
When Tests Collide: Evaluating and Coping with
the Impact of Test Dependence

Wing Lam Sai Zhang Michael D. Ernst
Department of Computer Science & Engineering

University of Washington
{winglam, szhang, mernst}@cs.washington.edu

ABSTRACT
In a test suite, all the test cases should be independent: no test

should affect any other test’s result, and running the tests in any
order should produce the same test results. The assumption of
test independence is important so that tests behave consistently
as designed. In addition, many downstream testing techniques,
including test prioritization, test selection, and test parallelization,
assume test independence. However, this critical assumption often
does not hold in practice.

This paper empirically investigates the impact of test dependence
on three downstream testing techniques (test prioritization, selection,
and parallelization) and proposes a general approach to cope with
such impact. It presents two sets of results.

First, we describe an empirical study to assess the impact of
test dependence on 4 test prioritization, 6 test selection, and 2 test
parallelization algorithms. Test dependence negatively affects the
results of all these downstream testing algorithms. For example, an
automatically-generated test suite for the XML-Security program
contains 665 tests, and 111 of those tests yield a different test result
(success vs. fail) if the suite is parallelized to run on 16 CPUs.

Second, we present an approach that enhances each test prior-
itization, selection, and parallelization algorithm to respect test
dependence, so that each test in a suite yields the same result be-
fore and after applying the downstream testing technique. In an
experimental evaluation, the enhanced testing algorithms worked
as intended: the test results were consistent even in the presence
of test dependence, and they did not substantially compromise the
effectiveness of the original testing algorithms.

1. INTRODUCTION
In a test suite, all the test cases should be independent: no test

should affect any other test’s result, and running the tests in any order
should produce the same test results [11, 14]. This assumption is
important so that tests behave consistently as designed. However, the
test independence assumption often does not hold in practice [52]:
a test’s result may depend on whether it runs after some other tests.

Test dependence causes inconsistent test results in different ex-
ecution orders. This leads to missed alarms by masking faults in
a program. Specifically, executing a test suite in the default order
does not expose the fault, whereas executing the same test suite in a
different order does [7]. It also leads to false alarms. When a test
should pass but fails after reordering due to the dependence, people
who are not aware of the dependence can get confused and report
bugs [1].

Previous work showed that test dependence exists: there exist re-
ordering of real-world test suites that cause false alarms and missed
alarms [52]. Even if test dependence is widespread, it is possible
that testing techniques such as test prioritization, selection, and
parallelization do not give rise to the problematic test reordering
in practice, How often do false alarms and missed alarms occur in

practice? How can we modify testing techniques so that they no
longer suffer from false alarms and missed alarms, and they are safe
to run even on test suites that contain dependent tests?

This paper answers the above questions by empirically inves-
tigating the impact of test dependence on 12 downstream testing
algorithms and presenting enhanced algorithms that cope with the
impacts.

1.1 Evaluating the Impact
Test dependence can affect downstream testing techniques that

change a test suite and thereby change a test’s execution environ-
ment. Examples of downstream testing techniques include test
prioritization (reorder the input to discover defects sooner) [11, 18,
23, 36, 39], test selection (identify a subset of the input test suite
to run during regression testing) [5, 14, 16, 27, 28, 50], and test par-
allelization (schedule the input tests for execution across multiple
CPUs) [24, 26]. Most of these downstream testing techniques im-
plicitly assume that there are no test dependences in the input test
suite. Violation of this assumption, as we show happens in practice,
can cause unexpected output. As an example, test prioritization may
produce a reordered sequence of tests that do not yield the same
results as they do when executed in the default order.

To evaluate whether and how test dependence can impact the
downstream testing techniques, we implemented 4 test prioritization,
6 test selection, and 2 test parallelization algorithms, and evaluated
each algorithm on 5 real-world subject programs that contain de-
pendent tests. We measured the number of tests that yield different
results before and after applying a testing technique. Our empirical
results indicate that all 12 downstream testing algorithms are af-
fected by test dependence in a non-ignorable manner. For example,
an automatically-generated test suite for XML-Security contains
665 tests, and 111 of those tests yield a different test result (success
vs. fail) if the suite is parallelized to run on 16 CPUs (Figure 9).

Our findings provide empirical evidence that test dependence
should no longer be ignored in designing a downstream testing
algorithm that may change the original test execution order.

1.2 Coping with the Impact
Downstream testing techniques should respect existing test de-

pendences and keep the test results consistent.
In this paper, we propose a general approach to enhance existing

testing algorithms so that they will become dependence-aware. The
enhanced algorithms take as input a test suite and its test depen-
dences, possibly detected by a tool like DTDetector [52]. When
creating a new test suite, the enhanced testing algorithm ensures that
for each dependent test in a test suite, all other tests it depends on
will be executed before it. The key idea of the enhanced algorithm
is to use Delta Debugging [48] to minimize the test set that causes a
dependent test to yield a different result in the new test suite from in
the original test suite, and then modify the new test suite to make



the exhibited dependent test yield the same result as in the original
suite.

We enhanced each of the 12 testing algorithms to form a depen-
dence-aware version. We evaluated each dependence-aware testing
algorithm on real-world programs with dependent tests. All en-
hanced algorithms produce consistent and correct results without
substantially compromising the original testing technique’s effec-
tiveness. In the case of test prioritization, 4 out of the 8 results
we collected was noticeably affected by our enhanced algorithms.
For test selection, our enhanced algorithm increased the size of the
selected subset by 2% or less for all 31 results. Our enhanced test
parallelization results ranged from having no noticeable differences
to up to 4 times slower than the original test parallelization results.
However even with the compromises, all three enhanced algorithms
are still significantly more effective than running the original test
suite. In summary, our results indicate that the enhanced algorithms
do compromise the original testing technique’s effectiveness but
they produce consistent and correct results while the benefits of
applying the testing techniques are still significant.

1.3 Contributions
This paper makes the following contributions.

• Assess the Impact of Test Dependence. We present an em-
pirical study to assess the impact of test dependence on 4 test
prioritization, 6 test selection, and 2 test parallelization algo-
rithms. We evaluated these testing algorithms on 5 subject
programs with a real-world test suite containing dependent
tests. The results indicate that all of the downstream test-
ing algorithms we studied are affected by test dependence.
This also suggests that test dependence should no longer be
overlooked in designing testing algorithms (Section 2).
• Cope with Test Dependence. We propose an approach to

cope with test dependence. Our approach enhances existing
test prioritization, selection, and parallelization algorithms to
make them respect test dependence (Section 3). We evaluated
the enhanced algorithms on 5 subject programs containing
test dependence. The enhanced testing algorithms are aware
of test dependence, and the suites they produce yield the same
results as the default order without completely compromising
their effectiveness (Section 3.4).

2. EVALUATING THE IMPACT
This section describes our empirical evaluation of the impact of

test dependence on three well-known downstream testing techniques.
We present background for each downstream testing technique (Sec-
tion 2.1), describe the evaluation methodology (Section 2.3), and
present the results (Section 2.4).

2.1 Downstream Testing Techniques
Test prioritization, selection, and parallelization are three impor-

tant downstream testing techniques. These three techniques change
the execution order of an existing test suite to make it detect faults
earlier or complete faster.

