
Explaining Visual Changes in Web Interfaces
Brian Burg,1 Andrew J. Ko,1,2 Michael D. Ernst1

Computer Science and Engineering1

University of Washington
{burg, mernst}@cs.washington.edu

The Information School2

University of Washington
ajko@uw.edu

ABSTRACT
Web developers often want to repurpose interactive behaviors
from third-party web pages, but struggle to locate the specific
source code that implements the behavior. This task is chal-
lenging because developers must find and connect all of the
non-local interactions between event-based JavaScript code,
declarative CSS styles, and web page content that combine to
express the behavior.

The Scry tool embodies a new approach to locating the code
that implements interactive behaviors. A developer selects
a page element; whenever the element changes, Scry cap-
tures the rendering engine’s inputs (DOM, CSS) and outputs
(screenshot) for the element. For any two captured element
states, Scry can compute how the states differ and which lines
of JavaScript code were responsible. Using Scry, a developer
can locate an interactive behavior’s implementation by picking
two output states; Scry indicates the JavaScript code directly
responsible for their differences.

Author Keywords
Programming; debugging; web development; reverse
engineering

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Interfaces

General Terms
Human Factors; Design

INTRODUCTION
Web developers increasingly look to existing web site designs
for inspiration [12], to learn about new practices or APIs [5],
and to copy and adapt interactive behaviors for their own
purposes [29]. Web sites are particularly conducive to reuse
because web pages are widely available, distributed in source
form, and inspectable using tools built into web browsers.

Unfortunately, when a developer finds an interactive behavior
that they want to reuse (e.g., a nicely designed widget, a paral-
lax effect, or a slick new scrolling animation), finding the code
that implements the behavior code from a third-party web site
is still a challenging process [18]. Locating this code typically

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
UIST ’15, November 08–11, 2015, Charlotte, NC, USA
ACM 978-1-4503-3779-3/15/11.
http://dx.doi.org/10.1145/2807442.2807473

involves at least three tasks. First, a developer identifies a
behavior’s rendered outputs and speculates about the internal
states that produce them; second, she observes changes to
these outputs over time to find their internal states; third, she
searches the web site’s client side implementation to find the
JavaScript source code that implements the behavior.

Even if all of these tasks go well, extracting the implemen-
tation of the desired behavior might require repeated experi-
mentation and inspection of the running site. More often, the
web’s combination of declarative CSS, imperative JavaScript,
and notoriously complex layout/rendering algorithms makes
the feature location task prohibitively difficult. Moreover, as
the web sites and web applications become more powerful,
they have also become more complex, more obfuscated, and
more abstract, exacerbating these challenges.

While prior work has investigated feature location techniques
for statically-typed, non-dynamic languages, no prior work
comprehensively addresses the specific difficulties posed by
the web. (1) Isolating the output, internal state and source
code for single widget on a web page is difficult due to hidden
and non-local interactions between the DOM, imperative Java-
Script code, and declarative CSS styles. Some prior work has
addressed this by revealing all hidden interactions [25], but
this obfuscates critical example-relevant details in a flood of
low-level information. (2) Web developers can view program
states and outputs over time by repurposing tools for logging,
profiling, testing, or deterministic replay [2, 6, 21], but none
of these tools is designed to compare past states, and they
cannot limit data collection to specific interface elements or
behaviors. (3) No prior work exists that can attribute changes
in web page states to specific lines of JavaScript code. Instead,
web developers often resort to using breakpoints, logging, or
browsing program text in the hope of finding relevant code [6,
19]. In other programming environments, research prototypes
with this functionality all incur run-time overheads that limit
their use to post-mortem debugging [15, 17, 24].

To address these gaps, we present Scry, a reverse-engineering
tool that enables a web developer to (1) identify visual states
in a live execution, (2) browse and compare relevant program
states, and (3) jump directly from state differences to the Java-
Script code responsible for the change. (1) To locate an inter-
active behavior’s implementation using Scry, a developer first
identifies a web page element to track. Whenever the selected
interface element is re-drawn differently, Scry automatically
captures a snapshot of the element’s visual appearance and
all relevant internal state used to render it. (2) Scry presents
an interactive diff interface to show the CSS and DOM differ-
ences that caused any two visual states to differ, overlaying

http://dx.doi.org/10.1145/2807442.2807473


Figure 1. A picture mosaic widget that periodically switches image tiles
with a cross-fade animation. It is a jQuery widget implemented in 975
lines of uncommented, minified JavaScript across 4 files. Its output is
produced using the DOM, CSS animations, and asynchronous timers.

inline annotations to compactly summarize CSS and DOM
changes between two visual states. (3) When a developer
clicks an annotation, Scry reveals the operations that caused
the output change and the corresponding JavaScript code that
performed the operation. Scry supports these capabilities by
capturing state snapshots, logging a trace of relevant mutation
operations, and tracking dependencies between operations.
The result is a powerful, direct-manipulation, before-and-after
approach to feature location for the web, eliminating the need
for developers to speculate about and search for relevant code.

This paper begins with an illustration of how Scry helps a
developer as they locate the code that implements a mosaic
widget. Then, it explains the design and features of Scry’s user
interface, and it describes Scry’s snapshotting, comparison,
and dependency tracking techniques. It concludes with several
real-world case studies, related work, and future directions.

EXAMPLE
To illustrate Scry in use, consider Susan, a contract web devel-
oper who is overhauling a non-profit organization’s website
to be more engaging and interactive. While browsing another
website1, she finds a compelling picture mosaic widget (Fig-
ure 1) that might work well on the non-profit’s donors page.
To evaluate the widget’s technical suitability, she needs a high-
level understanding of how it is implemented in terms of DOM
and CSS manipulations and the underlying JavaScript code. In
particular, she wants to know more about the widget’s cross-
fade animation: its dependencies on specific DOM and CSS
features, its configurability, and ease of maintenance. At this
point, Susan is only superficially familiar with the example:
how it looks visually and a vague intuition for what it does
operationally. She is unfamiliar with the example’s source
code, and she does not desire a complete understanding of it
unless absolutely necessary.

Existing developer tools provide several approaches for Susan
to reverse-engineer the mosaic widget to gain this understand-
ing, but all of these are ill-suited for her task. She could
search through the page’s thousands of lines of source code
for functions and event handlers relevant to the mosaic and
1https://www.mozilla.org/en-US/mission/

then try to comprehend them. Susan is unlikely to pursue this
option as it is extremely time-consuming, and it might not
aid her evaluation. She could inspect the page’s output to see
its related DOM tree elements and active CSS rules, but this
only shows the page’s current state and does not explain how
the page’s DOM tree or styles were constructed. She could
use source-level tools (e.g., execution profiler, logging, break-
points) to see what code actually executes when the widget
animates. However, the efficient use of these tools requires
a priori awareness of what code is relevant, and Susan is
unfamiliar with the example’s code.

