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Abstract—Developers  often  copy,  or  clone,  code  in  order  to 
reuse or modify functionality. When they do so, they also clone 
any bugs  in the  original  code.  Or,  different developers  may 
independently make  the same mistake.  As one example  of a 
bug, multiple products in a product line may use a component 
in a similar wrong way.  This paper makes two contributions. 
First, it presents an empirical study of cloned buggy code. In a 
large  industrial  product  line,  about  4%  of  the  bugs  are 
duplicated across more than one product or file. In three open 
source  projects  (the  Linux  kernel,  the  Git  version  control 
system, and the PostgreSQL database) we found 282, 33, and 
33 duplicated bugs, respectively. Second, this paper presents a 
tool,  CBCD,  that  searches  for  code  that  is  semantically 
identical to given buggy code. CBCD tests graph isomorphism 
over  the  Program Dependency  Graph  (PDG) representation 
and uses four optimizations. We evaluated CBCD by searching 
for known clones of buggy code segments in the three projects 
and  compared  the  results  with  text-based,  token-based,  and 
AST-based  code  clone  detectors,  namely  Simian,  CCFinder, 
Deckard, and CloneDR. The evaluation shows that CBCD is 
fast when searching for possible clones of the buggy code in a 
large system, and it is more precise for this purpose than the 
other code clone detectors. 

Keywords- Validation, Debugging aids

I.  INTRODUCTION

Although  copy-paste  is  generally  regarded  as  a  bad 
coding  practice,  it  is  sometimes  necessary,  and  some 
developers do it to save development effort. Baker found that 
24% of files examined included exact matches of code lines 
[4]. Ducasse et al. reported that two files of gcc have more 
than 60% duplication [3]. A study of code clones in Linux 
[2] showed that:
 A  few  copy-pasted  segments  were  copied  more  than 

eight times.
 Device  drivers  and  cryptography  have  the  highest 

percentage of clones, because many drivers share similar 
functionality  and  cryptographic  algorithms  consist  of 
multiple similar computational steps.

Code copy-paste and software reuse makes buggy code 
appear in multiple places in a system or in different systems. 
For example, code clones and software reuse have caused 
duplicated  software  security  vulnerabilities  [18].  Cut-and-
paste is a major cause of operating system bugs [11].

This paper makes two contributions. First, we examined 
the data in the SCM (Software Configuration Management 
System) of 4 projects: an industrial software product line, the 

Linux  kernel,  Git,  and  PostgreSQL.  We  discovered  that 
identical buggy code does exist in all 4 projects.

Second, to find clones of buggy code, we developed a 
clone  detection  tool,  CBCD.  Given  an  example  of  buggy 
code,  CBCD uses  isomorphism matching  in  the  Program 
Dependence Graph (PDG) [15] to search for identical code 
— that  is,  clones.  Subgraph  isomorphism is  NP-complete 
[13], so we implemented four optimizations that reduce the 
number and complexity of graphs in the PDG isomorphism 
matching. Evaluation of CBCD on real cloned buggy code 
confirms that CBCD is scalable to large systems. To evaluate 
how well  CBCD can find cloned bugs,  we also compared 
CBCD with text-based,  token-based,  and AST-based  code 
clone detectors,  using the identified buggy codes and their 
clones as oracles. CBCD outperformed the other approaches. 
(Our evaluation focuses on the important problem of finding 
clones  of  buggy  code.   For  other  tasks,  the  other  clone 
detectors may be better than CBCD.) 

The rest of this paper is organized as follows. Section 2 
presents our empirical  study of cloned buggy code in one 
commercial  product  line  and  three  large  open  source 
systems. Section 3 describes the design and implementation 
of  CBCD,  which  can  find  cloned  buggy  code.  Section  4 
presents  our  experimental  evaluation.  Section  5  discusses 
related work, and Section 6 concludes. 

II. AN EMPIRICAL STUDY OF CLONED BUGGY CODE

We first  manually investigated whether  buggy lines of 
code are cloned in real systems. We examined the SCM of 
the Linux kernel, Git, and PostgreSQL, and the bug reporting 
system of a commercial software product line. 

A. The Linux Kernel

For the Linux kernel, we searched for the keywords in 
Table I in commit messages and in the bug tracking system, 
which  records  discussions  between  developers  during 
debugging. For each match, we read the description of the 
commit, the discussions between developers, and the “diff” 
of the original  file and the changed file.  This information 
indicated  to  us  whether  the  commit  was  necessitated  by 
duplication of a bug. If so, we identified the buggy code and 
its clones manually.

The  second  column  of  Table  I  shows  the  number  of 
distinct, independent bugs that exist in multiple locations. By 
distinct,  we  mean  that  we  count  a  bug  once,  even  if  it 
appears  in  3  places.  By  independent,  we  mean  that  if  a 
commit  message  said,  “The  same  problem  as  commit 
#1234”, we count only one of the two bugs. Finally, there is 
no  double-counting:  if  a  commit  message  said  “the  same 
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problem as #1234, with the same fix”, then it only appears in 
one row of Table I.  Some examples of these cloned bugs are 
shown in Table II.  However,  for  some of  these  bugs,  we 
cannot locate the cloned buggy code, because the developers 
did not  give  enough details.  The third column of Table  I 
omits  such  bugs.  For  example,  one  developer  said,  “The 
same bug that existed in the 64bit memcpy() also exists here 
so fix it here too” but did not specify which version of which 
file  of  the  system  includes  the  fix  of  the  bug  in  64bit 
memcpy().  As there are  many files  and many versions of 
Linux, it would be difficult to search all of them to find the 
fixes to memcpy(). Even if we found a change to memcpy(), 
without further information, we do not know if that change is 
the fix mentioned  by the developer.

TABLE  I.  CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE 
LINUX KERNEL

Key words used 
for searching the 

SCM

Number of distinct 
bugs existing in more 

than one place

Number of bugs 
whose clones we 

can locate
same bug
same fix

same issue
same error

same problem

53
48
62
7

112

23
24
39
6
65

Sum 282 157

TABLE  II.  EXAMPLES OF CLONED BUGS IN THE LINUX KERNEL

Phrases in the SCM 
explaining the cloned bugs

Code modified (i.e., the lines of 
code modified by the bug fix) 

This is quite the same fix as 
in 2cb96f86628d6e97fcbda5f
e4d8d74876239834c

static int my_atoi(const char *name){ 
  int val = 0;
    for (;; name++) {
       switch (*name) {
           case '0' ... '9':
      val = 10*val+(*name-'0');
       break;
        default:
        return val;} }}

This patch fixes iwl3945
deadlock during suspend by
moving notify_mac out
of iwl3945 mutex. This is a
portion of the same fix for
iwlwifi by Tomas.

 ieee80211_notify_mac(priv->hw,
IEEE80211_NOTIFY_RE_ASSOC);

It turns out that at least one of 
the caller had the same bug.

ret = btrfs_drop_extents(trans, root,
inode, start, 
aligned_end, start, &hint_byte); 

Other platforms have this 
same bug, in one form or 
another

atomic_inc(&call_data->finished);
func(info);

B. Git and PostgreSQL

For the Git and PostgreSQL projects, we used the same 
methodology. Table III shows the number of bugs that exist 
in multiple places.

