
Automatic Formal Verification for EPICS

Jonathan Jacky, Stefani Banerian,
Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner,

Zachary Tatlock, Emina Torlak

Department of Radiation Oncology
University of Washington Medical Center

Paul G. Allen School of Computer Science and Engineering
University of Washington

jon@uw.edu, http://staff.washington.edu/jon/

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

UWMC Clinical Neutron Therapy System (CNTS)

Hospital-based cyclotron and neutron radiation therapy

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Safety requirements

We must ensure that the we satisfy this overall safety requirement:

The neutron beam can only turn on or remain on when the
machine setup matches a prescription that has been selected
by the operator.

This overall requirement is composed of hundreds of detailed
requirements, for example:

The actual gantry angle must match the prescribed angle
within a given tolerance, when the machine is in therapy
mode and that setting has not been overridden and . . .

These requirements cannot be checked with relays or PLCs.

General purpose computing in high-level languages is unavoidable.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS and safety-critical systems

Is it advisable to build a safety-critical system with EPICS?
Some conventional wisdom says no:

2008: “(EPICS) code is not rigorously audited to the
standards . . . that would be needed (for medical
applications). . . . ”
epics/tech-talk/2008/msg00803.php

Response: We reviewed and tested EPICS code ourselves.

2012: “EPICS should never be relied on for safety-critical
operations . . . ”
epics/tech-talk/2012/msg01836.php

Response: We use a subset of EPICS in a restricted style.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Outline

Using EPICS with confidence in safety-critical applications

Three related topics::

Selecting an EPICS subset and a restricted programming style

New tool for finding errors in EPICS databases (applications)

New tool for testing EPICS core (runtime)

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Control Program: Limiting Complexity (1)

EPICS architecture:

Embedded computers with EPICS runtime, called IOCs

Application programs on IOCs, called databases

User interface, database access etc. provided by separate
Client programs running on different computers

IOCs and clients communicate using Channel Access (CA)
network protocol

Therapy control application architecture:

Therapy control program runs on one IOC

Therapy IOC alone executes control laws,
achieves and maintains safe state

Clients and CA are only used to make progress.
For example, select and load prescription

Do not depend on clients or CA for control laws or safety

Clients and CA not considered in our formal analyses and tools
Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Control Program: Limiting Complexity (2)

Select an EPICS subset and use a restricted programming style.

Just enough to support data flow from inputs to outputs:

Only database records, StreamDevice .proto files, st.cmd

No SNL, no subroutine records, no custom device support

Database DB links only, no CA links

Data flow is all “push” from inputs to outputs:
SCAN PASSIVE, INPx NPP, OUT PP, FLNK

19 record types: acalcout ai ao asyn bi bo calc calcout

dfanout fanout longin longout mbbo scalcout seq

stringin stringout subArray waveform

Our formal analyses and tools only consider these.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS Symbolic Interpreter

The EPICS Symbolic Interpreter is a new tool for finding errors in
EPICS databases (application programs).

Similar role to unit testing, but considers all possible input values.

Inputs:

EPICS database: .db .substitutions .template st.cmd

Property that relates PVs before and after processing:
actual gantry 6= prescribed gantry ⇒ interlock set

Output: everything is ok! – property is satisfied – or:

Counterexample: PVs with values that violate property –
Iso:GantryCouch:Gantry:Prescribed.VAL = 312
Iso:GantryCouch:Gantry:Actual.VAL = 48 . . .

Log: processing along counterexample data flow path

Now in use, found serious errors missed by reviews and testing

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS symbolic interpreter (2)

Similar role to unit testing, but —

Testing:

You try to guess an input value that violates the assertion.

Passing tests are not conclusive, a different value might have
failed.

Symbolic interpreter:

Tool finds an input value that violates the assertion, if there is
one.

Verified properties are conclusive, all possible values are
checked.

The symbolic interpreter can check all values because it considers
CALC fields as symbolic formulas.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS Trace Verifier (1)

The EPICS Trace Verifier is a new tool for testing the EPICS
runtime.

Does the EPICS runtime behave as we expect?

The trace verifier uses a formal semantics we derived from the
EPICS Record Reference Manual (RRM).

The formal semantics is a new implementation of EPICS in a
specialized programming language.

The trace verifier checks if a sample of IOC behavior is consistent
with our formal semantics.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS Trace Verifier (2)

We compare of three things:

? ?
EPICS RRM = Formal semantics = EPICS code

manual automatic
(review RRM) (trace verifier)

We can revise the formal semantics.

We observe discrepancies found by the trace verifier.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

EPICS Trace Verifier (3)

Checked traces from over 20 million randomly generated IOCs

No crashes, no outright errors where RRM makes a false statement.

Found two kinds of discrepancies:

Our misreadings of the RRM

Omissions, ambiguities in the RRM

Example omissions, ambiguities:

dfanout (etc.) OMSL default is supervisory, not closed loop

calcout with DOPT = On Change considers inf 6= inf,
contrary to IEEE754

seq uses callbacks even if all delays are zero. Callbacks might
interleave with other records processing.

calc etc. write from INPA to A before processing INPB (etc.).
Observable if later input links refer to earlier fields (etc.)

None of these omissions or ambiguities affect our control program.
Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

Conclusions

We can use EPICS with confidence in safety-critical applications.

We have demonstrated —

Successful use of restricted EPICS in a safety-critical
application

Tool that finds errors in EPICS databases using exhaustive
analysis

Testing of the EPICS runtime against the RRM finds
ambiguities and omissions, but no crashes or outright errors.

Jonathan Jacky, Stefani Banerian, Michael D. Ernst, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina TorlakAutomatic Formal Verification for EPICS

