
Introductory Programming Meets the Real World:
Using Real Problems and Data in CS1

Ruth Anderson1 Michael D. Ernst1 Robert Ordóñez2 Paul Pham3 Steven A. Wolfman4

1University of Washington
{rea,mernst}@cs.uw.edu

2Southern Adventist University
rordonez@southern.edu

3The Evergreen State College
phamp@evergreen.edu

4U. of British Columbia
wolf@cs.ubc.ca

1. Summary
Too many students in introductory programming classes fail to

understand the significance and utility of the concepts being taught.
Their low motivation impacts their learning. One contributing factor
is pedagogy that emphasizes computing for its own sake and assign-
ments that are abstract, such as computing the factorial function.

Many educators have improved on such traditional approaches by
teaching concepts in contexts that students find more relevant, such
as games, robots, and media. Now, it is time to take the next step.

In this special session, participants will develop and discuss ways
to teach introductory programming by means of real-world data
analysis problems from science, engineering, business, and the
humanities. Students can be motivated to learn programming in
order to analyze DNA, predict the outcome of elections, detect
fraudulent data, suggest friends in a social network, determine the
authorship of texts, and more (see Section 3.4 for more examples).
The approach is more than just a collection of “nifty assignments”:
rather, it affects the choice of topics and pedagogy, all of which
together lead to greater student satisfaction.

The approach has been successfully used at 4 colleges and uni-
versities. The classes were effective for both CS and non-CS ma-
jors. Neither the computing material nor the problems need to be
“dumbed down”. At the end of the term students were amazed and
delighted at the real data analysis that they could perform. They
were excited about applying computation in their work and about
learning more.

The special session contains a mix of activities, including compar-
ative analysis of introductory classes; group discussion of curricu-
lum design; a mini-panel discussing how the approach has worked
in practice; and brainstorming about example assignments and cur-
riculum revision.

Categories and Subject Descriptors: K.3.2 [Computers and Ed-
ucation]: Computer and Information Science Education—Com-
puter science education; J.0 [Computer Applications]: General

General Terms: design, documentation, languages, measurement

Keywords: CS1, introductory computing, data programming, data
processing

2. Audience and objective
This session is intended for instructors who teach introductory

computing (CS1) to CS majors, non-CS majors, or a mix. It is also
relevant to those responsible for curriculum design.

In this SIGCSE Special Session, participants will learn:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGCSE’14, March 5–8, 2014, Atlanta, Georgia, USA.
ACM 978-1-4503-2605-6/14/03.
http://dx.doi.org/10.1145/2538862.2538994.

• The benefits of an approach grounded in real-world problems
and data.

• How the real-world approach is more than a collection of “nifty
assignments”; rather, it affects the choice of topics and pedagogy.

• The challenges and successes of applying this approach at multi-
ple colleges, including pitfalls to avoid.

• Principles of creating an assignment or adapting an existing one
to support and reinforce the computing concepts.

Participants will be given a packet of materials to take home, as
well as online links to web resources including assignments, syllabi,
handouts, and more.

Participants will leave the session prepared to make positive cur-
ricular change at their own institutions, whether creating a new class,
adapting one from another institution to your curriculum, or revising
your current offerings.

3. Outline
A brief outline of the session follows.

• Description of, and motivation for, the overall approach including
example end-of-term student projects (15 mins)

• Group discussion of pros and cons of this and other approaches
to CS1 including appropriateness for different students, place in
the curriculum, etc. (15 mins)

• Project idea brainstorming. (20 mins)
• Experience reports and Q and A. Instructors who have applied

the approach will report on its successes and failures and will
offer advice to those who wish to adopt it. (20 mins)

• Creation of support groups for followup after SIGCSE is over, to
help instructors put their ideas into practice. Also, all discussions
and ideas during the session will be collected, summarized, and
shared on a publicly-accessible wiki. (5 mins)

3.1 A real-world approach to CS education
The key idea of our approach is that every assignment uses an

existing real-world dataset to answer a question that is relevant
to science, engineering, or business. Neither the questions nor the
datasets are artificial.