C. A Commercial Software Product Line

We also evaluated a commercial product line in which a 
single  product  is  produced  for  more  than  40  different 
operating systems and mobile devices. For 17 of the projects, 
we have  access  to  bug reports  and developer  discussions. 
These  projects  have  a  total  of  25420  valid  bugs  that  are 
confirmed and resolved as a bug in the code, not a user error.

We searched for the same keywords in the bug reports. 
Unlike the Linux kernel,  Git,  and PostgreSQL,  we do not 
have full access to the source code in the SCM.  Thus, we 
did  not  check  the  code  differences.  Our  assessment  of 
whether a bug was duplicated (as shown in Table IV) was 
based on reading the discussions between developers during 
debugging. It turns out that 3.8% (969/25420) of the bugs in 
these 17 projects exist in more than one place.

TABLE  III.  CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN GIT 
AND POSTGRESQL

Key words 
used for 

searching the 
SCM

GIT POSTGRESQL

Number of  
distinct bugs 
existing in 

more than one 
place

Number of  
bugs whose  
clones we 
can locate

Number of  
distinct bugs 
existing in 

more than one 
place

Number of  
bugs whose 
clones we 
can locate

same bug 
same fix 

same issue 
same error

same problem

7 
7 
14 
0
5

5
4
3
0
0

9
5
2
1
16

9
4
0
8
1

Sum 33 12 33 22

TABLE  IV.  CLONED BUGS WHICH EXIST IN MORE THAN ONE PLACE IN THE 
COMMERCIAL SOFTWARE PRODUCT LINE

Key words used for searching 
the bug reports

Number of distinct bugs 
existing in more than one place

same bug 
same fix 

same issue 
same error

same problem

170 
40 
302
56
401

Sum 969

III. CBCD, A TOOL TO SEARCH FOR CLONED BUGGY 
CODE

Once a bug is detected, it is necessary to check the whole 
system to see if the bug exists somewhere else. Section II 
shows that  this is  not  merely a theoretical  concern,  but is 
important in practice. It is especially important for a software 
product  line,  because  of  high  similarity  among  products. 
Customer satisfaction drops when a customer re-encounters a 
bug  that  the  vendor  claimed  to  have  fixed.  Although 
regression testing can check whether a bug is fixed, or can 
detect an identical manifestation of the bug in other products, 
regression  testing  cannot  find  all  occurrences  of  the  bug, 
especially when testers do not know where the buggy code 
may appear. Thus, it is important to supplement regression 
testing by a search for clones to locate code that may behave 
similarly to the buggy code.

D. PDG Based Code Clone Detectors

Some buggy lines may be copy-pasted “as-is”, but often, 
developers slightly modify the copy-pasted code to fit a new 
context  [2].  More  than  65%  of  copy-pasted  segments  in 
Linux  require  renaming  at  least  one  identifier,  and  code 
insertion and deletion happened in more than 23% of the 
copy-pasted  segments  [2].  Statement  reordering,  identifier 
renaming,  and  statement  insertion  or  deletion  are  also 
common in buggy code clones, especially clones introduced 
due to code or component reuse. For example, in Table II, a 
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developer stated that “Other platforms have this same bug, in 
one form or another.” 

Our  approach  is  to  adapt  Program Dependence  Graph 
(PDG)-based  code  clone  detection  methods  [7,  8,  9,  10], 
because  we believe that  the PDG-based approach  is more 
resilient to code changes than text-based, token-based, and 
AST-based approaches.

E. Tool Architecture

Our tool,  CBCD (for  “Cloned Buggy Code Detector”) 
has a pipe-and-filter architecture, as shown in Fig. 1. CBCD 
represents a program or code fragment as a PDG, which is a 
directed graph. Each vertex represents an entity of the code, 
such as a variable, statement, and so on; CBCD also records 
the  vertex  kind  (e.g.,  “control-point”,  “declaration”,  or 
“expression”), the position (i.e., the file name and the line of 
the represented source code), and the source code text itself. 
Each edge of a PDG represents control or data dependency 
between two vertexes. 

CBCD’s algorithm consists of three steps.
Step 1: CodeSurfer [14] generates the PDG of both the 

buggy  code  (the  “Bug  PDG”)  and  of  the  system  to  be 
searched for clones of the buggy code (the “System PDG”). 
The Bug PDG may consist of multiple sub-graphs depending 
on the structure of the buggy code; CBCD handles this case, 
but for simplicity of presentation this paper assumes the Bug 
PDG is connected. The System PDG consists of a collection 
of interlinked per-procedure PDGs.

Step 2: CBCD prunes and splits the System PDG (see 
Section III.C) to reduce its complexity and make subgraph 
checking cheaper. Optionally, CBCD also splits the original 
Bug PDG into multiple smaller PDGs (see Section III.C.4).

Step 3:  CBCD determines  whether  the Bug PDG is a 
subgraph  of  the  System  PDG.  It  uses  igraph’s  [16] 
implementation of subgraph isomorphism matching. igraph 
is  faster  than  other  tools,  such  as  Nauty  [17],  when 
comparing  randomly-connected  graphs  with  less  than  200 
nodes [12].

CBCD filters  the matches  reported  by igraph.   CBCD 
only outputs matches where, for each corresponding vertex, 
the vertex kinds match and the source  code text  matches. 
When  comparing  vertex  kinds,  CBCD  tolerates  control 
replacement, e.g., when developers change a “for” loop to a 
“while”  loop  to  provide  the  same  functionality.  When 
comparing  source  code  text,  vertexes  that  represent 
parameters of a function call are exempted. Note that even if 
all  vertex  kinds  and  text  match identically  (which  CBCD 
does not require), the source code could still be different so 
long as it led to the same PDG.  For example, reordering of 
(non-dependent)  statements  does  not  affect  the  PDG,  nor 
does insertion of extra statements, such as debugging printf 
statements.

CBCD  aims  to  find  all  semantically  identical  code 
clones. Two code snippets are semantically identical if there 
is no program context that can distinguish them—that is, if 
one  snippet  is  substituted for  the  other  in  a  program,  the 
program  behaves  identically  to  before,  for  all  inputs. 
Determining semantic equivalence is undecidable, so CBCD 
reports code with matching PDGs. As a result, every match 
that CBCD finds is semantically identical to the buggy code, 

but CBCD is not guaranteed to find all semantically-identical 
clones.

