Physical Schema: Markovian stream archives are most
logically partitioned by stream, since Regular queries are each
defined over a single stream (e.g. over Bob’s location or Sue’s
location, but not both at the same time). Within a Markovian
stream, we choose to order data chronologically since the Reg
operator needs to process data in that order; however, several
disk layouts fulfill this constraint.

Separated Layout: In this layout, the marginal and con-
ditional sequences are each laid out chronologically, but in
separate locations (e.g. separate files). This layout optimizes
for situations where most accesses are made to one sequence
or the other, but not to both. Indexes on this layout are
constructed separately for each sequence.

Co-Clustered Layout: In this layout, the marginal and con-
ditional sequences are interleaved such that the marginal and
conditional tuples representing a single timestep are placed
together on disk, immediately before the marginal/conditional
tuples representing the chronologically-next timestep. This
minimizes access cost for operations requiring access to both
the marginal and conditional data for most timesteps. Indexes
on this layout are constructed as shown in Figure 6.

While the optimal layout is workload-dependent, we find
in Section IV that for common queries on an RFID-derived
location stream, the separated layout yields faster performance.

3) Variable-Length Algorithm (Approximate): While our
MC index algorithm provides applications with an elegant
space/time tradeoff, we acknowledge that some disk-hungry
or time-critical applications may not be satisfied by any point
in this tradeoff space. For these applications we provide
a final access method that is both more efficient than the
semi-independent approach, and does not require use of the
MC index; however, it returns only approximate results. We
call this algorithm the semi-independent approach because it
assumes independence between some—but not all—timesteps

8

Algorithm 5 Approximate Variable-Length Access Method
(Semi-Independent Algorithm)
Input: Variable-length query QV comprising n links, Markovian

stream M, B+ Tree index BTC on ALL attributes of QV
Output: Approximate probability that Qv is satisfied at each

timestep t ∈ M
1: tprev = Ø;
2: for each predicate r j in QV do
3: Initialize cursor C j on predicate r j in BTC
4: for each timestep M[t] referenced by any C j do
5: if tprev == Ø then
6: Reg.startSequence(M[t].marginal)
7: else if t == tprev + 1 then
8: 〈M[t].t, p〉 = Reg.update(M[t].cpt)
9: else if t > tprev + 1 then

10: 〈M[t].t, p〉 = Reg.update(M[t].marginal)
11: tprev = t

in a Markovian stream.
Algorithm 5 outlines the semi-independent approach which

is similar to Algorithm 4 (we again assume a single-attribute
stream schema, for clarity). Where Algorithm 4 uses the MC
index to retrieve correlations (lines 8-9), Algorithm 5 instead
makes a choice: If the previous and current timesteps are
adjacent, then it updates Reg using correlations (lines 7-8).
If the two timesteps are not adjacent, then they are assumed
independent and the correlations between them are ignored
(lines 9-10). Updating the Reg operator with a marginal
distribution instead of a CPT causes Reg to assume this
independence.

We call this approach semi-independent instead of simply
independent because it does not assume independence between
adjacent timesteps. The CPTs relating adjacent timesteps can
be read using a single disk access, equivalent in cost to the
access of the marginal required to make the independence
assumption. The costs of semi-independence and full indepen-
dence are therefore the same, and we choose the algorithm that
preserves as much correlation information as possible.

The semi-independence approach is only one sample from a
large space of algorithms that trade probabilistic precision for
speed. This tradeoff is particularly important for Markovian
streams because the cost of preserving exact probabilities
causes dramatic increases in both data storage and processing
time requirements. We believe that approximate approaches
will therefore play an important role in large-scale Markovian
stream processing systems. We leave the development and
analysis of such techniques to future work.

IV. E

The following evaluations were performed on our La-
har+Caldera prototype, implemented in Java and using Berke-
ley DB [27] as a data storage back-end. All experiments were
conducted on a 2.00GHz Linux machine with 16GB of RAM.