2.1.1 Test prioritization
Test prioritization schedules test cases for execution in an order

that attempts to produce useful results more quickly — notably test
failures that indicate a code defect, but also test successes to yield
confidence in the software. When no test fails, the entire test suite
will be executed, so test prioritization does not reduce the overall
cost of test execution.

Label Algorithm Description
T3 Prioritize on coverage of statements
T4 Prioritize on coverage of statements not yet covered
T5 Prioritize on coverage of functions
T7 Prioritize on coverage of functions not yet covered

Figure 1: Four test prioritization algorithms used to assess the
impact of dependent tests. We use the same labels as in Table 1
of [11].

Test prioritization algorithms developed in the literature fall into
three major categories: (1) algorithms that order test cases based
on their total coverage of code components; (2) algorithms that
order test cases based on their coverage of code components not
previously covered; (3) algorithms that order test cases based on
their estimated ability to reveal faults in the code components that
they cover. In addition to the test execution information, the third
category requires a comprehensive history of known faults, which is
often absent in practice.

This paper evaluates 4 well-known test prioritization algorithms
from the first and second categories (Figure 1). We did not im-
plement algorithms from the third category, including the other 10
test prioritization algorithms introduced in [11], since they require
a fault history that is not available for our subject programs. The
4 evaluated test prioritization algorithms monitor the execution of
each test, record the exercised statements or functions at runtime,
and then uses the recorded runtime information to reorder the test
execution. Two techniques (T3 and T5 in Figure 1) prefer to execute
tests that cover more statements or functions first, and the other two
techniques (T4 and T7 in Figure 1) prefer to execute tests that cover
more uncovered statements or functions first.

2.1.2 Test selection
Regression test selection (for short, test selection) algorithms

create a smaller test suite that contains only a subset of the original
test cases in a program. The smaller test suite runs faster. Test selec-
tion aims to reduce the worst-case execution time of test execution
without reducing the effectiveness of the test suite.

Test selection algorithms developed in the literature fall into two
major categories: (1) algorithms that employ program analysis to
select tests based on the coverage of modified program fragments [5,
14]; and (2) algorithms that select tests based on the historical data
without analyzing the tested program [27]. The second category
requires a comprehensive set of historical testing activities which
are often absent in practice.

This paper evaluates 6 test selection algorithms developed in [14]
(Figure 2) in the first category. All of the algorithms use program
analysis to select every test case in a test suite that may be affected
in the modified software. They share the same idea based on compar-
isons of program control-flow graphs (CFGs) but work at a different
granularity level and how the tests are ordered once they are selected.
The granularity levels are statement-level and function-level. The
statement-level selection algorithms are more precise and selects
fewer tests than the function-level selection algorithms, but is more
expensive. Likewise, depending on the way tests are ordered by, the
algorithm may achieve higher test coverage faster but it will be more
expensive. Ordering by number of uncovered elements tests cover
will be the fastest way to achieve high test coverage, followed by
number of elements tests cover and then by test id. Ordering by test
id essentially does no reordering while the other two orderings is a
combination of test selection followed by test prioritization. Given
a program P, each algorithm executes regression tests to build an
edge-coverage matrix which maps each test to the set of CFG edges



Label Granularity Ordered by
S1 Statement Test id
S2 Statement Number of elements tests cover
S3 Statement Number of uncovered elements tests cover
S4 Function Test id
S5 Function Number of elements tests cover
S6 Function Number of uncovered elements tests cover

Figure 2: Six test selection algorithms used to assess the im-
pact of dependent tests. The algorithms select a test if it covers
new, deleted, or modified coverage elements. Each algorithm’s
coverage element is listed under column “Granularity”. The
selected tests are then ordered by the method described under
column “Ordered by”. These algorithms are introduced in [14].
These two algorithms form the basis of many other popular test
selection algorithms [5, 27, 28, 34, 50].

Label Algorithm Description
P1 Parallelize on test id
P2 Parallelize on test execution time

Figure 3: Two test parallelization algorithms used to assess the
impact of dependent tests. These algorithms are supported in
industrial-strength tools [43].

exercised by the test. For a subsequent modified program version P′,
the CFGs of P and P′ are compared to identify “dangerous” edges
in the CFG for P. These edges represent program points at which P
and P′ differ. All and only test cases for P which cover dangerous
edges are selected for testing of P′.

2.1.3 Test parallelization
Test execution parallelization (for short, test parallelization) sched-

ules the input tests for execution across multiple CPUs to reduce the
test latency — the time it takes to run all of the tests.

Test parallelization techniques are widely adopted in industry.
For example, Visual Studio 2010 (and later) supports a model of
executing tests in parallel on a multi-CPU/core machine [43]. Popu-
lar open-source frameworks such as JUnit [30], TestNG [32], and
Maven [31] provides annotations to execute a test suite in parallel.
In general, existing approaches for test parallelization fall into three
categories: (1) parallelize a test suite based on user annotations, (2)
parallelize a test suite based on test id (or randomly parallelize a
test suite), and (3) parallelize a test suite based on the execution
time. The first category requires substantial manual effort, while the
second and third categories are fully automated.

This paper evaluates 2 test parallelization algorithms (Figure 3)
belonging to the second and third categories. We chose them because
both algorithms are fully automated. The first algorithm parallelizes
a test suite purely based on its id. Given the i-th test, the algorithm
simply schedules its execution on the i mod n (n is the number of
available machines/CPUs) machines/CPUs. The second algorithm
(P1 in Figure 3) parallelizes a test suite based on the execution time
of each test takes. Given a test, it schedules its execution on the
machine/CPU that completes earliest based on the current load and
thus minimizes the execution time of all tests.

2.2 Subject Programs
Figure 4 lists the subject programs used in our evaluation.
Crystal [8] is a tool that pro-actively examines developers’ code

and identifies textual, compilation, and behavioral conflicts. JFreechart
is a chart library [17]. Joda-Time [19] is an open source date and
time library. It is a mature project that has been under active devel-
opment for ten years. Synoptic [41] mines a finite state machine

Program LOC Tests Auto Tests Revision
Crystal 88010 78 3198 version 1.0.20111015
JFreechart 418057 2234 2438 version 1.0.15
Joda-Time 351745 3875 2234 b609d7d66d
Synoptic 160662 118 2467 d5ea6fb3157e
XML Security 66248 108 665 version 1.0.4

Figure 4: Subject programs used in our evaluation. Col-
umn “LOC” represents the number of lines the subject pro-
gram’s source, manual and automated tests contains. Column
“Tests” shows the number of human-written unit tests. Column
“Auto Tests” shows the number of unit tests generated by Ran-
doop [29].

Program Dependent Tests Auto Tests
Crystal 18 (23.1%) 164 (5.1%)
JFreechart 8 (0.4%) 6 (0.2%)
Joda-Time 6 (0.2%) 257 (9.7%)
Synoptic 1 (0.8%) 10 (0.4%)
XML Security 4 (3.4%) 171 (25.8%)

Figure 5: Number of dependent tests found in our subject
programs. Column “Dependent Tests” represents a lower
bound amount of dependent tests in the program’s human-
written test suite. Column “Dependent Auto Tests” represents
a lower bound amount of dependent tests in the program’s
automatically-generated test suite. The percentage within the
columns represents the percent of tests exposed to be dependent
within the test suite.

model representation of a system from logs. XML Security [47]
is a component library implementing XML signature and encryp-
tion standards. It has been used widely as a subject program in the
software testing community.