F. Pruning the Search Space for Isomorphism Graph 
Matching

All  code  clone  detection  tools  that  rely  on  graph 
matching  face  scalability  problems.  CBCD’s  isomorphism 
matching step is the most time-consuming step, especially 
for  matching  two  big  graphs.  The  reason  for  this  is  that 
subgraph isomorphism identification is NP-complete [13]. In 
the worst case, the fast subgraph isomorphism algorithm [12] 
implemented by igraph [16] requires O(N!N) time, where N 
is the sum of the number of nodes and edges of both graphs 
to be compared. Liu et al. [9] claim that “PDGs cannot be 
arbitrarily  large  as  procedures  are  designed  to  be  of 
reasonable  size  for  developers  to  manage.”  In  practice,  a 
procedure can be very big. For example, we used Git as a 
subject  program,  and  its  “handle_revision_opt”  procedure 
has  817  vertexes  and  2479  edges.  But,  even  smaller 
comparisons  can  be  intractable  in  practice.  Consider  a 
modest example: the buggy code has 5 lines of code (with 
around  10  vertexes  and  15  edges  in  the  PDG)  and  the 
procedure has 100 lines of code (around 200 vertexes and 
300 edges). In this example, N = 525 and N!N is 3.6 × 101204.

Output:
bug

clones

Step 3:
subgraph
testing

Split Bug 
PDG

Pruned
System
PDG

Step 2:
Split the 
Bug PDG 
and prune 
the System 

PDG

Bug vertex 
Info.

Bug
PDG

System
PDG

System
vertex Info.

Temporary file CBCD steps

Step 1:
Create 
Bug
PDG

Step 1:
Create
System
PDG

Buggy
lines

System to 
be 

checked

Figure 1.  Architecture of CBCD

To deal  with the scalability problem, Step 2 of CBCD 
prunes  the  number  and  complexity  of  the  graphs  to  be 
compared.

We have implemented four optimizations. The first three 
optimizations are  sound: each never excludes a true match, 
but makes the algorithm faster overall. These optimizations 
are run by default. The fourth optimization runs only if the 
buggy code segment contains too many lines of code. 

The  first  three  optimizations  are  based  on  the  fact, 
explained in Section III.B, that CBCD reports system code as 
a  clone  of  buggy  code  only  if  both  the  shape  of  the 
respective PDGs, and also the vertex kind and source text of 
corresponding  vertices,  are  identical.  The  first  three 
optimizations  can  be  viewed  as  enhancements  to  the 
subgraph  isomorphism  checker,  working  around  its 
limitation that it does not account for vertex kinds and source 
text.

All  four optimizations are  also based on the following 
observation: In  most cases,  the Bug PDG is small.  Fig.  2 
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validates  this  observation:  it  is  the  maximum  number  of 
contiguous lines of code in each of the 163 Git, Linux kernel, 
and PostgreSQL bugs for which we can locate their cloned 
bugs. (This excludes 28 bug fixes that added code rather than 
changing code.) More than 88% of the bugs cover 4 or fewer 
contiguous lines of code.

1) Optimization 1 (Opt1): Exclude Irrelevant Edges and  
Nodes from the System PDG

CBCD removes every edge that cannot match an edge in 
the Bug PDG, because such an edge is irrelevant for CBCD’s 
purposes.  In  particular,  CBCD removes every edge whose 
start and end vertex kinds and vertex text are not included in 
the start and end vertex kinds and characters of an edge in 
the Bug PDG. In the best case, this disconnects entire sets of 
nodes,  but  it  is  useful  even  if  it  merely  removes  edges, 
because a single System PDG can be very big.

For example, suppose the Bug PDG has two edges:  one 
from vertex kind “control-point” to vertex kind “expression”, 
and the other from “expression” to “actual-in”. Then, CBCD 
excludes from the System PDG all edges that do not start 
with “control-point” and end with “expression”, or start with 
“expression” and end with “actual-in”.

At this point, CBCD also compares the vertex characters 
(source code text), for vertex kinds whose code must match 
(e.g.,  not  procedure  parameters  nor  arguments).  CBCD 
discards those with text that cannot match the Bug PDG. The 
purpose of comparing vertex kinds and characters is different 
than Step 3 of Section III.B. The comparison here excludes 
System PDG vertexes and edges that  are irrelevant  to the 
Bug  PDG.  The  comparison  in  Step  3  ensures  that  the 
vertexes  in  the  isomorphism  matching  graphs  are  also 
identical. 

2) Optimization 2 (Opt2): Break the System PDG into  
Small Graphs

This optimization transforms the System PDG from one 
large graph into multiple small ones. CBCD must run more 
subgraph  isomorphism matchings,  but  each  matching  will 
focus on a smaller graph. The idea is to utilize the vertex 
kind  information  of  the  Bug  PDG  to  choose  only  small 
sections  of  the  procedure  PDG  for  each  subgraph 
isomorphism matching. The steps of Opt2 are: 

 Opt2-step1: Count  the  number  of  nodes  of  each 
vertex kind in the Bug PDG and the System PDG. 

 Opt2-step2: Choose the vertex kind vkmin in the Bug 
PDG that has the minimum number of occurrences 
in  the  System  PDG.  If  it  occurs  0  times  in  the 
System PDG, there is no graph match.

 Opt2-step3: Calculate  the pseudo-radius  db of  the 
Bug PDG: the greatest distance between a node of 
vertex kind vkmin and any other node.

 Opt2-step4: For each node of vertex kind  vkmin in 
the  System  PDG,  find  the  neighbor  graph  of  the 
vertex, with radius db from the node of kind vkmin.

    The distance computations ignore edge directions.
   Fig. 3 shows an example. Since the nodes of vertex kind 
vkmin must match, and there are few of them, it makes sense 
to check subgraph isomorphism only near them. It is possible 
for the neighbor graphs to overlap, in which case some PDG 
nodes appear in multiple distinct neighbor graphs and will be 
tested for isomorphism with the Bug PDG multiple times.

Figure 2.  Size (contiguous lines) of the largest component of each bug 
fix

Bug PDG
radius db = 2

Vertexes of PDG

Node of kind VKmin

VS.

Neighbor graph of 
node of kind 

VKmin with radius db

System PDG

Figure 3.  Breaking the System PDG into smaller pieces (Opt2)

Opt2 adds some extra overhead to CBCD. Here is the 
theoretical analysis of the time complexity without Opt2 and 
with Opt2. We assume that the Bug PDG has i1 nodes and j1 

edges and the System PDG has i2 nodes and j2 edges. Then 
the time complexity of each step of Opt2 is: 
 Opt2-step1. O(i1+i2)
 Opt2-step2. O(1)
 Opt2-step3. O(i1 j1), because of the igraph_diameter() 

function of igraph [16].
 Opt2-step4: O(w(i2+j2)), where there are  w vertexes in 

the System PDG having the chosen vertex kind from 
Opt2-step2,  because  of  igraph_neighborhood_graph() 
function of igraph [16] .

Although  Opt2  adds  the  above  overhead,  it  can 
significantly reduce the time complexity of Step 3 of Section 
III.B, i.e. subgraph isomorphism matching.

Without Opt2, the time complexity of comparing the Bug 
PDG and the System PDG is between O((i1+ j1+ i2+ j2)2) and 
O((i1+ j1+ i2+ j2)!  (i1+ j1+ i2+ j2)),  for  the  algorithm [12] 
implemented by igraph.