We demonstrate on both synthetic and real data that stan-
dard B+ tree indexing techniques (the B+Tree [Algorithm 2]
and top-k B+Tree [Algorithm 3] methods) provide orders
of magnitude improvements in performance over a naı̈ve
stream scan on fixed-length queries, even while preserving
the probabilistic, correlated relationships within Markovian

streams. We further demonstrate that the novel Markov chain
index provides the same magnitudes of speedup on variable-
length queries. Finally we demonstrate that the approximate
semi-independent approach outperforms even the MC index
approach, and we elaborate on its accuracy/efficiency tradeoff.

A. Setup
We evaluate Lahar+Caldera on both synthetic and real

Markovian streams, all from the RFID-based location tracking
application used as our primary motivation.

1) Synthetic RFID Data: Each synthetic Markovian stream
comprises 8 hours of data (30,000 timesteps). To maintain
realistic properties, we constructed these streams by concate-
nating together various 30-second stream “snippets” generated
from an RFID simulator reflecting the physical layout of our
building and RFID deployment. In each snippet, a simulated
person carrying an RFID tag walks down a short corridor, into
a room where he stays for 15 seconds, and then back down
the corridor. By altering the room labels in these snippets, we
control the relevant properties of each stream with respect to
our test queries.

2) Real RFID Data: Our real RFID data set was collected
using our building-wide RFID deployment. Eight volunteers
carried 58 tags as they went through one-hour versions of typ-
ical daily routines (working in their offices, having meetings,
taking coffee breaks, etc.). These routines visited locations
across two floors, spanning an area of roughly 10,000 square
feet discretized into 352 locations. The 17 antennas on each
of the two floors were placed only in the corridors (offices,
labs, etc. had no antennas inside them). We show performance
on eight of these traces, selected for their length (8 minutes
or more) and realistic reflection of location uncertainty (i.e.,
some tags were never or almost never detected and we did not
use the resulting traces).

We find that, on our real RFID data set, the fraction of
relevant timesteps (timesteps satisfying at least one query
predicate with non-zero probability) exhibits bimodal behav-
ior: either almost all or almost none of the timesteps in a
stream are relevant to a specific query. We call this fraction
of relevant timesteps data density and note that it is defined
on a Markovian stream with respect to a specific query. Data
density tends to be bimodal simply because the amount of
time that a person spends in a given place tends to be bimodal.
For example, the data density of queries involving a person’s
office tend to be high (0.75 and up) since the majority of
a person’s time is spent in his office. However, for queries
about coffee rooms, other people’s offices, etc., the fraction
of relevant timesteps is very small because the percentage of
time a person spends near these places is low. Data density
is an important parameter because it determines the relative
performance of different access methods.

B. Access Methods for Fixed-Length Regular Queries
We evaluate the performance of the B+Tree algorithm

(Algorithm 2) on a two-link Entered-Room query and compare
the results to the naı̈ve full stream scan. We perform this
comparison using both the separated and co-clustered disk
layouts in order to assess the benefits of each.

9

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Fraction of Relevant Timesteps

DiskLayoutEvaluation
N
EXTREGULARLogscale

 10

 100

 1000

 10000

 0.001 0.01 0.1 1

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Fraction of Relevant Timesteps

Tablegrantscash.mug2Subgoals.tableNEXTlogscale

Full Scan
Next Regular

TopK
 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1

T
im

e
 (

m
ill

is
)

Density

NextRegularBasicLogscale
Ti

m
e

(m
illi

se
co

nd
s)

Ti
m

e
(m

illi
se

co
nd

s)

Ti
m

e
(m

illi
se

co
nd

s)

Density Density Density

Full data scan
(separated layout)

Full data scan
(coclustered layout)

B+ Tree
(coclustered layout)

B+ Tree
(separated layout)

Full data scan

B+ Tree

0%

25%

50%
75%

100%

(a) (b) (c)