Using Scry to Reverse-Engineer the Mosaic
Using Scry, Susan can identify the mosaic’s relevant visual
outputs, compare internal states that produced each output, and
jump from internal state changes to the responsible JavaScript
code. Instead of guessing about program states and searching
static code, Susan’s workflow is grounded by output examples,
captured DOM and CSS states, and specific lines of JavaScript
code. Susan starts by finding the mosaic’s corresponding
DOM element using the Web Inspector, and then tells Scry to
track changes to the element (Figure 2(a)). As mosaic tiles
update, Scry captures snapshots of the mosaic’s internal state
and visual output. After several tile transitions, Susan stops
tracking and browses the collected snapshots to identify visual
states before, during, and after a single tile changes images
(Figure 2(b)).

Susan now wants to compare these output examples to see how
their internal states differ as the cross-fade effect progresses.
To do so, she selects two screenshots from the timeline (Fig-
ure 2(b)). For each selected screenshot, Scry shows the small
subset of the page’s DOM (Figure 2(b)) and CSS (Figure 2(c))
that determines the mosaic’s visual appearance at that time.
By viewing the specific inputs and outputs of the browser’s
rendering algorithm at each instant, Susan can figure out how
the mosaic widget is structured and laid out using DOM ele-
ments and CSS styles. To highlight dynamic behaviors, Scry
shows differences between the states’ DOM trees and CSS
styles (Figure 2(c)). Seeing that the tiles’ background-image

and color properties have changed, Susan now knows which
properties the mosaic uses to implement the cross-fade.

To find the code that causes these changes, Susan compares
the DOM trees of the initial state and mid-transition state,
noticing that the new tile initially appears underneath the
original tile, and the original tile’s color style property differs
between the two states. When she selects the new tile’s DOM
element, Scry displays a list of JavaScript-initiated mutation
operations that created and appended DOM elements for the
new tile (Figure 2(d)). To see how the tile’s color property is
animated, she clicks on its diff annotation and sees JavaScript
stack traces for the state mutations that indirectly changed the
style property (Figure 2(e,f)). Susan now knows exactly how
the widget’s JavaScript, DOM, and CSS code works together
to animate a tile’s cross-fade transition. If Susan wants to
modify the animation code, she now knows several source
code locations from which to expand her understanding of the
program.

https://www.jquery.com
https://www.mozilla.org/en-US/mission/


Track Elementa b

c d

e
f

Figure 2. Susan first uses the Web Inspector to go from the mosaic’s vi-
sual output to its DOM elements. Then, she uses Scry to track changes
to the mosaic element (a), select different visual states to inspect (b), and
see the DOM tree (c) and CSS styles (d) that produced each visual state.
To jump to the code that implements interactive behaviors, Susan uses
Scry to compare two states and then selects a single style property differ-
ence (d). Scry shows the mutation operations indirectly responsible for
causing the property difference (e), and Susan can jump to JavaScript
code (f) that performed each mutation operation.

A STAGED INTERFACE FOR FEATURE LOCATION
User interfaces for searching and understanding code can
quickly become overwhelming, displaying large amounts of
source code to filter, browse, and comprehend [26]. Scry’s
interface simplifies this work by identifying and supporting
three distinct activities through dedicated interfaces: (1) the
user identifies the behavior’s major visual states, (2) she builds
a mental model of how visual outputs are related to internal
states, and (3) she explores how multiple internal states are
connected via scripted behaviors. This section first describes
and justifies this output- and difference-centric workflow; then,
it explains how Scry’s design supports a web developer during
each of these feature-location activities.

Design Rationale
We designed Scry to directly address the information over-
load a developer encounters when performing feature location
tasks [26]. Scry’s design differs from traditional feature lo-
cation tools in two fundamental ways: (1) Scry represents
program states by their visual output whenever possible, and
(2) Scry promotes a staged approach to feature location by

iteratively showing more detailed information. We explain
each of these points below.

Representing Interface States as Screenshots
Scry’s user interface removes much of the guesswork from
feature location, by using visual outputs as the primary basis
for identifying and comparing an interactive behavior’s inter-
mediate internal states. Scry shows multiple output examples
for an element along with the internal states (CSS styles and
DOM elements) used to render each output (Figure 3). A user
browses internal states by selecting the corresponding screen-
shots that each internal state produces. Figure 3(b) shows how
Scry visualizes an element’s output history using a familiar
timeline metaphor [14, 16]. This output-based, example-first
design is in contrast to the traditional tooling emphasis on
static, textual program representations. During feature loca-
tion tasks, browsing program states via output examples is a
better match for what the user knows (a visual memory of a
page’s output) and what they lack but are seeking (knowledge
of relevant state and code). Output examples are also more
readily available: visual states are easier for developers to
recognize and compare than internal states or static code, and
output often changes in response to distinct and memorable
user actions.

Performing Feature Location in Stages
Scry’s interface allows a developer to pursue specific feature
location tasks in relative isolation from each other. When a
user wants to identify outputs, relate outputs to internal states,
or connect state changes to source code, Scry provides only
the information appropriate to each task.

To see the internal states that produced a single visual output,
they can do so with without considering scripted behaviors
and other interactions. While most interactive behaviors are
scripted with JavaScript2, ultimately an element’s visual ap-
pearance is solely determined by its CSS styles and a DOM
tree. Thus, to see how one visual state is produced, it is suf-
ficient to understand the CSS and DOM that were used to
render it. Scry supports this task by juxtaposing each screen-
shot with its corresponding DOM tree and computed CSS style
properties (Figure 3).