Each of them includes a well-written unit test suite All of the
subject programs’ test suites are designed to be executed in a single
JVM, rather than requiring separate processes per test case [3].

Given the increasing importance of automated test generation
tools [9, 12, 29, 53], we also want to investigate dependent tests
in automatically-generated test suites. For each subject program,
we used Randoop [29], a state-of-the-art automated test generation
tool, to create a suite of 5,000 tests. Randoop automatically drops
textually-redundant tests and outputs a subset of the generated tests
as shown in Figure 4.

Figure 5 lists the number of dependent tests found in our subject
programs. The number of dependent tests were exposed by the tool
DTDetector and copied from Table 4 in [52]. Since JFreechart’s
number of dependent tests were not in Table 4 of [52], we collected
JFreechart’s results ourselves by utilizing the DTDetector. Since
the general form of the dependent test detection problem is NP-
complete, the DTDetector we used was sound but incomplete. This
means that every dependent test it found is real, but it is not guar-
anteed to find every dependent test. Therefore the number reported
in Figure 5 is a lower bound of a test suite’s number of dependent
tests.

2.3 Methodology
We implemented the testing algorithms listed in Figures 1, 2,

and 3, and evaluated each algorithm on the subject programs in
Figure 4.

For each subject program, we first executed its test suite in the
default order and recorded the execution result of each test. We
adopt the results of the default order of execution of a test suite as



Program Revision Lines Different
Crystal trunk-2013-12-12 2730 (3.1%)
JFreechart version 1.0.16 2894 (0.7%)
Joda-Time d6791cb5f9 165368 (47.0%)
Synoptic ea407ba0a750 388 (0.2%)
XML Security version 1.2.0 36900 (55.7%)

Figure 6: Changes to the subject programs between two ver-
sions used in our test selection evaluation. Column “Revision”
represents a revision of the program that was created later in
date than the revision of the program in Figure 4. Column
“Lines Different” shows the number of lines added, deleted and
edited in the program’s source code from its Figure 4 revision.
The percentage in this column represents the percent of lines
different out of the total number of lines this subject program
has.

the expected results; these are the results that a developer sees when
running the suite.

A test prioritization algorithm outputs a reordered test suite. We
executed the reordered test suite and counted the number of tests
that yielded different results in the prioritized order compared to the
expected results from the default order.

A test selection algorithm identifies a subset of the input test suite
to run during regression testing, based on changes to the program’s
source code. In order to obtain the subset of the test suite that
should run, we supplied the test selection algorithm with the changes
between the revision in Figure 4 and the next stable revision in
Figure 6. We executed the selected subset of tests and counted
the number of tests that yielded different results compared to the
expected results from the default order. Even though we only studied
one specific change for each subject program, we selected revisions
where the number of lines different ranged from 0.2%-55.7%.

A test parallelization algorithm divides the input test suite into
multiple subsets, and schedules each subset for execution on a dif-
ferent processor. We ran each subset in a separate JVM to simulate
separate processors. We counted the number of tests that yielded
different results compared to the expected results from the default
order. We parameterized each parallelization algorithm by the num-
ber of available machines: k, and we evaluated each algorithm with
k = 2, 4, 8, and 16.

2.4 Results
This section shows the evaluation results.

2.4.1 Impact on Test Prioritization
The dependent tests in our subject programs interfere with all of

the test prioritization algorithms in Figure 1. This is because all of
these algorithms implicitly assume that there are no test dependences
in the input test suite. Violation of this assumption, as happened in
real-world unit test suites, caused undesired output. Furthermore,
test prioritization algorithms usually do not take the potential test
dependence into consideration when reordering the test suite.

The prioritization algorithm that affected the most amount of tests’
execution result is T5, prioritization on coverage of functions. This
prioritization algorithm made 388 tests yield different execution re-
sults than they did when these tests were executed in its default order.
The test prioritization algorithm that affected the least of amount of
tests is T4, prioritization on coverage of statements not yet covered.
In comparison to T5, this algorithm exposed 48 tests less, resulting
in a total of 340 tests. The remaining prioritization algorithms, pri-
oritization on statements (T3) and prioritization on functions not yet
covered (T7) affected 377 and 363 tests, respectively.

Subject Program T3 T4 T5 T7

Human-written Test Suites
Crystal 2 5 2 5
Joda-Time 0 1 0 0
JFreechart 3 3 3 0
Synoptic 0 0 0 0
XML Security 0 0 2 1
Total 5 9 7 6

Automatically-generated Test Suites
Crystal 59 71 67 64
JFreechart 5 5 6 5
Joda-Time 224 193 224 226
Synoptic 2 3 3 3
XML Security 82 59 81 59
Total 372 331 381 357

Figure 7: Dependent tests that are exposed by 4 test prioriti-
zation algorithms. Each cell shows the number of dependent
tests that yield different results in the prioritized suite as they
do when executed in the default, unprioritized order.

Subject Program S1 S2 S3 S4 S5 S6

Human-written Test Suites
Crystal 1 1 1 1 1 1
JFreechart 0 0 0 0 0 0
Joda-Time 0 0 0 0 0 1
Synoptic 0 0 0 0 0 0
XML Security 0 0 0 0 0 0
Total 1 1 1 1 1 2

Automatically-generated Test Suites
Crystal 17 25 26 21 35 39
JFreechart 0 0 0 3 3 3
Joda-Time 54 54 54 218 230 225
Synoptic 0 0 0 0 0 0
XML Security 24 30 29 24 26 28
Total 95 109 109 266 294 297

Figure 8: Dependent tests that are exposed by 6 test selection
algorithms. Each cell shows the number of dependent tests that
do not yield the same results as they do when executed in the
original test suite.

Although not one prioritization algorithm exposed dependent
tests in every subject program’s human-written test suite, depen-
dent tests were exposed by each algorithm in at least 2 of the 5
subject programs. In addition, all prioritization algorithms exposed
dependent tests in every subject program’s automatically-generated
test suite. The evaluation results suggest that test dependence has
a high chance of affecting test prioritization results particularly on
automatically-generated test suites.

2.4.2 Impact on Test Selection
The dependent tests in our subject programs interfere with all

of the test selection algorithms in Figure 2. Similar to the test
prioritization algorithms in Figure 1, these algorithms implicitly
assume that there are no test dependences in the input test suite.
Even though the test selection algorithms we implemented may not
necessarily reorder a test suite (S1 and S4), we exposed dependent



Subject Program P1 (Original Order) P2 (Time-Minimized)
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

Human-written Test Suites
Crystal 2 2 2 8 9 9 9 9
JFreechart 0 0 0 1 2 2 2 0
Joda-Time 0 0 0 0 2 3 1 2
Synoptic 0 0 0 0 0 0 0 0
XML Security 0 0 4 4 1 1 2 3
Total 2 2 6 13 14 15 14 14

Automatically-generated Test Suites
Crystal 0 0 1 4 72 76 74 81
JFreechart 1 3 3 3 3 3 3 3
Joda-Time 126 135 184 229 223 228 224 233
Synoptic 1 1 2 2 2 2 2 2
XML Security 66 78 104 111 60 91 110 114
Total 194 217 294 349 360 400 413 433

Figure 9: Dependent tests that are exposed by 2 test paralleliza-
tion algorithms. Each cell shows the number of dependent tests
that do not yield the same results as they do when executed in
the original test suite.

tests when our algorithms selected them but not the tests they depend
on.