B+ Tree Algorithm Performance Fixed-Length Methods on Real Data B+ Tree Algorithm, Varying Query Match Rate

= Query shown in Figure 4

Full Scan
B+ Tree

Top-K B+ Tree

Fig. 8. Evaluation of access methods optimized for fixed-length queries. (a) Worst-case performance of the B+Tree algorithm using two disk layouts, on
synthetic data. (b) Performance of fixed-length approaches on real-world data. (c) Performance of the B+Tree algorithm on increasingly-favorable data sets.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800

E
n

te
re

d
-R

o
o

m
 P

ro
b

a
b

ili
ty

Stream Timesteps

AFTER Semantics: Exact vs. Approximate Probabilities

Exact
Approximate

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 950 1000 1050 1100 1150

Approximate Peak: 0.335

Exact Peak: 0.383

 10

 100

 1000

 10000

 0.001 0.01 0.1 1

T
im

e
 (

m
ill

is
)

Fraction Relevant Timesteps

MarkovVSFullScanM1.0
S
EPARATED

Full Scan
MC Index

Indep.
 1

 10

 100

 1000

 10000

 0.001 0.01 0.1 1

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Fraction of Relevant Timesteps

Tablegrantscash.mug2Subgoals.tableAFTERlogscale

Full Scan
MC Index

Non-Adjacent Independence

Q
ue

ry
 P

ro
ba

bi
lity

Density Density Timestep Index
(a) (b) (c)

Ti
m

e
(m

illi
se

co
nd

s)

Ti
m

e
(m

illi
se

co
nd

s)

Variable-Length Algorithm Performance Variable-Length Algorithm on Real Data Exact vs. Semi-Independent Query Probs.

Full Scan
MC Index

Semi-Independent

Full Scan
MC Index

Semi-Independent

Semi-Indep.

Semi-Indep. Peak: 0.335.

Fig. 9. Evaluation of access methods optimized for variable-length queries. (a) Performance of the three algorithms as the number of relevant timesteps
varies. (b) Performance on a real-world stream. (c) Breakdown on a real-world query of the approximation error of the semi-independent approach.

1) Performance Overview: Figure 8(a) shows logscale
performance numbers for both algorithms running on our
synthetic data. As expected, when the data density is low,
the B+Tree algorithm significantly outperforms a full stream
scan—in this case, by 1-2 orders of magnitude. Conversely
when most stream timesteps are relevant to the query, the
B+Tree approach degenerates into a full data scan with
additional overhead for the B+ tree lookups. We note that the
B+Tree algorithm performance here is worst-case, because in
this data set, every relevant timestep (timesteps that satisfy at
least one query predicate) participates in a valid query match.
This property reduces the amount of pruning and increases the
amount of disk I/O that the algorithm needs to do.

Figure 8(a) also demonstrates that both a full stream scan
and the B+Tree algorithm perform more efficiently on streams
archived using a separated disk layout. In the case of a full
scan this is not surprising, since only CPTs (no marginals)
are required. More interesting is the superior performance
of the B+Tree approach on a separated layout. In theory,
when data density is low, relevant stream intervals should be
isolated and the B+Tree approach will process only n CPTs
for every marginal (n is one less than the number of links
in the query). A co-clustered layout will certainly outperform
a separated layout in this case, since only a single disk I/O
is required to access both marginal and CPT data. In real-
world Markovian streams, however, and in our synthetic traces,
intervals of relevant data are not isolated but instead overlap
each other in long (e.g., 30 timesteps or more) stretches. This
overlap increases the number of CPTs read from disk for each

marginal, and as this number increases, the separated layout
dominates performance.

In order to show the best performance, we evaluate all
algorithms throughout the remainder of this section using
a separated disk layout. We note however that other types
of Markovian streams may not exhibit the same locality of
relevant timesteps, and for these streams the choice of optimal
disk layout may be different.