Since each  subgraph of  the System PDG has identical 
pseudo-radius as the Bug PDG after Opt2, we can assume 
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the size of subgraph of the System PDG is v(i1+j1), where v is 
expected to be close to 1. With Opt2, we compare the Bug 
PDG with w neighbor graphs in the System PDG in Step 3 of 
CBCD.  The  time  complexity  of  each  comparison  will  be 
between O(w(i1+j1+v(i1+j1))2) and 
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))). 

Let  us  compare  the  time  complexity  of  isomorphism 
testing without Opt2 with Opt2: 

 The best case:
O(w(i1+j1+v(i1+j1))2) vs. O((i1+ j1+ i2+ j2)2) 

 The worst case:
O(w(i1+j1+v(i1+j1))! (i1+j1+v(i1+j1))) vs. 
O((i1+ j1+ i2+ j2)! (i1+ j1+ i2+ j2))

Opt2-step2  chooses  the  vertex  kind  with  the  fewest 
occurrences.  So,  it  reasonable  to  assume that  w is  small, 
namely much less than i2. In addition, we have observed that 
the buggy code often includes only a few lines, so we can 
assume  i1+j1 is  much  smaller  than  i2+j2.  If  the  two 
assumptions  stand,  the  time  complexity  of  comparing  the 
Bug PDG and System PDG with Opt2 will  be at  least  as 
good as the time complexity of this step without Opt2 in the 
best case. Even in the worst case, the time complexity with 
Opt2 will still be better than the one without it, because i1+j1 

is related to the size of the buggy code, which is often small, 
while  i2+j2 is  related  to  the  size  of  the  procedure  to  be 
compared, which can have hundreds of lines of code. 

3) Optimization 3 (Opt3): Exclude Irrelevant PDGs
This  optimization  discards  some  parts  of  the  System 

PDG. The Bug PDG must match within one of the (relatively 
small) components of the System PDG. More specifically, 
each node of the Bug PDG must correspond to some node of 
a System PDG component, so each System PDG component 
must have as many, or more, nodes of each vertex kind than 
the  Bug  PDG  does.  CBCD  discards  any  System  PDG 
component that does not satisfy this criterion.

For example, suppose the Bug PDG has four nodes of the 
“expression” vertex kind, two nodes of the “control-point” 
vertex kind, and two nodes of the “actual-in” vertex kind. If 
a  System  PDG  component  includes  four  nodes  of  the 
“expression”  vertex  kind,  one  node of  the  “control-point” 
vertex kind, and three nodes of the “actual-in” vertex kind, 
this  System  PDG  component  will  be  excluded  from 
isomorphism  matching,  because  it  has  too  few  nodes  of 
vertex  kind  “control-point”.  It  therefore  cannot  be  a 
supergraph of the Bug PDG.

4) Optimization 4 (Opt4):  Break Up Large Bug Code  
Segments

Although most bug segments cover 4 or fewer lines of 
contiguous code, as shown in Fig. 2, some bug segments are 
larger. When the buggy code segment is large, Opt1, Opt2, 
and Opt3 may not be able to improve the performance of the 
system enough, because:
 When the buggy code segment is large, the Bug PDG 

will include many vertex kinds. Thus, Opt1 may not 
be able to prune many edges of the System PDG. 

 When the buggy code segment is large, the radius of 
the Bug PDG will be large. Thus, the sub-graphs of 
the  System PDG after  Opt2  will  still  be  large  and 
isomorphism matching will be slow.

 Even if few large Bug PDGs and large System PDGs 
need to be compared for isomorphism matching, the 
system will perform very slowly. Thus, Opt3, which 
reduces  the  number  of  comparisons,  does  not  help 
enough. 

To  deal  with  large  contiguous  buggy  code,  we 
implemented a fourth optimization. It is only triggered when 
the  bug  has  more  than  8  lines  of  contiguous  code.  The 
optimization is performed in Step 2 of CBCD and breaks up 
bug code segments  into sub-segments  with fewer  lines  of 
code.  We set  two thresholds,  which  are  configurable  and 
default  to  4  and  6.  The  purpose  of  setting  these  two 
thresholds is to split large buggy code segment into smaller 
sub-segments, and at the same time avoid having too small 
sub-segments. For a buggy code segment having more than 8 
lines of code, CBCD puts the first 4 lines of code in a sub-
segment first. If the remaining lines have 6 or few lines of 
code,  CBCD  does  not  split  it  further.  Otherwise,  CBCD 
again  puts  the  first  4  lines  of  the  remaining  lines  in  the 
second  sub-segment  and  reconsiders  the  remaining  lines. 
CBCD  searches  for  clones  of  each  sub-segment 
independently, and then merges their corresponding matched 
clones together. Merging can increase the false positive rate 
of CBCD, if CBCD merges two unrelated partial  matches 
into a “complete” match that it would never have discovered 
if using the larger bug PDG. To deal with this issue, CBCD 
checks the last line of one suspected buggy sub-segment with 
the first line of another suspected buggy sub-segment to be 
merged. If the difference is more than 8 lines of code or the 
two sub-segments are in different files, CBCD assumes that 
these two code lines are too far apart to be part of clone of a 
single bug and does not merge them.

IV. EVALUATION AND DISCUSSION

We wished to answer the following research questions:
 How well can CBCD find cloned buggy code?
 How well does CBCD scale?

A. The Subject Programs

We  evaluated  CBCD  on  Git,  the  Linux  kernel,  and 
PostgreSQL. We chose those three systems because:
 They  are  programmed  mainly  using  C/C++,  which 

means that they can be compiled by CodeSurfer.
 Their revision histories enable us to find buggy code 

and cloned buggy code for our evaluation.
 Git has more than 100K lines of code, PostgreSQL has 

more than 300K lines of code, and the Linux kernel has 
millions of lines of code, making them a good test of 
the scalability of CBCD. 

B. Evaluation Procedure

1) Oracles for the Evaluation
As discussed in Section III.B, determining true clones of 

buggy  code  is  undecidable.   Our  experiments  use  as  an 
oracle the clones of buggy code that developers identified.  It 
is possible that the developers found only some clones of a 
given bug, in which case any tool that reported the others 
would be (incorrectly) considered to suffer false positives.

As described in Section II, we identified buggy code and 
its clones by searching commit logs and reading code. From 
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these  bugs,  we  chose  only  those  related  to  C/C++  code, 
because that  is  the only type of code that  CodeSurfer  can 
compile.  We  examined  all  12  Git  bugs  and  all  22 
PostgreSQL bugs from Table III, and we arbitrarily chose 52 
(one third of 157) Linux bugs from Table I.  We were not 
able to use all of these bugs: our technique is not applicable 
when the bug fix adds new code; CBCD only handles C and 
C++;  our  processor  is  32-bit  x86;  and  in  two  cases  the 
developers  were  mistaken  in  calling  two  bugs  clones, 
because they refer to completely different functions or data 
structures  (see  Table  V).  After  excluding  such  cases,  the 
evaluation used 5 Git  bugs,  14 PostgreSQL bugs,  and 34 
Linux bugs. A complete list of the bug clones examined in 
the evaluation is in [24].