The selection algorithm that affected the most amount of tests’
execution result is S6, selecting tests covering new, deleted or modi-
fied functions ordered by the number of functions not yet covered.
This selection algorithm made 299 tests yield different execution
results than they did when these tests were executed in its default
order. In comparison to S1, selecting tests covering new, deleted or
modified statements ordered by test id, this algorithm exposed 203
tests less, resulting in a total of 96 tests.

Although all selection algorithms only exposed dependent tests
in one subject program’s human-written test suite, all algorithms
exposed dependent tests in at least 3 of the 5 subject program’s
automatically-generated test suites. The evaluation results suggest
that test dependence has a minimal chance of affecting test selec-
tion results on human-written test suites and a moderate chance of
affecting automatically-generated test suites.

2.4.3 Impact on Test Parallelization
The dependent tests in our subject programs interfere with all of

the test parallelization algorithms in Figure 3. Similar to the other
two downstream testing techniques we studied, test parallelization
implicitly assumes that there are no test dependences in the input test
suite. When test parallelization is applied to a test suite, tests may
not only be reordered but they may no longer be executed on the
same machine anymore. This exposes dependent tests because our
algorithms may schedule a dependent test on a particular machine
but the test it depends on another machine.

The parallelization algorithm that affected the most amount of
tests’ execution result is P2, parallelize on test execution time with
16 machines. This parallelization algorithm made 447 tests yield a
different execution result than it did when these tests were executed
in its default order on one machine. In comparison to P2, the
remaining parallelization algorithm, P1, parallelize on test id at
most exposed 85 tests less with 16 machines, resulting in a total of
362 tests.

Although P1 only exposed dependent tests in at most 2 of the 5
subject program’s human-written test suite, P2 consistently exposed
dependent tests in 4 of the 5. Additionally, P1 exposed dependent

tests in at least 4 of the 5 subject program’s automatically-generated
test suite while P2 consistently exposed dependent tests in 5 of
the 5. The evaluation results suggest that test dependence has a
high chance of affecting test parallelization results particularly on
automatically-generated test suites.

2.5 Discussion

2.5.1 How Significant is the Impact?
As shown in Section 2, all of the testing techniques exposed some

dependent tests in one or more of the subject programs we studied.
Synoptic did not reveal any dependent tests for its human-written
test suite in all of the algorithms we studied because only 1 (0.8%)
of its tests were dependent. For the other programs, our results
indicated that the impact of test dependence on downstream testing
techniques ranged from minimal to high.

2.5.2 Root Causes of Test Dependence
Essentially, test dependence results from interactions with other

tests, as reflected in the execution environment. Tests may make
implicit assumptions about their execution environment — values
of global variables, contents of files, etc. A dependent test mani-
fests when another alters the execution environment in a way that
invalidates those assumptions.

Concurring with our previous study [52], our experiments sug-
gested three common root causes of test dependence: (1) improper
access to shared global variables (i.e., static variables in Java), (2)
improper access to the file systems, and (3) improper access to other
external resources (e.g., databases, networks). Improper access to
shared global variables is the most common root causes, accounting
for at least 61% of all dependent tests we have studied.

The downstream testing techniques we have evaluated have in-
directly changed the execution environment a test may implicitly
assume, such as alternating the test execution order (as test prioriti-
zation does) and selecting a subset of test to execute (as test selection
and parallelization do).

2.5.3 Threats to Validity
There are three main reasons why our findings apply in the con-

text of our study and methodology and may not apply to arbitrary
programs. First, the applications we studied are all written in Java
and have JUnit test suites. Second, the 5 open-source programs and
their test suites may not be representative enough. Third, in our
study, we only evaluated 4 test prioritization, 6 test selection, and 2
test parallelization algorithms. Although these reasons threaten the
validity of the results presented, we do believe that if we evaluated
test dependence on other testing techniques and subject programs,
we will continue to find more conclusive proof that these techniques
should not ignore test dependence.

2.5.4 Experimental Conclusion
We have two chief findings. (1) Dependent tests in both human-

written and automatically-generated test suites can affect the results
of test prioritization, test selection, and test parallelization algo-
rithms. (2) The degree of impact varies across different testing
techniques. In general automatically-generated test suites across all
techniques seem to be significantly affected by test dependence. For
human written test suites, test prioritization and test parallelization
seems to have a higher chance of being affected by test dependence
while test selection has a lower chance.

3. COPING WITH THE IMPACT



Auxiliary routines:
exec(T): executes a test suite T (i.e., an ordered sequence of tests)
in a fresh environment and returns a tuple containing the results of
all tests.
getFirstDifferentTest(Tnew,Torig): returns the first test t ∈ Tnew ∩
Torig that yields different results in Torig and Tnew, or null if no such
test exists. Uses the ordering of Tnew to determine which test is first.
ddmin(T , t, r): minimizes the test suite T while maintaining that
a given test t yields result r. t is the last test in the result suite.
Requires t ∈ T and exec(T)[t] = r.
reorderTests(T , Tordering): returns T , reordered with tests in the same
order as they were in Tordering. Requires T ⊆ Tordering.
merge(T1,T2,Tref ): merges T1 and T2 based on the test ordering in
Tref . Retains the relative test order of T1 and T2.

nullifyTestDependence(Tnew, Torig)
Input: Tnew is a possibly reordered subsequence of Torig, the original
test suite. Without loss of generality, we assume that every test in
Torig passes.
Output: an ordered subsequence of Torig that includes every test in
Tnew, and every test in it yields the same result as in Torig.

1 Rorig← exec(Torig)
2 while ∃t ∈ Tnew : exec(Tnew)[t] 6= Rorig[t] do
3 t← getFirstDifferentTest(Tnew,Torig)
4 rt_isolated ← exec([t])[t]
5 Tt_isolated_diff ← (if rt_isolated == PASS then Tnew else Torig)

6 Tt_isolated_same ← (if rt_isolated == PASS then Torig else
Tnew)

7 Tmin← ddmin(Tt_isolated_diff , t, rt_isolated)
8 T← reorderTests(Tmin, Torig)
9 rt_min← exec(T)[t]

10 if rt_min 6= PASS then
11 Tmin← ddmin(Tt_isolated_same, t, rt_min)
12 T← reorderTests(Tmin, Torig)
13 end if
14 Tnew← merge(T,Tnew \T,Tnew)
15 end while
16 return Tnew

Figure 10: A general approach to remove test dependence. This
algorithm is instantiated in Figures 11, 12, and 13 to cope with
test dependence in test prioritization, test selection, and test
parallelization, respectively.

Downstream testing techniques should be cognizant of test depen-
dence, accounting for it to keep the test execution results consistent.
Consider a test prioritization or selection algorithm. By design, if
its input is a passing test suite, then its output should be a passing
test suite — even if the input suite contains dependent tests. A
prioritization or selection algorithm that assumes its input contains
no dependent tests can introduce test failures, which violates the
design requirement.

To cope with the impact of test dependence on existing test pri-
oritization, selection, and parallelization algorithms, this section
presents a general approach and shows how to enhance existing
algorithms to ensure they produce an order in which each test yields
the same result as it did in the original test suite.