To direct a user towards the internal states (CSS and DOM)
responsible for visual changes, Scry’s interface visualizes dif-
ferences between two screenshots and their corresponding
DOM and CSS states (Figure 4). Sometimes, inspecting the
internal state and visual output of single visual state is insuffi-
cient for a useful mental model of how internal inputs affected
visual output. If the user has a weak understanding of CSS
or layout algorithms, or if the interface element is excessively
large or complex, then it may be difficult to localize a visual
effect to specific CSS styles and DOM elements. By juxta-
posing small changes in internal state with the corresponding
visual outputs, Scry prompts a user to test and refine their
mental model against a small, understandable example. These

2Simple interactions can be programmed entirely within declarative
style rules using CSS animations, transitions, and pseudo-states (i.e,
:hover, :focus) to specify keyframes. Scry can track these internal
state changes even though no JavaScript is involved.



a

b c d

Figure 3. Scry’s snapshot interface shows multiple screenshots in a timeline view (a). To preserve its linear time scale, the timeline coalesces adjacent
thumbnails (here, indicated by the number “2”) when zoomed out. When the developer selects an output example from the timeline, Scry shows three
views for it: (b) the element’s visual appearance, (c) its corresponding DOM tree, and (d) computed style properties for the selected DOM node.

diffs also reveal the means by which JavaScript code is able to
transition between different visual states.

To help a user understand how state differences came to be
and what code was responsible, Scry explains how each DOM
and CSS difference came to be in terms of abstract mutation
operations that modify CSS styles or the DOM tree. Each
mutation operation serves a dual purpose: it jointly explains
how internal state changed, and also provides a starting point
from which users can plug in their own search and navigation
strategies [19] to find other relevant code upstream from the
mutation operation. Initially, the user is presented with a list
of recorded operations for one state difference; the user can
browse these operations to understand how the state changed.
Once the user wants to see the source code responsible for
these mutation operations, they click on a specific operation to
see where it was performed. Many mutation operations origi-
nate from source code (Figure 5), such as JavaScript function
calls or assignments that cause some change to the DOM or
CSS. Since these mutations may happen indirectly—for exam-
ple, by adding a class, setting node.innerHTML, or by changing
styles from JavaScript—there can be multiple JavaScript state-
ments responsible for a change.

Capturing Changes to Visual Appearance
Scry automatically tracks changes to a user-specified DOM
element’s appearance and summarizes the element’s output
history with a series of screenshots. To start tracking an el-
ement, a developer first locates a target element of interest,
using existing tools such as an element inspector or DOM
tree viewer. Once the developer issues Scry’s “Start Tracking”
command (Figure 2(a)), Scry immediately begins capturing
a log of mutation operations for the entire document. When
Scry detects changes in the target element’s visual appearance,
it captures a state snapshot and adds a screenshot to the tar-
get element’s tracking timeline. (We later explain how these
tracking capabilities are implemented.)

The element tracking timeline (Figure 3(a)) is Scry’s primary
interface for viewing and selecting output examples. It juxta-
poses these output examples—previewable screenshots of the
target element—with existing timelines for familiar run-time
events such as network activity, script execution, page layout,
and asynchronous tasks. Timelines show events on a linear
time scale and can be panned, zoomed, and filtered to focus
on specific interactions or event types.

Relating Output to Internal States
Scry’s snapshot interface enables a developer to learn how an
element’s visual appearance is rendered by juxtaposing inputs
and outputs of the browser’s rendering algorithm3. After a
developer has captured relevant output states of the target
element, she then selects a single screenshot from the timeline
(Figure 3(a)) to see more details about that visual state. The
visual output, DOM subtree, and computed CSS styles for a
single visual state are shown together in the snapshot detail
view (Figure 3). To help a developer understand how the
visual output was rendered, the visual output and CSS views
are linked to the DOM tree view’s current selection. When a
developer selects a DOM element (Figure 3(c)), Scry shows
the element’s matched CSS styles (Figure 3(d)).

Comparing Internal States
Using Scry’s comparison interface (Figure 4), a developer
can quickly compare internal states of two relevant output
examples to learn why the examples were rendered differently.
Scry automatically discards CSS styles that are overridden in
the rule cascade. Thus, the differences in two snapshots’ input
data—its CSS styles and DOM tree—are sufficient to explain
differences in their output data.

The comparison interface (Figure 4) consists of two side-by-
side snapshot interface views with additional annotations to in-
dicate the nature of their differences. Additions are annotated
with green highlights, and only appear within the temporally-
later snapshot. Removals are annotated with red highlights,
and only appear within the earlier snapshot. Modifications—a
combination of an addition and removal for the same style
property or DOM attribute—appear in purple highlights for
both snapshots. Elements whose parent has changed are high-
lighted in yellow, and elements whose matched CSS styles
have changed are rendered in bold text. As with the single
snapshot view, a developer can inspect a DOM tree element to
see its matching CSS styles and position within visual output.
In the comparison tool, the view state of both sides is kept in
sync so that the element is selected (if present) in both snap-
shots. This allows the developer to easily compare CSS styles

3Scry does not directly explain causal relationships between inputs
and outputs in the style of Whyline [17]. Instead, Scry helps a
developer, who has a working understanding of CSS-based layout, by
providing concrete data against which they can validate their mental
model of layout.



Figure 4. The snapshot comparison interface. Two screenshots are selected in the timeline, and their corresponding CSS styles and DOM trees appear
below. Differences are highlighted using inline annotations; here, the opacity style property has changed. Additions, removals, and changes are
highlighted in green, red, and purple, respectively.

and DOM states without having to recreate the same view for
the other snapshot.

Relating State Differences to JavaScript Code
To complete the link from output examples to JavaScript, Scry
computes which mutation operations were responsible for pro-
ducing specific CSS or DOM state differences. To view the
mutation operations for a difference, a developer selects a
colored highlight from the comparison interface (Figure 4(a)).
Then, Scry changes views to show the difference alongside
a list of mutation operations (Figure 5(b)) that caused the
difference. Each operation includes a JavaScript stack trace
that shows the calling context for the mutation operation (Fig-
ure 5(c)). Using this link, a developer can find pieces of code
related to a single visually-significant difference.

IMPLEMENTATION
Scry’s functionality is realized through four core features:
detecting changes to an element’s visual output; capturing in-
put/output state snapshots; computing fine-grained differences
between state snapshots; and capturing and relating mutation
operations to state differences.

Detecting Changes to Visual Output
A central component of Scry’s implementation is the state
snapshot, which represents the state of a particular DOM
element at a particular point in a program’s execution. Before
describing the contents of a state snapshot, we first discuss
how Scry decides when to capture a snapshot of a distinct
visual state.