TABLE  V.  BUGGY CODE THAT PROGRAMMERS CALLED “CLONES” BUT 
ARE NOT TRUE CLONES

Buggy lines of code Not identical code under 
CBCD definition

struct lock_file packlock; struct cache_file cache_file;

if (ahd_match_scb(ahd,
pending_scb, scmd_id(cmd))

if (ahc_match_scb(ahc,
pending_scb, scmd_id(cmd))

2) Other Code Clone Detectors for Comparison
To  compare  CBCD  with  other  types  of  code  clone 

detectors,  we  also  ran  Simian  v2.3.32  [25]  (text-based), 
CCFinder  v10.2.7.3  [1]  (token-based),  Deckard  v1.2.1  [6] 
(AST-based),  and  CloneDR  v2.2.5  [26]  (AST-based)  on 
these 53 bugs.

These  code  clone  detectors  favor  large  cloned  code 
segments rather than small ones. As shown in Fig. 2, cloned 
bugs are mostly less than 4 lines of code,  so we adjusted 
some  parameters  to  make  the  code  clone  detectors  work 
better. For Simian, we set the number of lines of code to be 
compared for clones to its minimum value, i.e. 2, and used 
default values for the other parameters. For CCFinder, we set 
the minimum clone length to be 10 and the minimum TKS to 
be 1. For Deckard, we set min_tokens to 3, stride to 2, and 
similiartiy  threshold  to  0.95.  For  CloneDR,  we  set  the 
minimum clone mass to 1, the number of characters per node 
to  10,  number  of  clone  parameters  to  5,  and  similarity 
threshold to 0.9.

For  Simian, CCFinder,  and Deckard,  the system to be 
checked  for  buggy  clones  is  the  same  file  set  as  CBCD. 
However, CloneDR failed with parse errors when we input 
the same file set as for CBCD. To enable a comparison with 
CBCD, we used a “slim evaluation”:  the “system” input to 
CloneDR is only the files that include the bug and the buggy 
clones  found  by  CBCD.  We additionally  commented  out 
lines  that  CloneDR  could  not  parse.  The  slim  evaluation 
determines  whether  CloneDR can  find the clones that  are 
identified  by  CBCD.  However,  the  slim  version  includes 
only 2% of the input files and 1% of the lines of code. If 
CloneDR could run on all files, its false positive rate would 
be much higher than reported in the slim evaluation.

3) Executing the Tools
The input to each tool is:  the file that contains the buggy 

code (along with the starting and ending lines of the buggy 
code segment, if the tool accepts it; only CBCD did), plus 
the system to be checked for buggy clones.

We  recorded  the  execution  time  of  CBCD  using  the 
Linux command “time”.  The evaluation was run on a PC 
with 4G memory, 3Ghz CPU, and running Ubuntu 10.04. 

4) Metrics
A false negative is a clone identified by the developer but 

not identified by the tool. A false positive is a clone reported 
by a tool that the developers did not report as buggy.

We count a clone as found if a tool reports a clone pair 
whose parts are as large as, or larger than, the original buggy 
code and the developer-identified buggy clone.  This metric 
is  very  generous  to  the  other  code  clone  tools.   CBCD 
reports clones that have similar size to the buggy code.  The 
other  code  clone tools  report  much larger  clones,  because 
they are designed for a different purpose: to find large cloned 
code segments.  Often  a single  result  subsumed several  of 
CBCD’s results. Such large results would be less useful to a 
programmer.  These  issues  make  a  direct  comparison  of 
precision and recall, or of the exact number of true and false 
positives and negatives,  misleading.  Instead, for each tool, 
we categorized each of the 53 bugs as follows. 
 N1: no false positives, no false negatives.
 N2: no false positives, some false negatives.
 N3: some false positives, no false negatives.
 N4: some false positives, some false negatives.   

C. How Well Can CBCD Find Cloned Buggy Code?

Table  VI  counts  the  bugs  in  each  category.  CBCD 
outperforms  the  other  tools  in  finding  buggy  clones 
correctly, i.e., CBCD has the highest number in N1. Deckard 
performs  the  worst,  partially  because  it  failed  with  parse 
errors  in  15  out  of  the  29  N2  cases.  Unlike  CloneDR, 
Deckard does not report precisely the location of the parse 
error. Thus, we could not perform a slim evaluation as with 
CloneDR.

TABLE  VI.  COMPARISON WITH OTHER CODE CLONE DETECTORS

CBCD Simian CCFinder Deckard CloneDR
-slim

N1 36 (68%) 16 (30%) 24 (45%) 14 (26%) 31 (58%)
N2 6 (11%) 36 (68%) 11 (21%) 29 (55%) 14 (26%)
N3 11 (21%) 1 (2%) 12 (23%) 6 (11%) 7 (13%)
N4 0 (0%) 0 (0%) 6 (11%) 4 (8%) 1 (2%)

Researchers categorize code clones into four main types, 
and so-called “scenarios” subcategorize each type [27]. The 
distributions of our examined bugs are shown in details in 
[24] and are summarized as follows:
 51%  of  duplicated  bugs  are  Type-1:  identical  code 

fragments except for variations in whitespace, layout, 
and comments.

 24% are in scenarios  a,  b, and  c of Type-2: renaming 
identifiers  or  renaming data  types  and  literal  values. 
Most of the variable renaming is renaming of function 
actual arguments. 

 23% are in scenarios a and b of Type-3: small deletions 
or insertions.

 2%  are  in  scenario  a of  Type-4:  reordering  of 
statements. 

The 5 tools perform about equally well on Type-1 and 
Type-2 clones. In theory, AST-based tools could be best on 
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Type-2 clones, but CBCD’s text comparisons reduce its false 
positive  rate  in  practice.  CBCD outperforms  all  the  other 
tools on Type-3 clones; for example,  CBCD identifies the 
code segments shown in Table VII as clones while Simian, 
CCFinder, Deckard, and CloneDR suffer false negatives.

Unlike  text-based,  token-based,  and  AST-based  clone 
detectors,  a  semantics-based  clone  detector  like  CBCD 
tolerates  control-statement  replacement.  Our  53  examples 
did not include control-statement replacement (programmers 
might be less likely to call such code snippets “clones” in the 
bug  tracking  system),  so  we  evaluated  this  claim  by 
artificially modifying the code of a Git clone from a “for” 
statement  to  a  “while”  statement.  The  modified  code  is 
shown in Table VIII. CBCD identified the clone, but Simian, 
CCFinder, Deckard, and CloneDR did not.

