
Automatic Generation of Oracles
for Exceptional Behaviors

Alberto Goffi 1 Alessandra Gorla 2 Michael D. Ernst 3 Mauro Pezzè 1

alberto.goffi@usi.ch alessandra.gorla@imdea.ch mernst@cs.washington.edu mauro.pezze@usi.ch
1 USI Università della Svizzera italiana 2 IMDEA Software Institute 3 University of Washington

Lugano, Switzerland Madrid, Spain Seattle, WA, USA

ABSTRACT
Test suites should test exceptional behavior to detect faults in error-
handling code. However, manually-written test suites tend to neglect
exceptional behavior. Automatically-generated test suites, on the
other hand, lack test oracles that verify whether runtime exceptions
are the expected behavior of the code under test.

This paper proposes a technique that automatically creates test
oracles for exceptional behaviors from Javadoc comments. The
technique uses a combination of natural language processing and
run-time instrumentation. Our implementation, Toradocu, can be
combined with a test input generation tool. Our experimental evalu-
ation shows that Toradocu improves the fault-finding effectiveness
of EvoSuite and Randoop test suites by 8% and 16% respectively,
and reduces EvoSuite’s false positives by 33%.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging;

Keywords
Testing, oracle problem, automatic test oracle, oracle generation

1. INTRODUCTION
This paper addresses the oracle problem: the creation of asser-

tions that indicate the expected behavior of a software system. A
test case consists of two parts: an input that triggers the behavior
of the unit under test, and an oracle that indicates whether the be-
havior was correct. Oracles are an essential part of a test case, since
they determine whether a test execution should pass or fail. Ora-
cles encode the intended behavior of the software system, so they
must be provided by a human or generated from human-provided
information such as a formal specification. However, developers
often fail to write oracles, and they even more rarely write formal
specifications.

This work automatically generates oracles from information that
developers do commonly write: natural language documentation.

It is considered standard practice to write semi-structured natural-
language documentation. For example, Java programmers write
Javadoc comments to document their code. Our approach is to
convert such natural-language documentation into test oracles, and
use them in combination with a test input generator to automatically
create complete test cases that expose defects.

Our technique uses natural language processing (NLP) techniques
to parse the documentation into grammatical relations between
words in a sentence. Next, it matches parsed subjects and pred-
icates to source code elements, thus creating conditional expressions
that describe the programmer-intended behavior. The technique
then converts these conditional expressions into test oracles. We
integrated our oracle-generation technique with existing test input
generation tools, yielding a system that can automatically create
complete tests from scratch, without any human involvement.

This paper focuses on exceptional behavior — situations in which
a procedure should raise an exception. Exceptional behavior is
particularly interesting because it is a significant cause of failures,
and because it tends to be poorly covered by both manual and
automatically-generated test suites.

Exceptional behavior is a frequent cause of field failures [47]
because developers usually have the common case in mind when
writing code, because recovering from failures is inherently chal-
lenging, and because developers often forget to account for failures
that occur during exception processing.

Exceptional behavior is poorly covered in manually-written test
suites, as confirmed by the experimental data reported in Section 4.1.
The reasons are similar to those above, and also because it can be
difficult to force software into the unusual situations that involve
exceptions and exception processing.

Exceptional behavior is poorly covered in automatically-generated
test suites for some of the same reasons, but primarily because, in
the absence of a human-written specification, a test generation tool
cannot determine whether a thrown exception is legal or illegal
behavior. If a test throws an exception, then there are four main
possibilities: (i) the exception might be specified behavior, given
the inputs, (ii) the exception might reveal an error in the software
under test, (iii) the exception might be legal but unspecified behavior
caused by incorrect usage of the software, such as when the test
supplies an invalid input, or (iv) the exception might be due to a
system failure such as out-of-memory, timeout, or hardware failure.

If there is no specification of exceptional behavior, then when a
tool generates a test that throws an exception, the tool has to use
heuristics to classify the test into the four categories listed above.
(Section 5.1 gives examples of such heuristics.) Use of heuris-
tics makes the generated tests suffer false alarms and/or missed
alarms, and a poor choice of heuristics can make test generation
tools practically unusable [13, 14, 41]. Our goal is to automati-

213

cally generate oracles from human-written documentation, such as
Javadoc comments, which is a reliable and commonly-available
source of information.

We have implemented our oracle generation technique in a tool
called Toradocu, and we used it in combination with the EvoSuite
and Randoop test input generation tools to generate complete test
cases that expose exception-related errors in Java programs.

The contributions of this paper include:

• An empirical study showing that developers tend to neglect ex-
ceptional behavior when they test their code. The results of this
study motivate our work.
• A technique that combines natural-language processing and run-

time instrumentation to create executable oracles that can be used
during testing.
• A publicly-available implementation, Toradocu.1

• An experimental evaluation of the technique showing that:

– Toradocu reduces the number of false positive reports from
automatic test case generation tools.

– Toradocu can reveal defects. Toradocu’s oracles revealed 4 de-
fects in Google Guava, and also defects in reimplementations
of parts of Apache Commons.