2) Real-World Query Performance (Fixed-Length): Fig-
ure 8(b) shows the performance of the three fixed-length
query algorithms (Algorithms 1, 2, and 3) on a set of 22
different Entered-Room queries in one real, 28-minute stream.
Each of the 22 queries corresponds to a different room, and
is responsible for three plotted points (one for each algo-
rithm). Not surprisingly, the plot confirms the results shown
in Fig. 8(a): the speedup of the B+Tree approach over a naı̈ve
scan increases as density decreases, providing improvements
of at least an order of magnitude when this density is low.
The lack of data points in the x range [0.1, 0.5] in Figure 8(b)
reflects the bimodality of data density.

In the set of queries with low data density, the top-k B+Tree
approach (Algorithm 3, plotted here for k = 1) performs
poorly relative to the B+Tree algorithm. The sparse nature
of the relevant data here provides the top-k B+Tree approach
with little opportunity for additional pruning. Furthermore,
the ability of the B+Tree algorithm to process overlapping
intervals in a single pass often allows it to outperform the
top-k B+Tree algorithm.

When the data density is high, however, the performance

10

of the top-k B+Tree algorithm is often–though not always—
much better (here, by an order of magnitude) than that of
either alternative. The key feature allowing efficient pruning
and therefore fast performance is the existence of a small
number of sharp peaks in the query signal. The query signal
shown in Figure 3(b) exhibits such behavior, and indeed this
query is responsible for the top-k B+Tree point highlighted in
Fig. 8(b) at x = 1.0. While the existence of such a peak cannot
be precisely determined ahead of query processing (indeed,
to do so would be to answer the top-k query), a reasonable
heuristic is to try and use the top-k B+Tree algorithm for
queries expected to have a high data density.

3) Broader Performance Trends: Figure 8(c) shows a more
detailed, synthetic-data evaluation of the behavior of the
B+Tree approach on an Entered-Room query. Each curve
plots the performance of the algorithm when a different, fixed
fraction of relevant timesteps participate in query matches. The
curve for a query match rate of 100% is precisely the curve
from Figure 8(a).

For any single curve in Figure 8(c), decreasing the data
density (x-axis) decreases the number of query match intervals
that the B+Tree algorithm must fetch from disk and send
through the Reg operator, which increases performance. For a
given data density on the x-axis, a decrease in the number of
query matches causes a proportional increase in performance.
When the fraction of relevant timesteps is low (e.g. 0.01), the
difference between a 100% and 25% query match rate results
in an order of magnitude difference in processing time.

4) Performance on Longer Queries: We demonstrate the
scalability of the B+Tree algorithm on queries comprising
more than two links using the real data. Figure 10 shows the
results. Each of the three major columns of this table contains
performance data for a real-world stream on an Entered-Room
query written using 2, 3, or 4 links (we do not expect real-
world queries to require more than 4 links). The queries with 3
and 4 links require a tag’s presence at multiple specific hallway
locations outside a room before the room is entered.

The Reg operator slows exponentially with each additional
query link, as can be seen in the fourth row of Fig. 10. Because
the B+Tree approach is able to avoid many Reg updates,
the performance of the B+Tree approach relative to a full
stream scan (row 6 vs. row 4) improves dramatically on longer
queries. The performance of the top-k B+Tree algorithm
shows similar trends, although the relative performance gain
is slightly less pronounced than for the B+Tree approach.

The results in the figure show the performance of the
B+Tree and top-k B+Tree algorithms when indexes serve to
identify matching timesteps for all query predicates. In the
case where some query predicates are not indexed, perfor-
mance scales predominantly with the selectivity of the inter-
section of the available indexes, independent of the number
of predicates indexed. A second-order effect reflects improved
performance when the number of predicate indexes decreases,
simply because the index overhead is reduced.