Scry differs from prior work such as FireCrystal [25] in that
it observes actual rendered visual output to detect changes to
specific interface elements. When visual output significantly
differs, Scry captures and commits a state snapshot. While
many input state mutations may occur while JavaScript is run-
ning on the page, it is essential to Scry’s example-oriented
workflow that it only captures states that are visually distinct
and are relevant to the target element. To detect these dis-
tinct visual states, Scry intercepts paint notifications from the
browser’s graphics subsystem and applies image differencing
to the rendered output of the DOM element selected by the
user. If the painted region does not intersect the selected ele-
ment’s bounding box, then Scry knows the element was not

updated; if the target element’s bounding box differs from its
previously observed bounding box, then a snapshot is taken, as
its location has moved. To check for output changes, Scry ren-
ders the target element’s subtree into a separate image buffer
and then compares the image data to the most recent screen-
shot. If the bitmaps have nontrivial differences4 then Scry
takes a full state snapshot of the target element and commits it
as a distinct visual state.

Rendering and comparing an element’s DOM subtree in iso-
lation is surprisingly difficult due to two features of CSS:
stacking contexts and transparency. Stacking contexts allow
an element’s back-to-front layer ordering to be changed by
CSS properties such as opacity, transform or z-index. In prac-
tice, this can cause ancestor elements to be rendered visually in
front of descendant elements and occlude any subtree changes.
Scry mitigates this by not rendering ancestor elements and
visualizing the target element’s bounding box before tracking
it. This strategy has shortcomings, however: descendant ele-
ments frequently allow ancestor elements to “shine through”
transparent regions in order to provide a consistent background
color. If ancestors are not rendered, then screenshots will lack
the expected background color. To work around this, Scry
retains screenshots of the target element with and without an-
cestor elements if they differ; the background-less version is
used to detect visual changes, while the background-included
version is shown to the user.

Capturing State Snapshots
When Scry decides to capture a state snapshot, it gathers many
details to help a developer understand the state of the selected
element in isolation from the rest of the page. Snapshots
consist of the screenshot of the element’s visual state in bitmap
form, the subtree of the DOM rooted at the target element, and
the computed style for each tree element. Snapshots are fully
serialized in order to isolate past visual state snapshots from
subsequent mutation operations.

4To compute image differences, Scry computes the mean pixel-wise
intensity difference over the entire bitmap, and uses a threshold of
1% maximum difference. This allows for minor artifacts arising
from subpixel text rendering and other nondeterministic rendering
behavior.



0
1
2
3
4

a b c

Figure 5. Explaining a DOM tree difference in a Tetris game that modifies, removes, and rebuilds DOM elements. The left pane (a) shows a single
difference being investigated (the second added <div>). The center pane (b) shows a list of mutation operations that caused the change. When an
operation is selected, Scry shows a source code preview (c) and call stack (not shown) for the operation. The numbered HTML elements in the left pane
are further explained in section .

An element’s computed style describes the set of properties
and values that are ultimately passed forward (but not neces-
sarily used) in the rendering pipeline to influence visual output.
In order to trace computed style property values back to spe-
cific style rules, inline styles, and mutation operations, Scry
performs its own reimplementation of the CSS cascade that
tracks the origin of each computed style property. Computed
style properties originate from one of four sources: declarative
style rules, explicit inline styles, CSS animations, and inherited
properties. In order to later deduce why a style property has
changed, Scry saves the CSS rules and specific rule selectors
that match each node in the snapshot.

The current Scry implementation does not attempt to capture
all of a page’s view state (scroll positions, keyboard focus,
etc.) or external constraints (window size, locale) in state snap-
shots. The only exceptions are the CSS pseudo-states :hover

and :focus because they are frequently used by interactive
behaviors. If changes to the page’s view state cause the target
element’s appearance or bounding box to change, then Scry
will commit a new state snapshot, but it will not have suffi-
cient information to explain how the outputs differ in terms of
inputs. Prior work [6] has demonstrated that these view state
inputs can be easily and cheaply collected. Insomuch as these
inputs affect the set of active CSS rules, they can be treated
similarly to inherited style attributes on the target element that
may have global effects.

Comparing State Snapshots
Scry’s usefulness as a feature location tool hinges on its ability
to compute comprehensible state changes between snapshots
and relate these to concrete mutation operations and JavaScript
code. To precisely compare two snapshots, Scry compares
each snapshot’s 1) captured DOM subtrees and 2) computed
styles. In the remainder of this section, we refer to the two
snapshots being compared as the pre-state and post-state.

DOM Trees
Scry compares DOM subtrees and computes change sum-
maries on a per-node basis. To compute an element’s change
summary, Scry first finds the element in both snapshots. To do
this, Scry associates a unique, stable identifier with each DOM
node at run time to make it possible to find the same node in

Input affected Data affected JavaScript API / change origin

DOM Tree Structure Node.appendChild

Node Attributes Node.setAttribute

Node Content Node.textContent

Bulk Subtree Node.innerHTML

CSS Style Rules various
Inline Styles Element.style

Animated Properties animation CSS property
Legacy Attributes Element.bgcolor

View State Scroll Positions user, Node.scrollOffset
Mouse Hover user
Keyboard Focus user

Environment Window Size operating system

Table 1. Input mutation operations. View State and Environment are
not currently supported in Scry, but are listed for completeness.

two snapshots via a hash table lookup. If Scry finds the corre-
sponding nodes in both snapshots it summarizes differences
in their parent-sibling relationships, attributes, and computed
styles. A node that appears in only one snapshot is reported as
added or removed, and a node whose parent changed or whose
order among siblings changed is reported as moved. This strat-
egy identifies many small, localized changes (Table 2) that
are straightforward to explain in terms of low-level mutation
operations (Table 1). Moreover, these summaries correspond
to the types of changes that developers are accustomed to read-
ing in text diff interfaces, making them familiar and easy to
comprehend.

An alternative strategy for comparing subtrees is to globally
summarize changes using tree matching algorithms [18] or tree
edit distance algorithms [3]. We found these to be unsuitable
for linking small state changes back to JavaScript code. Tree
matching algorithms compute per-node similarity metrics, but
do not try to attribute per-node dissimilarities to mutation
operations. Edit distance algorithms do not directly produce
per-node change summaries, and describe mutations using
a minimal sequence of abstract tree operations. In contrast,
mutation operations performed by real web programs rarely
correspond to a minimal tree edit sequence. For example,
a page may repeatedly mutate a node’s class attribute, and
may use a mix of redundant high-level and low-level mutation
operations (such as mutating individual nodes or replacing an
entire subtree by assigning to Node.innerHTML).