TABLE  VII.  EXAMPLES OF BUGGY CLONES IDENTIFIED CORRECTLY BY 
CBCD BUT NOT BY OTHER CODE CLONE DETECTORS

Buggy lines of code Bug clones 
doorbell[0] = cpu_to_be32((qp-
>rq.next_ind << qp-
>rq.wqe_shift) | size0);

doorbell[0] = cpu_to_be32(first
_ind << srq->wqe_shift);

 ret = btrfs_drop_extents(trans, ro
ot, inode, start,  aligned_end, star
t, &hint_byte);

ret = btrfs_drop_extents(trans, r
oot, inode, file_pos, file_pos + 
num_bytes, file_pos, &hint);

TABLE  VIII.  ORIGINAL CODE VS. CODE AFTER CONTROL REPLACEMENT

Original code Code after control replacement
for (j = first; j <= last; j++){

  struct object_entry *child =
    objects + deltas[j].obj_no;
  if (child->real_type ==
    OBJ_REF_DELTA)
  resolve_delta(child, 
&base_obj, obj->type); 
}

j = first; 
while (j <= last){
   struct object_entry *child = 
objects + deltas[j].obj_no 
    if (child->real_type == 
OBJ_REF_DELTA)  
    resolve_delta(child, &base_obj, 
obj->type);
    j++; }

The 6 clones out of 53 that are not identified by CBCD, 
i.e. the false negative cases, are in Table IX. CBCD misses 
the first  three clones because CodeSurfer’s  PDG does not 
represent data structures and macros; this is not a reflection 
on our technique, but on our toolset. CBCD misses the last 
three clones because they include variable renaming in an 
expression.  When  a  vertex  in  the  PDG  is  recognized  as 
“expression”,  as  explained  in  Section  III.C.1,  CBCD 
compares  the  characters  of  the  expression  to  avoid  false 
positives. 

All 11 bugs for which CBCD reports a false positive are 
similar: the buggy code is one line of code calling a function, 
or  a  few  one-line  function  calls  without  data/control 
dependencies  among  them.  For  all  11  bugs,  Simian, 
CCFinder, or Deckard either also report a false positive, or 
else suffer a false negative due to a built-in threshold that 
prevents them from ever finding any small clone. CloneDR-
slim does slightly better, with 2 false negative and 7 false 
positives.  Recall  that  we  used  a  slim  evaluation  for 
CloneDR; if it ran on all files, its false positive rate would be 
higher.

One example of CBCD’s 11 false positives is shown in 
Table  X.  Other  calls  of  the  same  function,  such  as 
memset(ib_ah_attr, 0, sizeof param), are returned by CBCD, 
because  it  tolerates  renaming  of  actual  input  and  output 

parameters.  However,  as mentioned in Section IV.C.3,  we 
count as a false positive any CBCD output that is not yet 
reported by the developers as buggy.  Some of the CBCD-
identified clones of the bug code segments might be bugs 
that have been overlooked by developers. Thus, CBCD’s real 
false positive rate may be lower than Table VI reports.

TABLE  IX.  FALSE NEGATIVES: BUGGY CODE CLONES THAT ARE NOT 
IDENTIFIED BY CBCD

The bug fix shown by “diff” 
 static const struct amd_flash_info jedec_table[] = {
-  .devtypes       = CFI_DEVICETYPE_X16|
CFI_DEVICETYPE_X8,
-  .uaddr          = MTD_UADDR_0x0555_0x02AA,   
static struct ethtool_ops bnx2x_ethtool_ops = {
-   .get_link               = ethtool_op_get_link,
 #define desc_empty(desc) \
-               (!((desc)->a + (desc)->b))
- obj = ((struct tag *)obj)->tagged; 
VS.
- object = tag->tagged;
- blue_gain = core->global_gain +

    core->global_gain * core->blue_bal / (1 << 9);
VS.
- red_gain = core->global_gain +

   core->global_gain * core->blue_bal / (1 << 9);
-  if (!hpet && !ref1 && !ref2)
VS.
- if (!hpet && !ref_start && !ref_stop)

TABLE  X.  EXAMPLES OF FALSE POSITIVES

Buggy code All identified clones
memset(ib_ah
_attr, 0, sizeof 
 *path);

True positive:
memset(ib_ah_attr, 0, sizeof  *path);
False positive:
memset(best_table, 0, sizeof(best_table));
memset(best_table_len, 0, sizeof(best_table_len));
memset(p, 0, padding);  
etc.

Table XI shows another kind of code that might lead to 
potential false positive reports from CBCD. Fig. 4 shows the 
PDGs. The two vertexes representing “close()” in Bug PDG 
and the four vertexes representing “close()” in System PDG 
lead to several sub-graph isomorphism relationships between 
these two PDGs. Thus, CBCD returned several semantically 
identical  correspondences  between  the  buggy  code  and 
suspected  code.  However,  all  CBCD  results  point  to  the 
same suspected code. CBCD coalesces duplicate results that 
point to the same code location.

D. How Well Does CBCD Scale to Larger Bugs?

In  our  experiments,  CBCD  finished  in  seconds  after 
CodeSurfer completed. However, this is not a good test of 
scalability,  because the cloned bugs are often platform- or 
architecture-dependent, in which case the command line (in 
the developer-supplied Makefile)  that  compiles  them does 
not compile the whole system.

To determine  how well  CBCD works  with  larger  bug 
segments, we searched the Linux and Git SCM using the key 
word “duplicate”. We chose four of these (non-buggy) code 
segments  from Git  and  four  from Linux.  The  four  Linux 
code  segments  are  located  in  subcomponents  “net”,  “fs”, 
“drivers”,  and  “drivers”  of  Linux  of  different  versions 
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respectively,  and we compiled the relevant  subcomponent. 
For  Git,  we  compiled  the  whole  relevant  version  (Git 
changed size over time). Table XII gives the results. 

TABLE  XI.  BUGGY CODE AND SUSPECTED CODE OF A POTENTIAL FALSE 
POSITIVE IN GIT

Buggy code System code

 if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]);}

if(pid! = 0){
close(fd[1]);
dup2(fd[0], 0);
close(fd[0]); }
close(fd[0]);
close(fd[1]);

pid

close() dup2() close()

fd[1] 0 fd[0] fd[0]

pid

close() dup2() close() close() close()

fd[1] fd[0]0 fd[0] fd[0] fd[1]

PDG of the buggy code PDG of the system code

Figure 4.   Snippet of the PDG of the buggy and system code in Table XI

Step 1 of CBCD (performed by CodeSurfer, version 2.1) 
takes a long time if the system is big, but this is done only 
once  and  can  be  reused.  We  expect  CodeSurfer’s 
performance  to  improve  in  later  versions.  Checking  for 
clones  of  new  bugs  requires  only  running  Step  2  and  3, 
which takes only seconds. 

The  running  time  of  Simian,  CCFinder,  and  Deckard 
using  the  same  parameter  setting  as  explained  in  Section 
IV.B are shown in Table XIII.  We could not run CloneDR 
because of its parse errors.

CBCD is  slower  than Simian and Deckard  if  CBCD’s 
preprocessing  (Step  1)  is  included.   Considering  only  the 
incremental  cost  of  Steps 2 and 3,  CBCD is  competitive. 
Setting  parameters  to  let  CCFinder  detect  small  clones 
makes it  slower than CBCD, because generating all  small 
clone pairs first, and then searching for clones of a certain 
code  segment,  is  inherently  inefficient.   This  could  be 
changed,  but  CBCD  is  more  accurate  than  the  other 
approaches, regardless of their settings. We believe the cost 
of undetected bugs makes CBCD worth running even if all 
steps are required.