C. Access Methods for Variable-Length Queries
The performance of the MC index (Algorithm 4, α=2)

and semi-independent (Algorithm 5) approaches versus a

Stream length (timesteps)

Time: B+ Tree (msec)

548 625 1206
26 26 11
174 232 266
56 75 214

query matches

Time: MC Index (msec)

554 613 1201
2 1 1
59 67 132
67 98 165

7.6 7.6 7.6
458 458 458
5 5 6

Time: Top-K B+ Tree (msec)

Time: Full Scan (msec)

Stream: James
Q: Entered-Office

Subgoals in query:

2 3 4

Stream length (minutes)

relevant timesteps

TIme: Semi-Indep. (msec)

query matches

Stream: Sally
Q: Entered-Office

Subgoals in query:

2 3 4

F
I
X
E
D

V
A
R

7.7 7.7 7.7
462 462 462
149 194 211

145 188 188
290 424 678
114 156 379

2 1 1
32 43 117
9 12 22

977 1124 3034
3 1 1
67 71 135
95 366 1970

Stream: Pat
Q: Coffee-Room

Subgoals in query:

2 3 4

28 28 28
1683 1683 1683
33 53 253

3 21 21
187 237 902
39 68 398

Fig. 10. Statistics describing several streams from our real data set, and the
speed of queries with varying lengths on these streams.

naı̈ve stream scan, on synthetic data and the now-familiar
Entered-Room query, are shown in Figure 9(a). Data density
is again the dominant factor in the performance of both
algorithms, which exhibit the same trends as the B+Tree
approach. Figures 9(a) and 8(a) are directly comparable. The
approximate, semi-independent approach is consistently faster
than the precise MC index approach, by a factor of roughly 8.

1) Real-World Query Performance (Variable-Length): The
performance of the three variable-length query algorithms on
real-world data is shown in Figure 9(b). As on the synthetic
data in Figure 9(a), the MC index access method performance
scales inversely with data density and outperforms the full
data scan by more than an order of magnitude when density is
low. The semi-independent approach continues to show perfor-
mance improvements over the MC index algorithm measuring
just under an order of magnitude.

The queries shown in Figure 9(b) are precisely the queries
plotted in Figure 8(b), with Kleene closures added to make
these queries variable-length. The data in these two plots is
therefore directly comparable (note the fact that the naı̈ve data
scan reflects the same constant time in both figures). Algo-
rithms 2 and 4 perform very similarly, yielding an interesting
discussion about when one or the other might be preferable.
The MC index approach is more general in that it can handle
any kind of Regular query; however, it is applicable only when
all stream attributes are indexed, and when the MC index is
available.

2) Accuracy vs. Efficiency: The semi-independent approach
is faster than MC index, but this performance gain comes
at the cost of accuracy. The approximate, semi-independent
algorithm makes no guarantees about the magnitude of the
errors it may incur.

Many applications, however, can tolerate some imprecision.
For such applications, the tradeoff between efficiency and ac-
curacy depends on the types of approximation errors typically
present in the Markovian streams of the application domain.
An example of such errors on a real-world Markovian stream
is shown in Figure 9(c). In this case, the approximate query
probabilities track the magnitudes of the precise probabilities
fairly well. The semi-independent algorithm correctly identi-
fies the maximum-probability timestep (this is not guaranteed
or even likely in some data sets), incurring a relative error
of roughly 13%. Applications in many circumstances may be
willing to use these approximate results in return for an order-

11

of CPTs in the Markov Chain
index on a trace of length

(in timesteps, levels 1 and up):

1796 28,796 604,793
598 9598 201596
256 4113 86398

1800
(30 min)

28,800
(8 hours)

604,800
(1 week)

119 1919 40318
57 928 19508

4

8

16

2

α

32

28 457 959964

(a)

Ti
m

e
(m

illi
se

co
nd

s)

CPT Interval Length (timesteps)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

m
ill

is
)

Interval Length (in timesteps)

Efficiency Gains By MC Index Level

Full Data Scan
Levels 0+
Levels 1+
Levels 2+
Levels 3+
Levels 4+
Levels 5+

0
1
2
3
4
5

Lowest level
(i) present
 in index:

0
1
2

3

4

∞ (= no index)
 (= full data scan)Lowest level present

in the MC index that
created each trend line
is shown near the line.