This approach serves the following goals:

• motivate and excite students about computation
• enable students to process data to solve real problems
• teach computer programming
• teach computer science concepts
• serve both CS and non-CS majors

3.2 Comparison to other teaching approaches
Traditional introductory programming classes take their examples

and assignments from the domains of puzzles, games, and abstract
mathematics. For instance, students might be shown how to reverse
a list or assigned to compute the Fibonacci sequence. This puzzles-
and-games approach works well to motivate some students, but it



alienates others. Students find it difficult to appreciate the practical
importance of the skills they are learning.

Recognizing the deficiencies of the puzzles-and-games approach,
other classes have incorporated realistic demonstrations and assign-
ments. We acknowledge our debt to these pioneering classes, which
provide inspiration and examples. At the same time, we aspire to
take the next step.

Media Computation [7, 9, 13] introduces students to images,
sounds, and HTML pages, then shows students how to manipulate
these data. The problem domain is more connected to entertainment
and computers than to real-world problems. Other classes share
this theme. Stevenson’s real-world programming assignments [10,
11] are a web crawler, spam evaluator, and steganography. De-
Pasquale [2] presents three data sources: stock quotes, and the APIs
from Google and Slashdot.

The ITiCSE working group [4] offers 14 projects related to “social
good” that motivate students and provide them with skills to solve
complex problems; Erkan et al. [3] do the same for a data structures
class. We weave the themes throughout the class. Similarly, Isbell
et al. [5] combine mathematics, computation, and experiments to
solve engineering problems.

Some classes that address realistic problems and data focus on
visualization [8], statistics [1], or databases [12]. By contrast, we
focus on computation and programming.

3.3 Effect on pedagogy
In order to support students’ experience with realistic datasets, it is

desirable to make a few changes to the topics, order, and presentation
of traditional introductory material. Here are a few examples.

We introduce the foreach loop but not the for loop with an explicit
index. Students use data structures, but they do not re-implement
basic data structures [6]. We use GUIs solely for plotting, but never
for pictures or animation. We do not create GUIs nor any other
user interface. We use file I/O but not console I/O. We introduce
recursion at the end of the term, as an enrichment topic, but it is not
used in the assignments.

We use the Python language, because it is easy to use and is
widely adopted in the sciences. Because Python has a significant
and usable procedural subset, we do not discuss object orientation.
We discuss the notion of a type extensively, but not static typing nor
compilation.

We introduce a few concepts that are often missing from CS1
classes but are desirable for data analysis, such as basic statistics
and how to plot a graph.

Overall, students learn the same concepts as in any other CS1
class, but a slightly different toolset that enables them to do better-
motivated tasks. Our choice of topics is motivated by viewing
our class not just as CS1 but also as CSΩ: it should give a solid
foundation for subsequent practical and theoretical work, but should
also be useful even if the student never takes another computer
science class.

3.4 Example assignments and projects
The presenters and audience will discuss some of the assignments

that we have used and will give away handouts for others. The
assignments illustrate the class philosophy of using real datasets and
problems. This runs deeper than using some nifty assignment, but
the assignments could be repurposed for an existing CS class.

Given files of DNA data, categorize organisms according to their
GC count. Along the way, the students discover the need for data
cleaning and perform that step.

Determine which environmental factors affect Archaea popula-
tion biodiversity. Archaea are single-celled microorganisms, and
the environmental factors include ocean salinity, temperatures, and

chemical concentrations. Students learn to process tabular data.
Given polling data leading up to U.S. presidential elections, repli-

cate the election prediction performed by Nate Silver of the FiveThir-
tyEight blog. This requires ranking, weighting, and averaging, and
it illustrates the difference between sampling error and pollster bias.

Given Facebook social network data, create multiple algorithms
for recommending friends. Evaluating them on the real data via
Monte Carlo methods shows the utility of randomization.