E. Performance Improvement Due to the Four 
Optimizations

We used four optimizations to speed up CBCD. We have 
examined the unique benefits of a given optimization that are 
not  obtained  by  other  optimizations.  For  example,  to 
evaluate Opt2, we compared CBCD with Opts 1+3+4 against 
CBCD with Opts 1+2+3+4.

The  results  show  that  our  optimizations  can  greatly 
improve the performance of the isomorphism matching by 
reducing  the  complexity  and  number  of  graphs  to  be 
compared. Detailed data are shown in Appendix C of [24].

Opt1, i.e. filtering out the irrelevant edges and vertexes 
in  the  System  PDG,  contributes  most  to  the  CBCD 
performance improvement. Opt1 pruned on average 90% of 
the edges before the subgraph isomorphism comparison. For 

the 53 bugs,  Opt1 on average  improved performance 622 
times.  However,  the  variation  is  high.  One case  achieved 
20237 times performance improvement and another achieved 
11890 times performance gain. In one of the four “duplicate 
code” Linux cases, without Opt1, the execution of the Step 3 
of CBCD was aborted (igraph’s [16] subgraph isomorphism 
function  reported  an  out-of-memory  error,  because  the 
System PDG is too big and too many isomorphic subgraphs 
are returned). 

TABLE  XII.  RUNNING TIME OF EACH STEP OF CBCD

Id NLOC / Number of 
PDG edge

CBCD steps
1 2 3

Sys. Bug
Git-1 67K/358K 10/38 6m 13s 5s
Git-2 75K/441K 4/4 15m 4s 2s
Git-3 81K/414K 9/39 18m 9s 3s
Git-4 81K/414K 16/33 18m 6s 2s

Linux1 170K/1022K 6/70 32m 15s 6s
Linux2 140K/830K 3/3 25m 16s 4s
Linux3 363K/1970K 4/4 159m 39s 8s
Linux4 313K/1645K 3/13 95m 17s 7s

TABLE  XIII.  RUNNING TIME OF OTHER CLONE DETECTORS

Id Simian CCFinder Deckard
Git-1 2s 5m 4m
Git-2 2s 6m 5m
Git-3 2s 8m 6m
Git-4 2s 8m 6m

Linux1 6s 63m 8m
Linux2 5s 34m 7m
Linux3 16s 899m 32m
Linux4 13s 623m 24m

Opt2, i.e. breaking the System PDG into smaller graphs, 
improves Step 3 of CBCD by 2 to 3 times. In one case, Opt2 
improved performance by 72 times. The performance gain of 
Opt2 is not significant in other cases, because Opt1 prunes 
out most edges of the System PDG. In 90% of our examined 
cases,  the  average  ratio  of  size  (number  of  edges  and 
vertexes) of subgraph of the System PDG to size of the Bug 
PDG, i.e. the “v” in the formulas of Section III.C.2, is less 
than 1. 

Opt3, i.e.  excluding  irrelevant  System  PDGs,  also 
improves Step 3 of CBCD by 2 to 3 times. As with Opt2, 
after Opt1 filters out most of the edges of the System PDG, 
few subgraphs of the System PDGs are left for comparison.

Opt4, i.e.  breaking  the  large  bug  code  segment,  is 
applicable only to three clones that have more than 8 lines of 
code. In one case, Step 3 of CBCD sped up by 120 times, but 
the  other  two  showed  no  significant  performance 
improvement.  Examination  of  these  code segments  shows 
that Opt4 can bring significant performance gains when the 
bug code segment has many vertex kinds, especially vertex 
kinds such as “actual_in”, “actual_out”, or “declaration”, that 
are related to procedure parameters  or arguments.  In  such 
cases, Opt1 cannot filter out many vertexes and edges of the 
System PDG. On the contrary,  if  the  number  of  different 
vertex kinds of the Bug PDG is small, many vertexes and 
edges of other vertex kinds in System PDGs will be pruned 
out using Opt1, and Opt2 and Opt3 are also more effective, 
subsuming the benefits of Opt4.

8



F. Threats to Validity

   1) Threats to Internal Validity
The  buggy  code  used  for  evaluation  consists  of  real 

cloned bugs in Git, the Linux kernel, and PostgreSQL, but 
were not chosen to be representative or comprehensive. We 
do not know how many cloned bugs these  projects  really 
have,  but  we  do  know that  around  4% of  the  bugs  in  a 
commercial product were duplicates.
    2) Threats to External Validity 

We tested  CBCD only  on  Git,  the  Linux  kernel,  and 
PostgreSQL. It is possible that other subject programs would 
have  different  characteristics.  Furthermore,  the  evaluation 
considers only 53 cloned bugs in detail, and these were not 
chosen to be representative.
   3) Threats to Construct Validity

To measure the false positive rate of CBCD, we used the 
clones  identified  by  the  developers  as  an  oracle.  As 
mentioned  in  Section  IV.C,  the  developers  might  have 
overlooked some clones, so CBCD’s real false positive rate 
may be lower than reported in this paper.

G. Application Constraints

Although bugs  consisting of  a  one-line  function  cause 
false positives in our experiment, and Fig. 2 shows that most 
code  fixes  are  on  one  line,  this  does  not  limit  the 
applicability  of  CBCD.  In  real  life,  developers  can  often 
merge the buggy code line with few lines before or after it, 
which can be regarded as the context of the buggy code, to 
make a bigger code segment as the input for CBCD. This 
may help avoid false positives. We did not perform this in 
our experiments to avoid evaluation bias.

V. RELATED WORK

Previous code detection methods can be classified into:
 Token-based  code  clone  detecting  methods  [1,  2] 

examine token sequence similarities. 
 Text  [3]  or  string-based  [4]  code  clone  detection 

methods compare the text or strings in the code. 
 Abstract syntax tree (AST) based code clone detection 

methods [5, 6] match two ASTs to find code clones. 
 PDG-based code clone detection tools [7, 8, 9, 10] try 

to overcome the limitations of the above code clone 
detectors  by  comparing  the  data  and  control 
dependence graphs of the code segments. 

 Behavior-based code clone detection [32] tries to find 
code clone based on the execution results of test cases. 

 Memory-state-based  code  clone  detection  [33] 
compares the abstract memory states of code.  

Most previous code clone detection tools search for large 
clones for code refactoring or to find plagiarism. Thus, most 
such tools do not compare small  code segments  that  span 
only a few lines. For example, PDGs smaller than a certain 
size are excluded from comparison in [9]. In general, such 
tools have no knowledge of which segment of code should 
be the input for clone searching. Thus, some of these tools 
start with the first line of the system, and extract 10 or 20 
lines as input for searching for code clones.

We have identified  a  new, important  use case.  CBCD 
solves a different problem than scanning an entire codebase 

for  plagiarism  detection  or  identifying  refactoring 
opportunities.  CBCD  is  more  like  an  advanced  “find” 
command. The input is a small code segment that includes a 
few contiguous lines of code (most buggy segments cover 
only a few contiguous lines of code, unless the bug is caused 
by missing functionality or a design change). The outputs are 
all locations of the clones of such a code segment.  A user 
might assume that general code clone detectors would also 
perform well at detecting clones of buggy code. However, as 
our  evaluation  showed,  this  assumption  would  be  wrong. 
CBCD outperforms text-based, token-based, and AST-based 
clone detectors to find cloned buggy code, especially Type-3 
and  Type-4  clones.  We  did  not  compare  CBCD  with 
behavior-based  clone  detectors,  because  we  lack  detailed 
knowledge of the expected dynamic behavior of the buggy 
code.  Memory-state-based  clone  detectors  do  not  fit  the 
purpose of detecting cloned buggy code. 