Input affected Change type Cases

DOM Node Existence node-added, node-removed
Relationships parent-changed, ordinal-changed
Attributes attribute-changed, attribute-added,

attribute-removed
CSS Property Existence property-added, property-removed

Direct Styles value-changed
Indirect Styles origin-changed

Table 2. Possible cases for per-node change summaries produced by com-
paring state snapshots. Similar cases are shown the same way in the user
interface, but are summarized separately to simplify the task of finding
a corresponding direct mutation operation.

Computed Styles
To compute differences between a single node’s computed
styles in the pre-state and post-state, Scry uses set opera-
tions on CSS property names. To determine which properties
were added or removed, it computes the set difference. Prop-
erty names present in both snapshots are compared to detect
whether their property values or origins differ.

Explaining State Differences
When a user selects a specific state difference to see what
code was responsible, Scry presents a sequence of JavaScript-
initiated mutation operations that caused the difference. Scry
computes this causal chain on-demand in three steps. First,
using the affected node’s change summary, Scry finds a sin-
gle direct operation within its operation log that produces the
node’s expected post-state. Second, Scry finds multiple pre-
requisite operations which the direct operation depends on.
Lastly, the operations are ordered and presented in the user
interface as a causal chain connecting the node’s pre-state and
post-state.

As a starting point, we first discuss the mutation operations
that Scry captures as raw material for producing causal chains.
Then, we detail the specific strategies that Scry uses to identify
the code responsible for a change: (1) how to identify direct
operations for node changes and simple style changes; (2) how
to find direct operations that indirectly cause computed styles
to change via style rules; (3) and how to compute dependencies
between mutation operations. This section uses the difference
selected in Figure 5 as a running example.

Capturing Mutation Operations
The web exposes a large, overlapping set of APIs to effect
changes to visual appearance by mutating rendering inputs.
This section enumerates these input mutation operations that
Scry must log and relate to state differences. Scry instruments
APIs and code paths for each of the input mutation operations
listed in Table 1. While tracking a target element, Scry saves
a log of these mutation operations for later analysis. At the
time that each mutation operation is logged, if the operation
is performed by JavaScript code, Scry captures a call stack.
This call stack help the developer link state differences to
JavaScript code causing the mutation and see the upstream
code and event handlers that caused it to execute.

Mutation operations as defined by Scry (Table 1) closely mir-
ror the most commonly used DOM and CSS APIs. These
operations can be used to explain changes to DOM state,
and changes to computed style properties that originate from

PRE-STATE

remove(root, 0’) append(root, 0)

append(0, 1)

setAttr(2, “class”)

setAttr(2, “style”)

setAttr(1, “class”)

setAttr(1, “style”)

append(0, 2) setAttr(0, “style”)

POST-STATE

Figure 6. A subset of the dependency graph for the example depicted in
Figure 5. Each operation’s operands correspond to nodes as numbered
in Figure 5(a). Each arrow represents a dependency between operations.
The dependencies and operations that form the slice to explain the dif-
ference selected in Figure 5(a) are in black; others are grayed out.

style rules (whose rules match and unmatch as the DOM tree
changes). Scry also captures mutation operations from other
computed style property change origins, such as an element’s
animations and inline styles set from JavaScript code. Figure 6
shows the dependency graph of mutation operations for the
Tetris example from Figure 5.

Finding Direct Operations for DOM Changes
For a specific state change (Table 2), Scry scans backwards
through the operation log to find the most recent operation
related to the state change. The most recent operation that
mutates state into the post-state is the change’s direct opera-
tion; other prerequisite operations are separately collected as
the direct operation’s dependencies (described below). For
attribute differences, Scry finds the most recent change to
the attribute. For tree structure differences, Scry determines
what operations could have caused the change and finds the
most recent one with the correct operands. In the case when a
node’s ordinal rank among its siblings changes, Scry looks for
operations that inserted or removed nodes from its parent. In
Figure 5, element #2’s change summary (not pictured) would
consist of node-added and two attribute-added changes (style
and class). The attribute-added change for style is selected in
Figure 5(b); the corresponding direct operation in Figure 6 is
setAttr(2, “style”).

Finding Direct Operations for Style Changes
Scry uses origin-specific strategies to find direct operations
for a computed style property change. If a property origi-
nates from an inline style that was set from JavaScript, Scry
simply scans backwards for a mutation operation that directly
assigned that inline style. If a property originates from a declar-
ative CSS animation or transition, then the browser rendering
engine automatically changed the property value, triggered
by an element gaining or losing a animation property from its
computed style. In this case, the user wants to know where the
originating animation property came from, so Scry finds the
direct operation that caused the animation property to change.



If a property originates from a style rule, then Scry must
determine which of the element’s matched rules changed and
relate that to a DOM difference. Properties can be added
or removed when rules start or stop matching the element.
Changes to a property’s value may happen when rules either
match or unmatch and change the results of the CSS cascade.
Scry analyzes how a node’s matched rules and selectors differ
between snapshots to find out why different rules matched.
To change result of the CSS cascade, either a rule must stop
matching and “lose” the property, or a rule must start matching
and “win” the property. If the losing rule is not present in the
post-state, then Scry looks for state differences between the
snapshots that could cause the selector to no longer match.
For example, if the rule div.hidden { display: none; }
stopped matching a <div> element, then Scry deduces that a
differing class attribute caused the rule to stop matching.

Computing Dependencies between Mutation Operations
To provide the user with a sequence of operations that trans-
form the pre-state into the post-state, Scry must compute de-
pendencies between mutation operations. This is similar to the
notion of an executable program slice: the operation sequence
must preserve a specific behavior (cf. a slicing criterion), but
it is permissible for it to over-approximate and include irrele-
vant operations. Reducing the operation trace length (cf. slice
size) for a state change simply makes it easier for a human to
browse and comprehend how the change occurred. Moreover,
Scry shows events only for the selected change (Figure 5a),
not for all changes.

Note that these dependencies only ensure that the mutation
operations preserve the specific state changes captured in the
pre-state and post-state. Since JavaScript can access DOM
state and layout results, there are untracked control and data
dependencies between JavaScript and inputs. In other words,
an operation slice computed by Scry can explain state changes,
but does not necessarily a represent feasible program path.
Other slicing criterion, such as semantically relevant filter-
ing (i.e., “show only my code”) and clustering (i.e., by re-
peated/similar operations) could further streamline the set of
events for a selected change. We leave more advanced depen-
dency slicing techniques to future work.