Statistically analyze the least significant digits of election results
from the U.S. and Iran to detect fraud that is revealed as anomalies
against the expected uniform distribution.

Statistically analyze the most significant digits geographical data
from the real world and from literary fiction to detect anomalies
from the expected Benford’s-Law distribution. The two statistics
assignments illustrate statistical methodology via a modeling and
sampling approach, without a long detour into mathematics. It also
shows the importance of considering sample size when determin-
ing whether a given sample is anomalous. They also show how
abstraction permits problems that seem different to share most of
their code.

Linguistically analyze texts to determine their authenticity: clean
noisy transcriptions and compare the vocabulary and phrases with
known-authentic texts. This shows how to use data structures and
control flow constructs to write concise, powerful, understandable
code.

Analyze the mood, or sentiment, of Twitter posts to determine
correlations with geography. Other known correlations include with
biological rhythms and economic indicators.

In some of our offerings, we have given students the opportunity
to define a scientific question about a real-world dataset of their own.
The final projects from one offering (http://courses.cs.washington.
edu/courses/cse140/13wi/projects/) include:
· Examining decay mechanisms of the Higgs Boson
· What makes H5N1 avian influenza “Avian”? (Why not “H5N1 tiger influenza”?)
· Spatial variability in the Antarctic circumpolar current in a global climate model
· Evaluating the effectiveness of the European Union Emissions Trading System
· Local causes, public amenities, and poverty level
· Urban growth and unemployment
· Correlation between statistics and wins in major league baseball
· Payroll and success in Major League Baseball
· An iterative strength-based model for the prediction of NCAA basketball games

References
[1] R. Catrambone and M. Guzdial. Computational freakonomics.

http://swiki.cc.gatech.edu/compfreak, 2012.
[2] P. DePasquale. Exploiting on-line data sources as the basis of programming projects. In

SIGCSE, pages 283–287, 2006.
[3] A. Erkan, T. Pfaff, J. Hamilton, and M. Rogers. Sustainability themed problem solving in

data structures and algorithms. In SIGCSE, pages 9–14, 2012.
[4] M. Goldweber, J. Barr, T. Clear, R. Davoli, S. Mann, E. Patitsas, and S. Portnoff. A

framework for enhancing the social good in computing education: a values approach.
ACM Inroads, 4(1):58–79, Mar. 2013.

[5] C. L. Isbell, L. A. Stein, R. Cutler, J. Forbes, L. Fraser, J. Impagliazzo, V. Proulx, S. Russ,
R. Thomas, and Y. Xu. (Re)defining computing curricula by (re)defining computing.
SIGCSE Bull., 41(4):195–207, Jan. 2010.

[6] H. P. Langtangen. A Primer on Scientific Programming with Python. Springer, 3rd edition,
2012.

[7] L. Rich, H. Perry, and M. Guzdial. A CS1 course designed to address interests of women.
In SIGCSE, pages 190–194, 2004.

[8] K. A. Robbins, D. M. Senseman, and P. E. Pate. Teaching biologists to compute using
data visualization. In SIGCSE, pages 335–340, 2011.

[9] B. Simon, P. Kinnunen, L. Porter, and D. Zazkis. Experience report: CS1 for majors with
media computation. In ITiCSE, pages 214–218, 2010.

[10] D. E. Stevenson and P. J. Wagner. Developing real-world programming assignments for
CS1. In ITICSE, pages 158–162, 2006.

[11] D. E. Stevenson, M. R. Wick, and S. J. Ratering. Steganography and cartography:
interesting assignments that reinforce machine representation, bit manipulation, and
discrete structures concepts. SIGCSE Bull., 37(1):277–281, Feb. 2005.

[12] D. G. Sullivan. A data-centric introduction to computer science for non-majors. In
SIGCSE, pages 71–76, 2013.

[13] S. L. Tanimoto. An Interdisciplinary Introduction to Image Processing: Pixels, Numbers,
and Programs. MIT Press, 2012.


