
Michael Ernst, Dan Grossman, Jon Jacky,
Calvin Loncaric, Stuart Pernsteiner,
Zachary Tatlock, Emina Torlak, Xi Wang

University of Washington

A Dependability Case Language
for a Radiation Therapy System

C

D L

visionend-to-end verification for safety critical systems

Memory Model seL4Quark

IronClad

Memory Model seL4Quark

IronClad

SUPPORTED BY

Formal

seL4Quark

IronClad

Formal

Formal

Formal

End-to-end

Formal

End-to-end

Dependability
Cases

Dependability cases

Argue end-to-end claim based on evidence
show claim holds across all layers of a system

Focus on physical system properties
eases validation and focuses verification effort

Integrate diverse sources of evidence
check interfaces of design, testing, proof, review

Dependability case engineering

Dependability case engineering
Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Dependability case engineering
Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Dependability case engineering
Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Difficult to develop

Difficult to check

Difficult to maintain

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Dependability case engineering
Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Difficult to develop

Difficult to check

Difficult to maintain

?
SUPPORTED BY

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to
create a dependability case for a system that helps
identify and keep track of such details. A
dependability case is defined here as a structured
argument providing evidence that a system
meets its specified dependability requirements.
The technical note describes how to structure
the argument and present evidence to support it.
A sample problem is presented, as well as
issues raised by that problem and future goals.

Many large software systems display fragility or a
lack of dependability caused by inattention
to details at various stages of development (e.g.,
missing data, undocumented assumptions,
lack of testing), resulting in a failure to catch
errors. This technical note explains how to

Formal

End-to-end

Dependability
Cases

Formal

End-to-end

Dependability
Cases

Checkable Dep.
Cases

Developing a Dependability Case Language

Developing a Dependability Case Language

Move from specific to general
avoid attempt to design “silver bullet”

Developing a Dependability Case Language

1. Target specific system

Move from specific to general
avoid attempt to design “silver bullet”

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

Claims

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

Claims

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

Claims

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

Claims

Design Application Platform Env

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

Claims

Design Application Platform Env

RosetteAlloy Coq Manual
Review

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

4. Design + build DCL

Claims

Design Application Platform Env

DCL

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

4. Design + build DCL

Claims

Design Application Platform Env

DCL

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

4. Design + build DCL

Claims

Design Application Platform Env

Find general tradeoffs and patterns
make simple easy and hard possible

Impact real-world projects
bring current PL tech to the trenches

DCL

Developing a Dependability Case Language

1. Target specific system

2. Develop dep. claims

3. Gather evidence

4. Design + build DCL

Claims

Design Application Platform Env

Find general tradeoffs and patterns
make simple easy and hard possible

Impact real-world projects
bring current PL tech to the trenches

C

D L

resultsan end-to-end dependability case for CNTS

Clinical Neutron
Therapy System
(CNTS) at UW

Checking safety of CNTS

16

• 30 years of incident-free service.
• Controlled by custom software, built

by CNTS engineering staff.
• Third generation of Therapy Control

software now being built.

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Clinical Neutron
Therapy System
(CNTS) at UW

Checking safety of CNTS

16

Experimental Physics and
Industrial Control System
(EPICS) Dataflow Language

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Checking safety of CNTS

17

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Checking safety of CNTS

17

The Maximize Severity attribute is one of NMS
(Non-Maximize Severity), MS (Maximize
Severity), MSS (Maximize Status and Severity) or
MSI (Maximize Severity if Invalid). It determines
whether alarm severity is propagated across
links. If the attribute is MSI only a severity of
INVALID_ALARM is propagated; settings of MS
or MSS propagate all alarms that are more
severe than the record's current severity. For
input links the alarm severity of the record
referred to by the link is propagated to the
record containing the link. For output links the
alarm severity of the record containing the link
is propagated to the record referred to by the
link. If the severity is changed the associated
alarm status is set to LINK_ALARM, except if
the attribute is MSS when the alarm status will
be copied along with the severity.

EPICS documentation / semantics

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Checking safety of CNTS

17

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Checking safety of CNTS

17

CNTS Couch Safety Property:

The beam will turn off if the
couch rotation angle moves out
of tolerances during treatment
and the operator has not issued
the manual override command.

An end-to-end property that spans the
entire system, not just software.

An informal dependability case for couch safety

18

Couch
Treatment

Motion
Controller

Therapy
Control
Software

Programmable
Logic

Controller

Hardwired
Safety Interlock

System

Ethernet Network

couch rotates out
of tolerances and
no manual override
=> beam shuts off

An informal dependability case for couch safety

18

Couch
Treatment

Motion
Controller

Therapy
Control
Software

Programmable
Logic

Controller

Hardwired
Safety Interlock

System

Ethernet Network

couch rotates
OOT => TMC
measures OOT
rotation

TMC measures
OOT rotation =>
TC receives OOT
rotation

TC receives OOT
rotation and no
manual override =>
TC sets Therapy
Sum interlock

TC sets Therapy
Sum interlock =>
PLC disables
Therapy Sum relay

PLC disables
Therapy Sum relay
=> beam shuts off

couch rotates out
of tolerances and
no manual override
=> beam shuts off

evidence[“63c8d380", PLC_Analysis, …, Proof] =>
all relayState: plc.relay2754 & RelayOpen | 
 one coilState: plc.sentMsgs & relayState.^next |
 coilState.coilNumber = Coil1623
 coilState.coilValue = False

A formal dependability case for couch safety

19

all r: Couch.rotation |
 (properties and
 r.angle not in Prescription.tolerance and
 no Event.GantryCouch_Turntable_Override) =>
 some Beam.state & BeamOff

PLC disables
Therapy Sum relay
=> beam shuts off

couch rotates out
of tolerances and
no manual override
=> beam shuts off

Generating evidence for couch safety

20

Couch
Treatment

Motion
Controller

Therapy
Control
Software

Programmable
Logic

Controller

Hardwired
Safety Interlock

System

Ethernet Network

Expert
Review

Validator

EPICS
Verifier

EPICS
Linter

PLC
Checker

EPICS-
PLC Signal

Tracer

A solver-aided verifier
for the subset of
EPICS used in CNTS.

Dependability Case Complier (DCC)

Checking couch safety

21

Expert
Review

Validator

EPICS
Linter

EPICS
Verifier

PLC
Analyzer

Counterexample or bounded proof

EPICS-
PLC Signal

Tracer

Dependability case

Alloy
Analyzer

TC receives OOT
rotation and no
manual override =>
TC sets Therapy
Sum interlock

Deep analysis with <2000 LOC of tool code …

22

EPICS Verifier

concrete
counterexample

Therapy
Control

Software

Found a bug in the Therapy
Control software (preventing
beam shut off), masked by a
bug in the EPICS runtime!

C

D L
Formal

End-to-end

Dependability
Cases

Recent Verification
Successes

Thanks!