3.1 Enhancing downstream testing techniques

3.1.1 General Approach
Figure 10 gives a general approach that “nullifies” the impact of

test dependence in a reordered subsequence of the original test suite.
Given a sequence of tests, this algorithm converts it into a different,

possibly longer sequence of tests. The resulting sequence includes
every test in the input sequence, and each test in it yields the same
result as in the original test suite.

The basic idea of this algorithm is to use Delta Debugging [48] to
minimize the test set that causes a dependent test to yield different
result (line 7), and then modify the test sequence (by adding neces-
sary tests or reordering it) to make the exhibited dependent test yield
the same result as in the original suite (line 8). Each iteration of the
loop in the algorithm nullifies one dependent test but the minimized
test suite from delta debugging may introduce other dependent tests.
These other dependent tests are nullified by eventually becoming t
(line 3) in subsequent loop iterations.

We identified two causes for test dependence. (1) A dependent test
is reordered so that the tests it depends on are no longer executing
before it. (2) A dependent test is created because tests that did
not execute before the dependent test in the original test suite is
now reordered to execute before it. Line 4 executes t by itself to
determine whether t passed in the original test suite because some
tests it depended on was executing before it or if t naturally passes.
Our use of delta debugging is dependent on the execution result
from line 4. If we are to find the tests that are missing to nullify
the test dependence (1), then the first argument passed to delta
debugging (line 7) is the original test suite. If we are to reorder
the tests that are causing t to attain a different result (2), then the
first argument passed is the reordered subsequence of the original
test suite (line 5). Lines 9 to 13 addresses the scenario when a
dependent test is exposed because of both causes. By rerunning
delta debugging this time with the other test order we ensure that
when we merge (line 14) t will no longer be affected by either causes
of test dependence.

It is possible that the modified sequence may yield a different
result when executed with the rest of the tests (line 10). In this
case, the algorithm employs Delta debugging again to identify the
minimal set of tests from the original test suite that must be executed
in the output sequence (lines 10–14).

The algorithm repeats the above steps until all dependent tests
yield the same results as in the original test suite (line 2).

3.1.2 Termination and Complexity
The algorithm in Figure 10 is guaranteed to terminate, and each

test in the output test sequence must yield the same result as in the
original test sequence. Intuitively, after each iteration in Figure 10
(lines 2–15), at least one more test in the new ordering yields the
same result as in the original ordering. In the worst case, the Tnew
has the same size of Told and every test in Tnew yields a different re-
sult as in the original suite, the algorithm simply returns the original
test sequence after n iterations, where n is the size of the original
test suite. Therefore, the worst-case time complexity of the gen-
eral algorithm is O(n). For brevity, we omit the termination and
complexity proofs here.

3.1.3 Enhancing Downstream Testing Algorithms
Figures 11, 12, and 13 show the enhanced dependence-aware

test prioritization, selection, and parallelization algorithms. In each
case, the enhanced algorithm first invokes the original downstream
testing algorithm to produce a possibly-reordered subsequence of
the original test suite. Then, the enhanced algorithm employs the
general approach in Figure 10 to nullify the impact of potential test
dependence in it and outputs a test execution order in which every
test yields the same results as in the original test suite.

3.1.4 Discussion
The enhanced algorithms may reorder tests compared to the base-



Auxiliary routines:
prioritize(T): the target prioritization algorithm to enhance.

depAwareTestPrioritization(T)
Input: a test suite (i.e., an ordered sequence of tests) T
Output: a reordered sequence of T in which every test yields the
same result as it does in T

1 Tprioritized ← proritized(T)
2 return nullifyTestDependence(Tprioritized , T)

Figure 11: A dependence-aware test prioritization algorithm.
When invoking nullifyTestDependence (Figure 10), this algo-
rithm overrides the merge routine. See Section 3.1.3 for details.

Auxiliary routines:
select(T): the target test selection algorithm to enhance.

depAwareTestSelection(T)
Input: a test suite (i.e., an ordered sequence of tests) T
Output: a subsequence of T in which every test yields the same
result as in T

1 Tselected ← select(T)
2 return nullifyTestDependence(Tselected , T)

Figure 12: A dependence-aware test selection algorithm.

Auxiliary routines:
parallelize(T): the target test parallelization algorithm to enhance.
It returns a set of test suites, each of which is scheduled to run a
different CPU.

depAwareTestParallelization(T)
Input: a test suite (i.e., an ordered sequence of tests) T
Output: a set of test suites, each of which is a subsequence of T
and every test in it yields the same result as in T

1 suites← parallelize(T)
2 for each Tpar in suites do
3 yield nullifyTestDependence(Tpar, T)
4 end for

Figure 13: A dependence-aware test parallelization algorithm.

line algorithms. The reordered test suite has exactly the same code
coverage as the suite before reordering. However, for test priori-
tization, the reordered suite may score lower on a metric such as
time to find the first fault or APFD [35]. This is an acceptable cost,
because the enhanced algorithms are correct whereas the original
algorithms produce test suites in which tests spuriously fail. The
charts in Figures 14 and 15 depicts the cost in coverage. From our
results only 1 out of 3 human-written test suites really suffered a
noticeable cost in coverage while 3 out of 5 automatically-generated
test suites were noticeably affected.

The enhanced algorithms may add tests compared to the baseline
algorithms. The resulting test suite achieves at least as much cov-
erage as the original algorithms. However, the resulting suite may
take longer to run and it may also score lower on other metrics that
take execution time into account, such as time to first fault. Again,
this is an acceptable tradeoff. Our selection algorithm guarantees
that each test is ran only once since the worst case is we run the
same number of tests as the original test suite. Yet as evident in
Figure 16, none of our subject program’s test suites needed 100%
of its tests. In fact the tradeoff to nullify test dependence only cost
2% or less for all of the subject programs. On the other hand, our
enhanced parallelization algorithms may execute the same test more
than once but in different machines. Although the total number of
tests executed across all machines may be more than the number
of tests in the original test suite, the time for the machines to finish

should be faster, if not, the same. From our results in Figure 17, it is
evident that our enhanced algorithms are generally slower than the
original ones but they are still faster than running the original test
suite.

3.2 Methodology
Section 2 identified human-written and automatically-generated

test suites that yield different results after applying a downstream
testing technique. We applied the corresponding enhanced testing
technique to the same test suite and measured these two results:

• correctness: whether the test dependence has been properly
handled. Every test should yield the same result as it did in
the original test suite in the default order.
• effectiveness whether the enhanced testing technique has

compromised the effectiveness of the original testing tech-
nique. Specifically, for test prioritization techniques, we mea-
sure the test coverage of the prioritized test suite; for test
selection techniques, we measure the size of the selected test
subset; and for test parallelization techniques, we measure the
execution time of the whole test suite after parallelization.

3.3 Correctness
For every test suite and every enhanced testing algorithm, every

test yields the same result as it did in the original test suite in
the default order. This result is as expected, because the enhanced
algorithms explicitly check for and correct test dependence, ensuring
that whenever a test is executed, any other tests that it depends on
are executed before it. Therefore, test dependence is preserved.

This result validates both our algorithms and our implementation.

3.4 Effectiveness

3.4.1 Enhanced Test Prioritization Algorithms
We evaluate the effectiveness of the enhanced prioritized test

suite by measuring its coverage. Figures 14 and 15 show the results.
Our enhanced test prioritization algorithms nullifies the impact of
test dependence by reordering the sequence of tests in a suite. In
other words, the algorithms execute the same number of tests as
the original test prioritization algorithms. Yet some of the test
orders produced by the enhanced test prioritization algorithms can
achieve higher coverage faster than the unenhanced test orders.
This was surprising because we expected a test order to achieve
higher coverage slower when we have to reorder it to preserve test
dependence.