Fig. 11. (a) Time required to compute correlations across intervals of
varying lengths using the Markov chain index. Each successive line plots
performance when omitting an increasing number of lower index levels. (b)
Storage requirements for the Markov chain index under varying α values.

of-magnitude speedup.
Anecdotally, we find the approximations in Figure 9(c) to

be a fairly optimistic sampling of the output of the semi-
independent algorithm. The semi-independent approach on
other of our real-world Markovian streams failed to properly
identify the maximum-probability timestep, giving errors with
raw magnitudes up to 0.286.

D. Markov Chain Index

The purpose of the Markov chain index is to provide
efficient access to (precomputed) correlations between distant
Markovian stream timesteps. Figure 11 provides details of the
index’s tradeoff between storage space and lookup speed.

Figure 11(a) shows the average time required to compute
correlations between two timesteps separated by intervals of
varying size. Because the placement of these intervals relative
to stored index entries is important, reported results are the
averages over all placements. Each higher curve in the graph
represents performance when an additional index level is
removed (this is a proxy for increasing α) Clearly, correlations
across intervals smaller than the span of the lowest available
level of the Markov chain index can be computed only with
a full scan, which accounts for the upper-bound behavior of
the leftmost, naı̈ve scan curve. The spacing between the flat
portions of each i curve demonstrates that each additional
index level reduces CPT lookup time by half.

In terms of speed, then, MC indexes parameterized with
lower values of α (roughly equivalent to the addition of
increasingly low levels i in the above discussion) provide better
performance by storing a greater number of precomputed
conditionals. While this performance is gained at the cost of
disk space, we note that the most efficient parameterization,
using α = 2, merely doubles the stream storage requirements.
Certainly many applications in the archived, warehouse-like
setting targeted by Lahar+Caldera will find this an acceptable
tradeoff; however, disk-starved applications can leverage the
MC index within their resource limitations by increasing α.
Storage requirements for various α on streams of varying
lengths are shown in 11(b).

V. RW
Management of large-scale archived RFID data sets has

received significant attention, with much work focusing di-
rectly on the storage, processing, and analysis of raw,

noisy RFID data [14], [16], [24], [31], [39]. A complemen-
tary body of work addresses the cleanup of noisy RFID
streams and presents methods for producing cleaned—but still
deterministic—streams [19], [31], [39]. By contrast, Lahar
preserves the uncertainty (probabilities and correlations) at
the levels of both data and queries. In previous work, we
proposed probabilistic RFID cleaning [21] and SQL-based
event extraction [41] techniques. These approaches, however,
ignore correlations, do not support Kleene Closures, and
extract events by executing incremental SQL queries.

The problem of probabilistically inferring high-level infor-
mation (e.g. location, activity) from low-level sensor data has
a long history in the AI community. Temporal probabilistic
models such as Hidden Markov Models [29] and Dynamic
Bayesian Networks [23], [25] deal specifically with uncertain,
temporal data. Particle filtering [2] (and associated smoothing
algorithms [22], [7]) is a simple and popular way of perform-
ing inference in these models, and has also recently been used
in the databases community to perform real-time inference
inside a DBMS [20] and to infer the locations of RFID tags
when both tag and antenna locations are unknown [37].

While inference in probabilistic models is highly devel-
oped in the AI community, work on answering relational
and event-style queries on the output of these models is
in its infancy. Deshpande et al., propose treatment of these
models within a DBMS as a model-based view [10] and
explore answering selection and aggregation queries on these
views [20]; Lahar+Caldera in effect treats its stream archive
as a materialization of such a view and explores event-based
queries. The Data Furnace project [12] similarly proposes
to perform model-based inference directly inside a DBMS;
however to the best of our knowledge no technical results on
this project have been published. Probabilistic databases like
MystiQ [8] and Trio [3], [42] address a related problem space
but cannot model the sequential, correlated data streams at the
heart of Lahar.