Scry computes an operation dependency graph on-demand
as a user selects pre-state and post-state snapshots. Figure 6
shows the dependency graph for the difference selected in
Figure 5(a). To produce a causal chain for a change, Scry
finds the change’s direct operation in the dependency graph,
collects the operations in its transitive closure, and orders
operations temporally its user interface Figure 5(b). Depen-
dencies for operations between the pre-state and post-state
are computed in three steps: first, operations are indexed by
their node operands. Second, Scry builds a directed acyclic
graph with operations as nodes and causal dependencies be-
tween operations as directed edges. Operations that do not
explicitly depend on other operations implicitly depend on the
pre-state. Scry processes operations backwards starting from
the post-state; each operation’s dependencies are resolved in
a depth-first fashion before processing the next most-recent
operation. Finally, when all operations have been processed,

graph nodes with no outgoing edges (i.e., depend on no other
operations) are connected to a node representing the pre-state.

Operations that mutate node attributes and inline styles require
the operand nodes and attributes to exist. For example, an
attribute-removed operation depends on the existence of a node
n and attribute a to remove. If neither n or a existed in the
pre-state, then the operation’s dependencies include the subse-
quent mutation operations that created n and/or a. Similarly,
operations that change the structure of the DOM (append-child,
set-parent, replace-subtree, etc.) require their operands to exist.

Prototype Implementation
Scry is implemented as a set of modifications to the WebKit
browser engine [31] and its Web Inspector developer tool suite.
To provide the element tracking user interface, Scry extends
the Web Inspector with a new screenshot timeline, snapshot
detail and comparison views, and integrations between differ-
ence summaries and other parts of the interface. Scry also
tracks dependencies for mutation operations and finds direct
mutation operations in the JavaScript-based frontend. Element
screenshots, DOM tree snapshots, style snapshots, and mu-
tation operations are gathered through direct instrumentation
of WebKit’s WebCore rendering engine and sent to the Web
Inspector frontend. Scry tabulates computed styles in C++
with full access to the rendering engine’s internal state.

PRACTICAL EXPERIENCE WITH SCRY
Despite the rise of a few dominant client-side JavaScript pro-
gramming frameworks, web developers use DOM and CSS
in endlessly inventive ways that tool developers cannot fully
anticipate. In our experience, even when Scry’s results are
diluted by idiosyncratic uses of web features, it is still helpful
for at least some parts of a feature location task. This sec-
tion presents several short case studies that illustrate Scry’s
strengths and weaknesses, motivating future work. These
case studies are not exhaustive, but they are representative of
archetypical ways of creating interactive content on the web.

Expanding Search Bar
A National Geographic web article5 contains a navigation bar
with an expanding search field. When the user clicks on the
magnifying glass icon, a text field appears and grows to a
reasonable size for entering search terms. Without Scry, this
behavior is difficult to investigate because the animation lasts
less than a second, and intermediate animation states are not
displayed or persisted.

To understand this widget, we used the Web Inspector’s “In-
spect” chooser to locate the search icon element in the DOM
tree browser. We then started tracking the element with Scry
and interacted with the widget to start its animation. Upon
browsing captured screenshots, we saw that the text field’s
width and opacity both changed. We compared two snapshots
with Scry and saw that separate CSS transition properties
were applied to different tree elements. We clicked on the
animated property value and Scry presented a list of mutation
operations, revealing that a click event handler had added a
5National Geographic, Forest Giant. http://webplatform.adobe.
com/Demo-for-National-Geographic-Forest-Giant/browser/src/

http://webplatform.adobe.com/Demo-for-National-Geographic-Forest-Giant/browser/src/
http://webplatform.adobe.com/Demo-for-National-Geographic-Forest-Giant/browser/src/


.expanded class to the root element of the widget to trigger an
animated transition. In this example, Scry was particularly
helpful in two cases: (1) it captured intermediate animated
property values which are normally not possible to see in the
inspector; and (2) Scry was able to trace the cause of the entire
animation back to a single line of JavaScript code that changed
an element’s class name.

A Tetris Clone
A Tetris-like game6 uses DOM elements and CSS to render
the game’s board and interface elements. To understand how
the board is implemented using CSS, we used Scry to track
changes to the main playing area. As we played the game,
Scry took full snapshots of the game board. By inspecting
the DOM of each snapshot, it became apparent that the game
board is implemented with one container element per row and
multiple square-shaped <div>s per row to form pieces. When
we compared two board states that had no pieces in common,
we unexpectedly found that Scry identified two squares on the
board as being the same. After following mutation operations
into the JavaScript implementation, we discovered that the
Tetris game uses an “object pooling” strategy. To produce
shapes on the game board using squares, the game reuses a
fixed set of DOM elements and explicitly positions them using
inline styles. Scry’s confusion arose because the game reused
the same square elements from the object pool.

From this example, we learned that although Scry’s current im-
plementation expects that each allocated DOM element has a
consistent identity, many applications violate this expectation.
Some client-side rendering frameworks such as React [13]
and Mithril use a immediate-mode virtual DOM architecture
that splits the program’s view state from its DOM markup.
Client JavaScript code implements draw() methods that fully
recreate a widget’s DOM tree and CSS styles using the virtual
DOM. Behind the scenes, React synchronizes the virtual and
real DOM using a fast tree edit algorithm, reusing the same ele-
ments to produce visual output for unrelated model objects that
happen to use the same HTML tag names. A similar problem
arises with frameworks that re-render a component by filling
in an HTML string template and overwriting the component’s
prior DOM states by setting the target element’s innerHTML

property. In this case, Scry shows the target element’s en-
tire subtree as being fully removed and re-added. To better
handle these situations, Scry could be extended to support
virtual DOM frameworks using tree matching algorithms [18]
or framework-specific heuristics like those employed by the
React extension for Chrome Developer Tools.

A Fancy Parallax Demo
In the past few years, browsers added support for applying
3D perspective transforms to elements using CSS. The fancy
parallax demo7 discussed here is representative of pages that
use scroll events and transforms to implement parallax and
infinite scrolling effects. For this page, we wanted to learn
how an element’s position is computed in response to scrolling
events. We used Scry to track an animated paragraph of text
6Tetris Clone. http://timothy.hatcher.name/tetris/
7Fancy Parallax Demo. http://davegamache.com/parallax/

as it moved around when we scrolled the page. From a single
DOM tree snapshot, we could see that CSS transform-related
properties were set on all elements subject to scroll-driven
animations. We compared two snapshots to find the source
of changes to the transform properties, and were always led
back to the same line of JavaScript code. Looking upstream in
the stack trace, it appeared that a JavaScript library interprets
the single scroll position change and imperatively updates the
transform style property for dozens of elements. We could not
discover (using Scry) where the animation configurations for
each element were specified.