Unlike the enhanced orders, dependent tests in the unenhanced
orders actually do not provide the coverage it does in the unprior-
itized test suite. As an example, test a may covers 50 statements
when executed in the original test suite before test b. Because test a
is dependent on test b running after it, if a test prioritization order
has test b running before test a, then test a may only cover a subset
of the 50 statements it is expected to cover. Common reasons for
why our dependent tests achieved higher coverage slower in our
unenhanced orders was because of the occurrences of events that
disrupts the normal flow of instructions and the different paths of
execution taken for branches.

3.4.2 Enhanced Test Selection Algorithms
We measure the size of the selected subset. Figure 16 shows the

results. Our enhanced test selection algorithms nullifies the impact
of test dependence by adding the necessary tests to the subsequence
of tests created by the original test selection algorithms. In other
words, our enhanced algorithms can increment the subsequence



Subject Program S1 S2 S3 S4 S5 S6

Human-written Test Suites
Crystal 24%→ 26% 24%→ 26% 24%→ 26% 29%→ 30% 29%→ 30.0% 29%→ 30.0%
JFreechart - - - - - -
Joda-Time - - - - - 84%→ 84%
Synoptic - - - - - -
XML-Security - - - - - -

Automatically-generated Test Suites
Crystal 10%→ 11% 10%→ 11% 10%→ 11% 33%→ 34% 33%→ 33% 33%→ 33%
JFreechart 33%→ 33% 33%→ 33% 33%→ 33% 85%→ 85% 85%→ 85% 85%→ 85%
Joda-Time 13%→ 13% 13%→ 13% 13%→ 13% 78%→ 78%) 78%→ 78% 78%→ 78%
Synoptic - - - - - -
XML Security 45%→ 46% 45%→ 46% 45%→ 46% 52%→ 53% 52%→ 53% 52%→ 53%

Figure 16: The 6 enhanced test selection algorithms may reorder the selected test suite, increase the number of selected tests (the
size of the result suite) or do both. In each cell, the data before → shows the percentage of tests selected by the original selection
algorithm and the data after → shows the percentage of tests selected by the enhanced, dependence-aware selection algorithm. A
“-” in the cell means that no dependent tests were exposed by the program and algorithm, and thus the before and after values are
identical.

of tests up to the same number of tests as the original test suite.
Yet in the data we collected, our enhanced algorithms only slightly
increased the selected test subset by 2% or less.

3.4.3 Enhanced Test Parallelization Algorithms
The major purpose of using test parallelization algorithms is to

shorten the total test execution time. We measure the total test ex-
ecution time by recording the time taken by the slowest machine.
Figure 17 shows the speedup of each enhanced parallelization al-
gorithm. The data shown in the figure is calculated by the time for
the slowest machine to run / the time to run the original test suite.
A number greater than 1 would imply that the time to run the test
suite with the enhanced algorithm is greater, while the number 1
or a number less than 1 would imply the time is equal to or less
than (respectively) the time to run the test suite without the appli-
cation of any testing algorithms. Our enhanced test parallelization
algorithms nullifies the impact of test dependence by adding the nec-
essary tests to the subsequences of tests created by the original test
parallelization algorithms. In other words, our enhanced algorithms
can increment the total number of tests executed across all machines

up to
k−1
∑

i=0
(n− i) where n is the number of tests in the original test

suite and k is the number of machines. The maximum size in all
of the subsequences of tests would be the same as size of the orig-
inal test suite. The slowdown between the original and enhanced
parallelization algorithm is a result of the increased amount of tests
machines have to execute in order to preserve test dependence. To
elaborate, say test b depends on test a to come before it yet they
were both scheduled to be executed in different machines. In order
for test b to exhibit the same behavior as it did in the unparallelized
test suite, whichever machine test b is contained in will have to have
test a be added to it.

Certain results appears to be the same with the original or en-
hanced parallelization algorithm. This is because the subject pro-
grams contains tests that relies on one another to setup UI com-
ponents, files or a combination of both. The negligence of test
dependence for the original parallelization order resulted in its tests
waiting for a particular UI event or file system state to trigger. Most
of these tests end up waiting a set amount of time before terminating.
Despite how these enhanced testing algorithms may require the user

to execute more tests, this example illustrates that the consequences
of executing more tests may not always be detrimental to the user.

3.5 Discussion

3.5.1 Threats to Validity
There are several threats to the validity of our experiments. First,

the subject programs and the test suites used to evaluate the enhanced
testing algorithms may not be representative enough. We chose
these subject programs because they contain developer-confirmed
dependent tests, and some of them, such as XML-Security, are
widely used to evaluate downstream testing technique in the software
engineering community. Second, Section 3.4 evaluated effectiveness
based on proxy measures of test suite quality rather than on detection
of real faults. Our future work plans to evaluate the enhanced
algorithms on more subject programs and employ other metrics to
evaluate the effectiveness.

3.5.2 Experimental Conclusions
We have two chief findings. (1) All enhanced downstream test-

ing techniques output consistent results on test suites containing
dependent tests. And (2) The enhanced testing techniques are more
effective than executing the test suites without any testing tech-
niques.

4. RELATED WORK
We next discuss three lines of closely-related work on: (1) defini-

tions and studies of test dependence, (2) testing techniques affected
by test dependence, and (3) techniques to cope with test dependence.

4.1 Test Dependence Definitions and Studies
Treating test suites explicitly as mathematical sets of tests [15]

and assuming test independence are common practice in the testing
literature [5, 11, 14, 18, 20, 23, 27, 28, 36, 39, 40, 50, 51]. Nonetheless,
the conditions under which a test is executed may affect its result.

Bergelson and Exman describe a form of test dependence infor-
mally: given two tests that each pass, the composite execution of
these tests may still fail [4]. That is, if t1 executed by itself passes
and t2 executed by itself passes, executing the sequence 〈t1, t2〉 in
the same context may fail.



Subject Program P1 (Original Order) P2 (Time-Minimized)
k=2 k=4 k=8 k=16 k=2 k=4 k=8 k=16

Human-written Test Suites
Crystal 0.72→ 0.77 0.58→ 0.58 0.53→ 0.56 0.54→ 0.56 0.74→ 0.74 0.67→ 0.67 0.67→ 0.67 0.68→ 0.68
JFreechart - - - 0.46→ 0.48 0.54→ 0.98 0.47→ 0.82 0.43→ 0.53 -
Joda-Time - - - - 0.66→ 0.66 0.65→ 0.65 0.40→ 0.41 0.32→ 0.32
Synoptic - - - - - - - -
XML Security - - 0.12→ 0.28 0.12→ 0.27 0.53→ 0.66 0.46→ 0.69 0.15→ 0.22 0.12→ 0.19

Automatically-generated Test Suites
Crystal - - 0.13→ 0.41 0.11→ 0.35 0.61→ 0.81 0.68→ 0.93 0.25→ 0.80 0.22→ 0.58
JFreechart 0.54→ 0.85 0.53→ 0.66 0.45→ 0.56 0.34→ 0.49 0.63→ 0.74 0.55→ 0.64 0.40→ 0.44 0.33→ 0.54
Joda-Time 0.54→ 0.58 0.42→ 0.44 0.28→ 0.62 0.27→ 0.33 0.52→ 0.62 0.50→ 0.53 0.23→ 0.32 0.26→ 0.28
Synoptic 0.59→ 0.70 0.24→ 0.47 0.17→ 0.17 0.13→ 0.14 0.54→ 0.75 0.25→ 0.77 0.18→ 0.57 0.14→ 0.40
XML Security 0.52→ 0.53 0.39→ 0.41 0.18→ 0.48 0.16→ 0.22 0.83→ 0.83 0.54→ 0.80 0.28→ 0.41 0.26→ 0.37

Figure 17: Results of evaluating the enhanced test parallelization algorithms. In each cell, the data before → shows the speedup
(time to run parallelized / time to run the original test suite) for the original parallelization algorithm and the data after→ shows the
speedup for the enhanced, dependence-aware parallelization algorithm. A “-” in the cell means that no dependent tests were exposed
by the program and algorithm.