The remainder of the paper is structured as follows. Section 2
presents a motivating example, Section 3 describes the main in-
gredients of our technique, Section 4 reports on our experimental
evaluation, and Section 5 describes related work.

2. MOTIVATING EXAMPLE
Automatically-generated test cases tend to perform poorly with

respect to exceptional behaviors of a system under test (SUT). This
is because automatically-generated test oracles have to guess at the
specification of the SUT — that is, they have to guess at the SUT’s
expected behavior. When a test input generator creates a test input
whose execution throws an exception, the tool must guess whether
the execution is a failure and the test case reveals a defect in the SUT.

As an example, consider the Java class FixedOrderComparator
from the Apache Commons Collections library.2 This comparator
allows a developer to specify a comparison order among a set of
objects. A FixedOrderComparator instance cannot be modified, i.e.,
it is locked, once it has performed a comparison. Method check-
Locked is specified to raise an UnsupportedOperationException if
the comparator is locked:

1 /∗∗
2 ∗ Checks to see whether the comparator is now locked
3 ∗ against further changes.
4 ∗
5 ∗ @throws UnsupportedOperationException if the
6 ∗ comparator is locked
7 ∗/
8 protected void checkLocked() {...}

State-of-the-art test case generators do not produce test cases
that effectively test this code. Some test case generators, such as
JCrasher [13] and Check ’n’ Crash (CnC) [14], assume that a method
should not raise any exception unless the method signature explicitly
declares it. Such a test generator would produce a failing test case
such as the following and wrongly indicate that it reveals a fault in
the code under test:

1https://github.com/albertogoffi/toradocu
2http://commons.apache.org/proper/commons-collections

1 void test() {
2 FixedOrderComparator c = new FixedOrderComparator(...);
3 ...
4 c.compare(...);
5 ...
6 c.checkLocked();
7 }

This would be a false alarm: method checkLocked correctly throws
an exception because c is locked, given that it has already been used
for a comparison.

Other test case generators, such as EvoSuite [19], either ignore
test cases that throw exceptions, or assume any observed behavior
is correct and create regression test suites that expect run-time ex-
ceptions. Such a test case generator would suffer missed alarms
and possibly create misleading tests. This would happen if the SUT
implementation throws an exception in violation of its specification,
such as if the developer wrongly implemented method checkLocked
to throw the exception under all circumstances.

Randoop [32] can be configured to behave in any of the above
ways, but no heuristic or combination of them can reliably check
that the behavior of checkLocked matches its specification, i.e.,
that the method should throw an exception only under specific
circumstances.

On the other hand, the Javadoc comment of method checkLocked
precisely describes its intended exceptional behavior. A human
or tool that reads the Javadoc specification, and understands the
semantics of natural-language sentences such as “if the comparator
is locked”, could produce the following test case that embeds line 6
within an oracle:

1 void test() {
2 FixedOrderComparator c = new FixedOrderComparator(...);
3 ...
4 c.compare(...);
5 ...
6 if (c.isLocked()) {
7 try {
8 c.checkLocked();
9 fail("Expected exception not thrown");

10 } catch (UnsupportedOperationException e) {
11 // Expected exception!
12 }
13 } else {
14 c.checkLocked();
15 }
16 }

The test oracle in this test case correctly checks that checkLocked
throws UnsupportedOperationException only when the comparator
is locked, reducing both false and missed alarms. Our Toradocu
tool produces a test case that is semantically equivalent to this one.
The Toradocu-generated test case is textually different because it is
implemented using aspects (see Section 3.3).

3. TORADOCU
This section explains how Toradocu converts Javadoc comments

into test oracles. Toradocu works in three phases that correspond to
the three components illustrated in Figure 1:

1. The Javadoc extractor (Section 3.1) identifies all the Javadoc
comments that are related to exceptional behaviors. The Javadoc
extractor outputs a list of the exceptions that each method of
the class under test is specified to throw, together with a natural-
language description of the conditions under which each excep-
tion is intended to be thrown. For instance, referring to the
example of Section 2, the Javadoc extractor outputs that method

214

Toradocu

Javadoc
Extractor

(§3.1)

Condition Translator (§3.2)

Oracle
Generator

(§3.3)
Source
Code

Test Cases

Natural
Language
Comments

Java
Expressions

Augmented
Test Cases

NL
Parser
(§3.2.1)

Subject
Matcher
(§3.2.2)

Predicate
Matcher
(§3.2.3)

Figure 1: Architecture of Toradocu. The three components of Toradocu are represented by gray rounded rectangles. The test cases may be human-
written or automatically-generated.

checkLocked should throw an UnsupportedOperationException
under the condition “the comparator is locked”.

2. The condition translator (Section 3.2) translates each natural-
language condition into Java boolean expressions. In our exam-
ple, the condition translator converts “the comparator is locked”
into target.isLocked()==true. The variable target in the produced
boolean expression is just a placeholder representing the receiver
object of the method call.