From this example, we learned that Scry’s current strategy
is of limited use for localizing code when the endpoints of
JavaScript—where it directly interfaces with rendering inputs—
are not easily disambiguated. Such megamorphic callsites to
browser APIs are common when a web page calls DOM APIs
indirectly through utility libraries. A simple solution would
be to automatically disambiguate very active callsites based
on their calling context, or allow the user to hide library code
(known as “script blackboxing” in some browsers). However,
for this example, simply filtering the stack traces would not
lead a user to the configuration data for a parallax animation.
A better solution would be to extend Scry’s capabilities to
include tracking of control and data dependencies through
JavaScript [27]. This would require a very different technical
approach, since Scry instruments native browser APIs rather
than JavaScript code.

Discussion
A natural question is whether Scry’s operations can adequately
explain view state changes in arbitrary web programs. Our
results suggest that Scry’s approach will be effective when
the DOM encapsulates the view state. This is the case for the
dominant JavaScript libraries, such as jQuery and D3, which
support incremental DOM manipulation and direct class and
attribute changes. These types of mutations cover most of the
interactive web today, including forms, both HTML and SVG
visualizations, widgets, and even games.

Scry’s use of DOM elements as inputs is a natural implemen-
tation choice, but also has limitations. Prior work has found
that there is not a direct 1-to-1 mapping between a page’s
perceived visual structure and its underlying DOM tree struc-
ture [18]. There are often changes outside a single DOM
element that need to be explained; if the changes are not con-
tained in the user’s selection, Scry will not explain them. In
our case studies, finding an appropriate DOM element to track
was not difficult. Improving Scry’s element selection model is
a natural extension for future work.

Unlike prior work [25, 17], Scry has good performance even
in complex programs because it is tightly integrated with the
browser engine’s layout and rendering subsystems. Perfor-
mance overhead for intercepting paint notifications has not pro-
duced visible slowdowns in any of our case studies. Browser
engines use advanced tiling and layering techniques to coa-
lesce drawing in the same area of the screen, making intersec-
tion tests and localized screenshots highly performant. The
only degenerate cases we know of are when Scry tracks an
element with thousands of descendants (like the root element

http://timothy.hatcher.name/tetris/
http://davegamache.com/parallax/


of a page). Such an element is involved in an overwhelming
number of interactions, so a developer is likely to choose a
smaller, more meaningful selection.

RELATED WORK
Scry aids a developer in locating the code that implements
a feature, and in understanding how an interactive behav-
ior is implemented in terms of CSS, DOM, and JavaScript.
In the software engineering research literature, these two
activities—known as feature location [10] and program com-
prehension [9]—are the subject of entire subfields of research.
Below, we discuss Scry’s influences and compare its function-
ality and techniques to similar tools.

Locating Features using Visual Output
Scry is uncommon among feature location tools in that uses
pixel-level visual states as input specifications for a feature.
It builds on prior tools that can detect features [11] and spec-
ify tests [33] at the pixel level. Tools for selecting features
based on their output are particularly useful for user interfaces
or graphically intensive software such as video games, web
sites [7], and visualizations. This is because many features
(and bugs) have obvious visual manifestations which are easier
to find than a feature’s small, subtle internal states. Visually-
oriented runtime environments such as web browsers and the
Self VM [30], have long supported the ability to introspect
interface elements from the program’s current visual output
and vice-versa. Scry extends this capability to also support
inspecting and comparing snapshots of past interface states.

Explaining How Interactive Behaviors Work
Scry follows a long line of methods and tools [28] that aim
to help a developer comprehend specific program features or
behaviors. Recent work for user interfaces has focused on
inferring behavioral models [1, 20, 22], logging and visualiz-
ing user inputs and runtime events [6, 25], and using program
analysis to produce causal explanations of behaviors [17, 27].
Scry shares the same reverse-engineering goals as FireCrys-
tal [25], which also logs and visualizes DOM mutations that
occur in response to user interactions. However, FireCrys-
tal reveals all mutation operations on a timeline without any
filtering, which quickly overwhelms the user with low-level
details. Scry supports a staged approach to comprehension
by presenting self-contained input/output snapshots and only
showing the mutation operations necessary to explain a single
difference between snapshots.

Scry’s example-oriented explanations are similar to those pro-
duced by Whyline [17]. Whyline suggests context-relevant
comprehension questions that it is able to answer, whereas
Scry enhances a user’s existing information-seeking strategies
by providing otherwise-inaccessible information. Whyline and
other tools based on dynamic slicing [32] may provide more
comprehensive and precise explanations than Scry, but require
expensive runtime instrumentation that limits the situations
in which these tools can be used. In a different approach to
making short explanations, recent work on observation-based
slicing [4, 34] proposes to minimize inputs to a rendering
algorithm while preserving a subset of the resulting visual
output. Scry could use this approach to reduce snapshots by

discarding apparently “ineffective” style properties that have
no visual effect.

FUTURE WORK
Scry is a first step towards demystifying the complex, hidden
interactions between the DOM, CSS layout, JavaScript code,
and visual output. The capabilities we have described in this
paper validate our interface concept; other explanatory capa-
bilities could be added without significantly altering Scry’s
staged, example-oriented workflow. In particular, we see two
promising directions for future work: expanding the scope and
accuracy of Scry’s explanations, and tracking an element’s
changes backward (rather than only forward) in time.

Opening the Layout Black Box Scry treats the layout/ren-
dering pipeline as a black box, but users often want to know
how single style properties are used (or not) within the pipeline.
Within the design space of black-box approaches, it would be
straightforward to extend Scry to further minimize rendering
inputs using observation-based slicing [4]. Concretely, Scry
could delete individual style properties from a snapshot if
the resulting visual output does not differ [34]. Even with a
minimal set of inputs, a more involved “white-box” approach
to explaining layout [23] would still be extremely useful. By
adding more instrumentation to browser rendering engines,
Scry could be extended to directly answer why and why-not
questions [17, 23] about how inputs are used or how outputs
are derived as they funnel through the increasingly complex
layout algorithms of modern web browsers.

Tracking Causality through JavaScript Scry can explain
DOM or CSS differences in terms of mutation operations, but
it does not track the upstream dependencies in JavaScript code
that caused the mutation operations. Scry could be extended
with recent work on JavaScript slicing [27] and event mod-
eling [1] to extend its explanations to show an uninterrupted
causal chain [17] between user inputs and events, JavaScript
state and control flow, mutation operations, and changes to
layout inputs and outputs. This would produce explanations of
changes that would be both more complete and more precise.