Automaton-based processing of event queries on RFID
or similar data streams has recently been explored in the
Cayuga [9] and SASE [43] systems, but these systems assume
a deterministic input stream. Our early work on Lahar [33]
adapted this style of processing to probabilistic input. Our
current work on Caldera leverages Lahar’s near-real-time
stream processing algorithms.

Markovian streams are related to time series and time-
evolving data, since they are temporal data sequences. La-
har’s workload (i.e., event queries on probabilistic streams),
however, differs significantly from the workload of time-series
databases (i.e., primarily similarity searching) and temporal
databases (i.e., selections of different object versions or objects
valid within certain time intervals). Indexing techniques for
time series [15] and temporal [35] data are thus orthogonal to
Caldera’s techniques.

There has been recent work on top-k query processing of
probabilistic relational systems [32], [36], [4]; however, none
consider the problem of indexing sequential probabilistic data.
Separately, there is work on probabilistic streams [18], [6], but
this work does not consider access paths for the streams.

12

VI. C

In this paper we presented Caldera, a storage manager
that enables Lahar to execute event queries over archived
Markovian streams. Using Caldera, the Lahar system is able
to selectively process only relevant parts of the stream, thus
achieving significant performance gains. At the same time,
Lahar+Caldera preserves result accuracy by retaining the
Markovian properties of the stream while skipping data.

To achieve high performance, Lahar+Caldera distinguishes
different types of queries (fixed-length and variable-length).
It then uses novel and efficient access methods specialized
for each query type. For fixed-length queries, Caldera uses
novel adaptations of standard B+ tree indexes. For variable-
length queries, it leverages a new type of index, the MC
index, to effectively summarize unimportant parts of a stream.
Additionally, Lahar+Caldera supports top-k queries that ef-
fectively filter out noise in query results and can also im-
prove performance in the case of fixed-length queries. Using
synthetic and real data, we demonstrated that Lahar+Caldera
offers performance that can be orders magnitude better than
that of a full stream scan.

Overall, effective techniques for managing noisy sensor data
are important for many applications today and we view this
work as an important step in this direction.

A

This work was partially supported by NSF Grants IIS-
0713123, IIS-0454425, IIS-0513877, IIS-0627585, and CRI-
0454394; and by a gift from Microsoft Research under the
SensorMap RFP. J. Letchner is supported by an NSF graduate
research fellowship.

R
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern

matching over event streams. In Proc. of the SIGMOD Conf., June 2008.
[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial

on particle filters for on-line non-linear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174–188, Feb. 2002.

[3] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. Uldbs: Databases
with uncertainty and lineage. In VLDB, pages 953–964, 2006.

[4] D. Burdick, P. M. Deshpande, T. S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. Olap over uncertain and imprecise data. The VLDB
Journal, 16(1):123–144, 2007.

[5] Computerworld. Procter & Gamble: Wal-Mart RFID effort ef-
fective. http://www.computerworld.com/action/article.do?
command=viewArticleBasic&articleId=284160, Feb. 2007.

[6] G. Cormode and M. N. Garofalakis. Sketching probabilistic data
streams. In SIGMOD Conference, pages 281–292, 2007.

[7] R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999.

[8] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In Prov. of the 30th VLDB Conf, 2004.

[9] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards
expressive publish/subscribe systems. In Proc. of 10th EDBT Conf., Mar.
2006.

[10] A. Deshpande and S. Madden. MauveDB: supporting model-based user
views in database systems. In Proc. of the SIGMOD Conf., June 2006.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In Proc. of the 20th PODS Conf., 2001.

[12] Garofalakis et. al. Probabilistic data management for pervasive comput-
ing: The Data Furnace project. IEEE Data Engineering Bulletin, 29(1),
Mar. 2006.

[13] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman and Hall/CRC, 2003.