In the context of databases, Kapfhammer and Soffa formally
define independent test suites and distinguish them from other suites
that “can capture more of an application’s interaction with a database
while requiring the constant monitoring of database state and the
potentially frequent re-computations of test adequacy” [22]. In
addition to results about test generation and test adequacy criteria
for database testing [6,13,22], the effect of context in testing has also
been explored in mobile applications [44]. Such test dependence
definitions focus on program and database states that may not affect
the actual test results as well as the downstream testing techniques.

Our previous work [52] gave a formal definition for test depen-
dence based on test execution results. Our definition differs from
related work [2, 3, 22] by considering test results rather than pro-
gram and database states (which may not affect the test results).
Our previous work also showed there exist reordering of real-world
test suites that cause the same test to yield different results, but it
was unclear whether downstream testing techniques such as test
prioritization, selection, and parallelization give rise to the problem-
atic test reordering in practice. This paper empirically evaluates
the impact of test dependence on real-world subject programs, and
it presents a general approach to cope with the impact by enhanc-
ing existing algorithm to respect test dependence and keep the test
results consistent.

Some prior work [25] studied the impact of flaky tests — tests that
have non-deterministic outcomes — on regression testing. However,
non-determinism is different than test dependence. Test dependence
does not imply non-determinism: a test may non-deterministically
pass/fail without being affected by any other test, including its
own previous executions. Non-determinism does not imply test
dependence: a program may have no sources of non-determinism,
but two of its tests can be dependent. Furthermore, a test may
execute non-deterministically, but it may deterministically pass/fail.

4.2 Testing Techniques Affected by Test De-
pendence

The assumption of test independence lies at the heart of most
techniques for automated regression test selection [5, 14, 27, 28,
50], test suite minimization [16, 45], test case prioritization [11,
18, 23, 36, 39], coverage-based fault localization [20, 40, 51], and
test generation [29, 44, 53], etc. Section 2 evaluated the impact
of test dependence on test prioritization, test selection, and test

parallelization. Here we discuss the impacts of test dependence on
two additional techniques.

Coverage-based fault localization techniques [20] often treat a
test suite as a collection of test cases whose result is independent
of the order of their execution. They can also be impacted by test
dependence. Steimann et al. found that the accuracy of coverage-
based fault locators is reduced when tests fail due to the violation
of the test independence assumption [40]. Compared to our work,
Steimann et al. focused on identifying possible threats to validity in
evaluating coverage-based fault locators, and do not present any re-
sults of the impact of test dependence on test selection, prioritization,
and parallelization techniques.

Most state-of-the-art test generation techniques [29, 44, 53] do
not take test dependence into consideration. For example, the ex-
ecution outcomes of tests generated by Randoop can depend on
the execution of other tests [33, 52]. Such test dependences arise
because current automated test generators generally create new tests
based on the program state after executing the previous test, for the
sake of test diversity and efficiency. Randoop has a mechanism to
preserve test dependence: when it discovers that a test execution is
nondeterministic, it disables the test’s assertions but continues to
execute it in the suite, so that other tests that are dependent on it do
not begin to fail [33]. Exploring how to incorporate test dependence
into the design of an automated test generator is future work.

4.3 Techniques to Cope with Test Dependence
Only a few techniques and tools have been developed to prevent

or alleviate the impact of test dependence. Some testing frame-
works provide mechanisms for developers to define the context for
tests. JUnit, for example, provides means to automatically exe-
cute setup and clean-up tasks (setUp() and tearDown() in JUnit 3.x,
and annotations @Before and @After in JUnit 4.x). Release 4.11 of
JUnit supports executing tests in lexicographic order by test method
name [21]. DepUnit [10] allows developers to define soft and hard
dependences. Soft dependences control test ordering, while hard
dependences in addition control whether specific tests are run at
all. TestNG [42] allows dependence annotations and supports a
variety of execution policies that respect these dependences such
as sequential execution in a single thread, execution of a single test
class per thread, etc.

However, no tool exists to ensure that programmers use these



Figure 14: Reduced efficiency of the enhanced versions of test
prioritization techniques T3 and T4 from Figure 1 on human-
written test suites. The subject programs Synoptic and XML-
Security are omitted, as is T3 for Joda-Time, because those
combinations do not cause test failures due to dependent tests.

advanced mechanisms properly, and often they do not [25]. By
contrast, this paper proposed techniques to cope with the impact
of dependent tests. Our techniques could co-exist with such frame-
works by generating annotations rather than dictating a single order
of test execution.

More recently, Bell and Kaiser [3] developed an approach, called
Unit Test Virtualization, to speed up unit test execution. Unit Test
Virtualization dynamically tracks the memory access of each unit
test, identifies code segments that may create side-effects, and exe-
cutes them in an isolated container (similar to a lightweight virtual
machine) with significantly lower cost than executing in a normal
JVM. Similar to Kapfhammer and Soffa’s work [22], Unit Test Vir-
tualization detects a test dependence if a test accesses a memory
location that has been written by another test, which is neither neces-
sary nor sufficient to affect the test result; by contrast, our definition
focuses on the test result. Because the test suite is executed on
multiple virtual machines, it is unclear how to integrate Unit Test
Virtualization with downstream testing techniques. By contrast, our
work enhances existing testing techniques to make them respect
test dependence and produce test orderings that produce consistent
results when running on a single, standard JVM.

Figure 15: Reduced efficiency of the enhanced versions of
test prioritization techniques T3 and T4 from Figure 1 on
automatically-generated test suites.



5. CONCLUSION AND FUTURE WORK
Test dependence often arises in a test suite, but its impact is

unclear and has largely been ignored in previous software testing
research. This paper addresses this important issue by empirically in-
vestigating the impact of test dependence on 12 downstream testing
algorithms. Our experimental results show that test dependence does
affect the results of well-known test prioritization, test selection,
and test parallelization algorithms negatively and frequently. This
paper also proposes an approach to cope with test dependence. The
proposed approach enhances existing test prioritization, selection,
and parallelization algorithms to make them respect test dependence

Our findings are useful to practitioners and researchers. Both can
learn that the impact of test dependence should no longer be ignored
when deploying and designing new testing techniques. Practitioners
can adjust their practice based on test patterns most often lead to
test dependence, and they can use our approach to cope with the
impact the test dependence. Researchers are posed interesting new
problems, such as how to adapt existing testing methodologies in
the presence of test dependence.