Tracking Past Element States Given a target element, Scry
can track its future visual states as a developer demonstrates
the behavior of interest by interacting with the page. How-
ever, in fault localization tasks a developer often wants to see
what went wrong in the past that produced a buggy state in
the present. To gather past states of an element, Scry could
build on recent deterministic replay frameworks for web ap-
plications [6] to collect snapshots and trace data from earlier
instants of the execution. Prior work has demonstrated the
feasibility of such an “offline dynamic analysis” [8, 27], but
none has integrated this technique into a user interface.

ACKNOWLEDGEMENTS
The authors thank the WebKit development team at Apple, Inc.
for valuable discussions. This work was supported in part by
the National Science Foundation (NSF) under Grants CCF-
0952733, CNS-1240786, and IIS-1314399. Any opinions,
findings, conclusions or recommendations are those of the
authors and do not necessarily reflect the views of NSF.



REFERENCES
1. Alimadadi, S., Sequeira, S., Mesbah, A., and

Pattabiraman, K. Understanding JavaScript event-based
interactions. In ICSE (2014).

2. Andrica, S., and Candea, G. WaRR: A tool for
high-fidelity web application record and replay. In DSN
(2011).

3. Bille, P. A survey on tree edit distance and related
problems. Theoretical Comput. Sci. 337 (June 2005).

4. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J.,
and Yoo, S. ORBS: language-independent program
slicing. In FSE (2014).

5. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and
Klemmer, S. R. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In CHI (2009).

6. Burg, B., Bailey, R. J., Ko, A. J., and Ernst, M. D.
Interactive record and replay for web application
debugging. In UIST (2013).

7. Chilana, P. K., Ko, A. J., and Wobbrock, J. O. LemonAid:
selection-based crowdsourced contextual help for web
applications. In CHI (2012).

8. Chow, J., Garfinkel, T., and Chen, P. M. Decoupling
dynamic program analysis from execution in virtual
environments. In USENIX (2008).

9. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen,
L., and Koschke, R. A systematic survey of program
comprehension through dynamic analysis. IEEE TSE 36
(Sep./Oct. 2009).

10. Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D.
Feature location in source code: a taxonomy and survey.
Journal of Software: Evolution and Process 25 (2013),
53–95.

11. Dixon, M., and Fogarty, J. Prefab: implementing
advanced behaviors using pixel-based reverse
engineering of interface structure. In CHI (2010).

12. Eckert, C., and Stacey, M. Sources of inspiration: a
language of design. Design Studies 21, 5 (2000),
523–538.

13. Facebook. React: a JavaScript library for building user
interfaces, 2015.
https://facebook.github.io/react/index.html.

14. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle:
capture, exploration, and playback of document workflow
histories. In UIST (2010).

15. Hilgart, M. Step-through debugging of GLSL shaders,
2006.

16. Kim, J., Nguyen, P., Weir, S., Guo, P. J., Miller, R. C.,
and Gajos, K. Z. Crowdsourcing step-by-step information
extraction to enhance existing how-to videos. In CHI
(2014).

17. Ko, A. J., and Myers, B. A. Extracting and answering
why and why not questions about Java program output.
ACM TOSEM 20, 2 (Sep. 2010), 1–36.

18. Kumar, R., Talton, J. O., Ahmad, S., and Klemmer, S. S.
Bricolage: example-based retargeting for web design. In
CHI (2011).

19. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R.,
Rector, K., and Fleming, S. D. How programmers debug,
revisited: An information foraging theory perspective.
IEEE TSE 39, 2 (Feb. 2013), 197–215.

20. Mesbah, A., van Deursen, A., and Lenselink, S. Crawling
AJAX-based web applications through dynamic analysis
of user interface state changes. ACM TWEB 6, 1 (2012),
1–30.

21. Mickens, J., Elson, J., and Howell, J. Mugshot:
deterministic capture and replay for JavaScript
applications. In NSDI (2010).

22. Mirzaaghaei, M., and Mesbah, A. DOM-based test
adequacy criteria for web applications. In ISSTA (2014).

23. Myers, B., Weitzman, D. A., Ko, A. J., and Chau, D. H.
Answering why and why not questions is user interfaces.
In CHI (2006).

24. O’Callahan, R. Efficient collection and storage of indexed
program traces, 2006. http://www.ocallahan.org/Amber.pdf.

25. Oney, S., and Myers, B. FireCrystal: Understanding
interactive behaviors in dynamic web pages. In VL/HCC
(2009).

26. Röthlisberger, D. Augmenting IDEs with Runtime
Information for Software Maintenance. PhD thesis,
Universität Bern, 2010.

27. Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S. Jalangi:
a selective record-replay and dynamic analysis
framework for JavaScript. In ESEC/FSE (2013).

28. Storey, M.-A. Theories, methods, and tools in program
comprehension: Past, present, and future. In IWPC
(2005).

29. Stylos, J., and Myers, B. A. Mica: a web-search tool for
finding API components and examples. In VL/HCC
(2006).

30. Ungar, D., Lieberman, H., and Fry, C. Debugging and the
experience of immediacy. CACM 40 (Apr. 1997), 38–43.

31. WebKit contributors. The WebKit open source project,
2012. http://www.webkit.org/.

32. Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L. A brief
survey of program slicing. ACM Softw. Eng. Notes 30, 2
(2005).

33. Yeh, T., Chang, T.-H., and Miller, R. C. Sikuli: Using
GUI screenshots for search and automation. In UIST
(2009).

34. Yoo, S., Binkley, D., and Eastman, R. Seeing is slicing:
Observation based slicing of picture description
languages. In SCAM (2014).

https://facebook.github.io/react/index.html
http://www.ocallahan.org/Amber.pdf
http://www.webkit.org/

	Introduction
	Motivation
	Tool Design
	Design Rationale
	Capturing Visual Changes
	Relating Output to Internal States
	Comparing Internal States
	Finding Causes of Differences

	Implementation
	Detecting Visual Changes
	Capturing State Snapshots
	Comparing State Snapshots
	Comparing DOM Trees
	Comparing Element Styles

	Explaining State Differences
	Capturing Mutation Operations
	Direct DOM Operations
	Direct Style Operations
	Computing Operation Dependencies

	Prototype Details

	Case Studies
	Expanding Search Bar
	A Tetris Clone
	A Fancy Parallax Demo
	Discussion

	Related Work
	Future Work
	Acknowledgements
	REFERENCES 