[14] H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and analyzing
massive RFID data sets. In Proc. of the 22nd ICDE Conf., Apr. 2006.

[15] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., second edition, 2005.

[16] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Supporting RFID-based
item tracking applications in Oracle DBMS using a bitmap datatype. In
Proc. of the 31st VLDB Conf., Sept. 2005.

[17] Incorporated Research Institution for Seismology (IRIS). Seismic
Monitor. http://www.iris.edu/hq/.

[18] T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating
statistical aggregates on probabilistic data streams. In PODS, pages
243–252, 2007.

[19] Jeffery et al. Adaptive cleaning for RFID data streams. In Proc. of the
32nd VLDB Conf., Sept. 2006.

[20] B. Kanagal and A. Deshpande. Online filtering, smoothing and proba-
bilistic modeling of streaming data. In Proc. of the 24th ICDE Conf.,
June 2008.

[21] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting
input data errors probabilistically using integrity constraints. In Proc.
of Fifth MobiDE Workshop, June 2006.

[22] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang.
Fast particle smoothing: if I had a million particles. In Proc. of the 23rd
ICML, pages 481–488, New York, NY, USA, 2006. ACM.

[23] S. L. Lauritzen. Graphical Models. Number 17 in Oxford Statistical
Science Series. Clarendon Press, Oxford, 1996.

[24] C.-H. Lee and C.-W. Chung. Efficient storage scheme and query
processing for supply chain management using RFID. In Proc. of the
SIGMOD Conf., June 2008.

[25] L. Liao, D. J. Patterson, D. Fox, and H. A. Kautz. Learning and inferring
transportation routines. Artif. Intell, 171(5-6):311–331, 2007.

[26] A. Marian. Evaluating top-k queries over web-accessible databases. In
Proc. of the 18th ICDE Conf., 2002.

[27] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In ATEC ’99:
Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 43–43, Berkeley, CA, USA, 1999. USENIX Associ-
ation.

[28] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,
H. Kautz, and D. Hahnel. Inferring activities from interactions with
objects. IEEE Pervasive Computing, 3(4):50–57, 2004.

[29] L. R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. pages 267–296, 1990.

[30] R. Ramakrishnan and J. Gehrke. Database Management Systems.
McGraw-Hill Science Engineering, third edition, 2002.

[31] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A deferred
cleansing method for RFID data analytics. In Proc. of the 32nd VLDB
Conf., Sept. 2006.

[32] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query evaluation on
probabilistic data. In ICDE, 2007.

[33] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event queries on
correlated probabilistic streams. In Proc. of the SIGMOD Conf., June
2008.

[34] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[35] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-
evolving data. ACM Comput. Surv., 31(2):158–221, 1999.

[36] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing
in uncertain databases. In ICDE, pages 896–905, 2007.

[37] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic
inference over RFID streams in mobile environments. Technical Report
07-59, University of Massachusetts at Amherst, 2007.

[38] University of Washington. RFID Ecosystem. http://rfid.cs.
washington.edu/.

[39] F. Wang and P. Liu. Temporal management of RFID data. In Proc. of
the 31st VLDB Conf., Sept. 2005.

[40] E. Welbourne, M. Balazinska, G. Borriello, and W. Brunette. Challenges
for pervasive RFID-based infrastructures. In IEEE PERTEC 2007
Workshop, Mar. 2007.

[41] E. Welbourne, N. Khoussainova, J. Letchner, Y. Li, M. Balazinska,
G. Borriello, and D. Suciu. Cascadia: a system for specifying, detecting,
and managing RFID events. In Proc. of the Sixth MobiSys Conf., June
2008.

[42] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In Proc of the 2nd CIDR Conf., 2005.

[43] E. Wu, Y. Diao, and S. Rizvi. High-Performance Complex Event
Processing over Streams. In Proc. of the SIGMOD Conf., June 2006.

[44] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian,
and R. Zicari. Advanced Database Systems. Morgan Kaufmann, 1997.