Future work should address the following issues:
Other downstream testing techniques. It would be interesting to
measure the impact of dependent tests on other downstream testing
techniques, such as mutation testing [38, 49, 50], test factoring [37,
46], and experimental debugging techniques [40, 48, 51]. We are
also interested in enhancing these testing algorithms to respect test
dependence.
Eliminating dependent tests. Another way to cope with the impact
of test dependence is developing algorithms to eliminate dependent
tests before their impact arises. However, the practice of eliminating
dependent tests remains mostly manual and ad hoc — software
developers usually manually hard-code test execution orders in a
configuration file or simply merge or remove tests. A more flexible
and robust methodology for dependent test elimination should be
developed. This question also applies to automated test generators,
and some work has been developed to alleviate this problem [3, 12,
33].

6. REFERENCES
[1] Invalid Thread Access Error Caused by Test Dependence.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=43500.
[2] J. Bell. Detecting, isolating, and enforcing dependencies

among and within test cases. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 799–802, 2014.

[3] J. Bell and G. Kaiser. Unit test virtualization with VMVM. In
Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 550–561, 2014.

[4] B. Bergelson and I. Exman. Dynamic test composition in
hierarchical software testing. In 2006 IEEE 24th Convention
of Electrical and Electronics Engineers in Israel, pages 37–41,
2006.

[5] L. C. Briand, Y. Labiche, and S. He. Automating regression
test selection based on uml designs. Inf. Softw. Technol.,
51(1):16–30, Jan. 2009.

[6] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weber.
A framework for testing database applications. In ISSTA,
pages 147–157, 2000.

[7] A CLI bug masked by dependent tests.
https://issues.apache.org/jira/browse/CLI-26

https://issues.apache.org/jira/browse/CLI-186

https://issues.apache.org/jira/browse/CLI-187.
[8] Crystal VC. http://crystalvc.googlecode.com.

[9] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Softw. Pract. Exper.,
34(11):1025–1050, Sept. 2004.

[10] DepUnit. https://code.google.com/p/depunit/.
[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing

test cases for regression testing. In ISSTA, pages 102–112,
2000.

[12] G. Fraser and A. Zeller. Generating parameterized unit tests.
In ISSTA, pages 364–374, 2011.

[13] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. SIGMOD Rec., 23(2):243–252, 1994.

[14] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In OOPSLA, pages
312–326, 2001.

[15] W. Howden. Methodology for the generation of program test
data. IEEE Transactions on Computers, C-24(5):554–560,
1975.

[16] H.-Y. Hsu and A. Orso. MINTS: A General Framework and
Tool for Supporting Test-suite Minimization. In ICSE,
Vancouver, Canada, May 2009.

[17] JFreechart. http://www.jfree.org/jfreechart/.
[18] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse. Adaptive

random test case prioritization. In ASE, pages 233–244, 2009.
[19] Joda-Time. http://joda-time.sourceforge.net/.
[20] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test

information to assist fault localization. In ICSE, pages
467–477, 2002.

[21] Test Execution Order in JUnit.
https://github.com/junit-team/junit/blob/master/doc/

ReleaseNotes4.11.md#test-execution-order.
[22] G. M. Kapfhammer and M. L. Soffa. A family of test

adequacy criteria for database-driven applications. In
ESEC/FSE, pages 98–107, 2003.

[23] J.-M. Kim and A. Porter. A history-based test prioritization
technique for regression testing in resource constrained
environments. In ICSE, pages 119–129, 2002.

[24] T. Kim, R. Chandra, and N. Zeldovich. Optimizing unit test
execution in large software programs using dependency
analysis. In Proceedings of the 4th Asia-Pacific Workshop on
Systems, APSys ’13, pages 19:1–19:6, 2013.

[25] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical
analysis of flaky tests. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 643–653, 2014.

[26] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel test generation and execution with Korat.
In FSE, pages 135–144, 2007.

[27] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso.
Regression testing in the presence of non-code changes. In
ICST, pages 21–30, 2011.

[28] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing
to large software systems. In FSE, pages 241–251, 2004.

[29] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE, 2007.

[30] Parallel test execution api in junit. http://junit.org/
apidocs/org/junit/experimental/ParallelComputer.html.

[31] Fork options and parallel test execution in maven. http:
//maven.apache.org/surefire/maven-surefire-plugin/

examples/fork-options-and-parallel-execution.html.



[32] Parallel execution of test methods in testng.
http://seleniumeasy.com/testng-tutorials/

parallel-execution-of-test-methods-in-testng.
[33] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and

N. Li. Scaling up automated test generation: Automatically
generating maintainable regression unit tests for programs. In
ASE, Nov. 2011.

[34] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri,
and X. Qiu. On test suite composition and cost-effective
regression testing. ACM Trans. Softw. Eng. Methodol.,
13(3):277–331, July 2004.

[35] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test case
prioritization: an empirical study. In Software Maintenance,
1999. (ICSM ’99) Proceedings. IEEE International
Conference on, pages 179–188, 1999.

[36] M. J. Rummel, G. M. Kapfhammer, and A. Thall. Towards the
prioritization of regression test suites with data flow
information. In Proceedings of the 2005 ACM Symposium on
Applied Computing, SAC ’05, pages 1499–1504, 2005.

[37] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. In ASE, pages 114–123, 2005.

[38] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In ISSTA, pages
69–80, 2009.

[39] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In ISSTA, pages 97–106, 2002.

[40] F. Steimann, M. Frenkel, and R. Abreu. Threats to the validity
and value of empirical assessments of the accuracy of
coverage-based fault locators. In ISSTA, pages 314–324, 2013.

[41] Synoptic. http://synoptic.sourceforge.net/.
[42] TestNG. http://testng.org/.
[43] Executing Unit Tests in parallel on a multi-CPU/core machine

in Visual Studio. http://blogs.msdn.com/b/
vstsqualitytools/archive/2009/12/01/

executing-unit-tests-in-parallel-on-a-multi-cpu-core-machine.

aspx.
[44] Z. Wang, S. Elbaum, and D. S. Rosenblum. Automated

generation of context-aware tests. In ICSE, pages 406–415,
2007.

[45] W. E. Wong, J. R. Horgan, S. London, and H. A. Bellcore. A
study of effective regression testing in practice. In ISSRE,
pages 264–274, 1997.

[46] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In FSE, pages 197–206, 2010.

[47] XML Security. http:
//projects.apache.org/projects/xml_security_java.html.

[48] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28:183–200, February 2002.

[49] L. Zhang, D. Marinov, and S. Khurshid. Faster mutation
testing inspired by test prioritization and reduction. In ISSTA,
pages 235–245, 2013.

[50] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. Regression
mutation testing. In ISSTA, pages 331–341, 2012.

[51] L. Zhang, L. Zhang, and S. Khurshid. Injecting mechanical
faults to localize developer faults for evolving software. In
OOPSLA, pages 765–784, 2013.

[52] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst,
and D. Notkin. Empirically revisiting the test independence
assumption. In ISSTA 2014, Proceedings of the 2014

International Symposium on Software Testing and Analysis,
pages 385–396, San Jose, CA, USA, July 23–25, 2014.

[53] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined static
and dynamic automated test generation. In ISSTA, pages
353–363, Toronto, Canada, July 19–21, 2011.