Unlike  generic  code  clone  detectors;  CBCD  does  not 
generate all code clone pairs in advance. It only searches for 
clones of a small code segment on demand. The rationale is 
that people are usually not interested in finding code clones 
of  small  code  segments  to  refactor  them. However,  when 
they find that a code segment is buggy, they need to find all 
its clones and fix all of them. As mentioned in Section IV.B 
and  IV.E,  searching  for  clones  on  demand  rather  than 
generating  all  clone  pairs  at  once  makes  CBCD  more 
scalable than general clone detectors. But, even if other clone 
detectors adopted CBCD’s incremental approach, CBCD is 
still more accurate. 

CBCD uses PDG-based code clone detection principles 
to detect clones. PDG-based methods usually face scalability 
problems in sub-graph isomorphism checking. One proposed 
solution  to  improve  the  performance  of  PDG-based  code 
clone detection is to match the PDG back to the AST [10], so 
that the graph isomorphism problem is simplified into a tree 
similarity problem. However, such a simplification excludes 
information for some edges in the PDG and makes the PDG 
comparison  incomplete.  Another  proposed  solution  to  the 
scalability problem is  to  compare  the vertex  histogram of 
PDGs first to exclude highly dissimilar PDGs and stop the 
sub-graph isomorphism matching after the first isomorphism 
is found [9]. Such a solution is lossy, because a dissimilar 
vertex histogram between a small PDG and a big PDG does 
not guarantee that the small PDG will not have a subgraph 
isomorphism relationship with the large PDG. A PDG-based 
code clone detector  [7]  based only on graph isomorphism 
performed  poorly compared  to  other  code  clone  detectors 
[30].  CBCD  improves  the  accuracy  of  PDG-based  code 
clone detection by utilizing the syntax and text information 
of  the  buggy  code  to  prune  and  break  the  PDG  to  be 
compared.  Compared  to  the  system in  [9],  CBCD is  less 
lossy  and  is  more  scalable  to  large  PDGs.  Yet  another 
proposed solution to the scalability problem is to compare 
the PDG only within radius 5 of a vertex of “control-point” 
kind [19].  This is lossy and depends on hard-coded choices 
of radius and vertex kind; by contrast, our Opt2 is not lossy 
and is general.

The studies [28, 29] transform the code query into graph 
reachability patterns and match the patterns in the SDG of 
the source code. Such a method can potentially be used to 
detect  clones  of  buggy  code.  However,  developers  must 
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manually  describe  the  buggy  code  using  code  query 
language.  Compared to these methods, CBCD is easier  to 
use, because it automatically transforms the buggy code into 
PDG graphs and then matches the buggy PDG with the PDG 
of the suspected code. Similarity, graph-matching algorithm 
has been used to match design patterns [34]. However, the 
algorithm in [34] is not directly applicable since it  finds a 
hard-coded  set  of  design  patterns  rather  than  clones  of 
arbitrary bugs. CP-Miner [2] is a code clone detection tool 
that searches for bugs caused by code copy-paste. CP-Miner 
can  only  find  “bugs  caused  when  programmers  forget  to 
modify  identifiers  consistently  after  copy-pasting”.  The 
study [31] also compares tokens to search defect clones. 

The SecureSync tool [18] is similar to CBCD, i.e. a tool 
to find duplications of a software vulnerability/bug. To use 
SecureSync, the clones must be classified into categories I, 
II,  and  III  first.  A  category  I  code  clone  is  due  to  code 
copy/paste. For such a code clone, an AST-based method is 
proposed. A category II code clone is due to function reuse. 
To detect such a clone, the local PDG around a function call 
is built and compared. All other code clones are categorized 
into  III  without  any  methods  proposed  to  detect  them. 
Compared to SecureSync, CBCD is easier to use. People do 
not need to categorize code clone into different categories 
and treat them differently. For category I code clones, CBCD 
better  tolerates  code  insertion,  deletion,  and  re-ordering. 
CBCD can potentially support more kinds of code clone, for 
example, those in category III of SecureSync. We would like 
to compare CBCD with SecureSync [18], but according to its 
authors, SecureSync is not available for public distribution 
yet.  Jiang  et  al.  [20]  investigated  how to  discover  clone-
related bugs through comparing the nodes in parse trees. In 
[21],  the attributes  of  edges  and  nodes of  two graphs  are 
extracted to optimize the performance of graph isomorphism 
comparison  for  detecting  clones  of  MATLAB/Simulink 
models. In [22], 17-45% of bug-fixing changes were found 
to be recurring, and most of them occurred in multiple files 
at  the  same  revision  (i.e.  in  space).  However,  this  study 
targets identifying bug clones in object-oriented systems. In 
[23],  a  few clone detection algorithms are combined with 
parallel  algorithm to detect  buggy inconsistency in a very 
large system.

VI. CONCLUSIONS AND FUTURE WORK

We have identified a new, important use case for code 
clone  detection  (finding  buggy  clones),  motivated  its 
importance  in  real-world  systems,  given  an  algorithm  for 
finding  buggy  clones,  and  evaluated  its  accuracy  and 
performance.   Whereas  previous  work  was  motivated  by 
code  refactoring  or  plagiarism  detection,  we  focus  on 
detecting cloned buggy code.

The contributions of our work include: 
1. We examined real-world bug reports and SCM data, 

and  established  that  identical  (cloned)  bugs  are  a  serious 
problem. In  a  commercial  product  line,  cloned bugs  were 
common and important, comprising 4% of all bugs.

2.  We proposed  a  methodology  for  improving  system 
reliability:  After  a  bug  is  fixed,  the  programmer  should 
search for other code that behaves similarly to the detected 
buggy lines. Even if a system has relatively few cloned bugs, 

finding these bugs is valuable for programmers and can be 
done relatively accurately and inexpensively.

3.  We  extended  previous  PDG-based  clone  detection 
algorithms  to  make  them  more  scalable,  by  pruning  the 
search space of sub-graph isomorphism matching. Detecting 
small  clones  required  different  algorithms  and 
implementations than previous code detectors, which are less 
effective in finding bug clones.

4. We implemented our algorithms in a tool, CBCD, that 
detects possible clones of buggy code by comparing the Bug 
PDG and the System PDG. The CBCD tool is available on 
request for research purposes. 

5.  We evaluated  CBCD with  known cloned  bugs  and 
known cloned lines of code, showing that CBCD is scalable 
and effective in searching for possible clones of buggy code. 
Other clone detection tools are less effective for this purpose. 

The performance bottleneck  of  CBCD is  CodeSurfer’s 
PDG generation. Future work is to improve performance of 
this step to make CBCD even more scalable.
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