3. The oracle generator (Section 3.3) produces test oracles in the
form of assertions and embeds them in the provided test cases.
The oracle generator also performs viewpoint adaptation, replac-
ing the target placeholder with the proper variable name that the
test case instantiates. For the example presented in Section 2, it
replaces target with c.

3.1 Javadoc Extractor
Javadoc comments are semi-structured natural-language text

blocks that specify a code element (a Java method, field, class,
or package). Javadoc comments use tags (keywords starting with
@) to structure the documentation. For example, the @param tag
marks the specification of a formal parameter, @return marks the
specification of the value returned by a method, and @throws and
@exception mark a specification of exceptional behavior. An ex-
ceptional behavior specification is an exception type e plus some
natural-language sentences describing when e should be thrown by
the method.

Toradocu’s Javadoc extractor identifies all the comments related
to exceptional behaviors for each method of a class under test (CUT).
Given the example of Section 2, the Javadoc extractor produces the
following information:

method: checkLocked()
exception: UnsupportedOperationException
condition: “if the comparator is locked”

We implemented this component as a Javadoc doclet. As a re-
sult, it also handles Javadoc comments that are inherited from a
superclass and do not directly appear in the source code of the class
under test. Our current prototype identifies descriptions tagged with
@throws or @exception, and will miss untagged descriptions of
exceptional behavior.

3.2 Condition Translator
The condition translator uses a mix of natural language process-

ing techniques and pattern-matching to translate Javadoc conditions
into Java boolean expressions. For example, the condition trans-
lator converts the condition “if the comparator is locked” to c.is-
Locked()==true, converts “if expectedKeys or expectedValuesPerKey
is negative” to expectedKeys<0 || expectedValuesPerKey<0, and
converts “if both iterator and the element are null” to iterator==null
&& element==null. Algorithm 1 details the behavior of the condition
translator. The algorithm takes as input a condition as extracted by

the Javadoc extractor, and it outputs a list of Java boolean expres-
sions. It works in three phases that are described in the following
sections.

3.2.1 Natural Language Parsing
The condition translator starts transforming a given Javadoc com-

ment text by invoking function PARSE-INTO-PROPOSITION-GRAPH
at line line 4 of Algorithm 1. This function, defined at line 17, relies
on the Stanford Parser library [25, 26] to process the natural lan-
guage Javadoc comment transforming it into a forest of binary trees
where each tree represents a single sentence of the original natural
language comment. The leaves of each binary tree represent propo-
sitions (i.e., pairs of subject and predicate), and the internal nodes
connecting such leaves represent either and or or conjunctions. As
an example, the Javadoc comment “either the iterator or the ele-
ment are null” would become a tree where the root node represents
the conjunction “or”, the left leaf is the proposition with subject

“iterator”, and the right leaf is the proposition with subject “element”.
Both subjects would be bound to the same predicate “are null”.

Given the Javadoc comment text, the condition translator first
uses the Stanford Parser to identify separate sentences (line 19), and
to produce a semantic graph for each of the sentences (line 20). The
semantic graph consists of a parse tree plus additional information,
such as grammatical relations.3

Next, the condition translator identifies subjects (line 21) and re-
lated predicates (line 23). In the NLP community, this step is called
open information extraction [1, 16]. A subject is a noun phrase that
the sentence is about, and the predicate is the remainder of the sen-
tence, which says something about the subject. Given the sentence

“either the iterator or the element are null”, the identified subjects
are “iterator” and “element”, while the predicate is “are null” for
both of them. In that predicate, the object of the copular verb “are”
is “null”. The function IDENTIFY-SUBJECTS (line 21) returns all
the subjects of a semantic graph. In the case of a compound noun,
the function IDENTIFY-SUBJECTS returns the head noun plus the
noun compound modifier.

For each identified subject, the function IDENTIFY-PREDICATE
(line 23) searches the semantic graph for matches to patterns that
commonly appear in Javadoc documentation. Our prototype sup-
ports sentences structured as in Table 1. Notice that Toradocu
identifies as the predicate only some words of the sentence. Fur-
thermore, the predicate includes a negation modifier when present.
This pattern-matching approach is not complete, in the sense that
it will not extract meaning from the predicate in every possible
English sentence. However, it is effective, and it was adequate in
our experiments. Future work could devise a more comprehensive
and general approach for interpreting the predicate.

Line 24 shows what the function PARSE-INTO-PROPOSITION-
GRAPH produces: a forest of binary trees where each tree represents
a single sentence of the original natural language comment.

3http://nlp.stanford.edu/software/dependencies_manual.pdf

215

Algorithm 1 Condition Translator
1: Translates the English condition extracted by the Javadoc extractor into

a list of Java boolean expressions (one per sentence).
2: INPUT: t (English text describing a condition), m (method commented

by t)
3: function TRANSLATE-CONDITION(t, m)
4: propositionGraph := PARSE-INTO-PROPOSITION-GRAPH(t)
5: for each proposition p = 〈subj, pred〉 in propositionGraph do
6: jExpr := ‘’
7: jSubjs := MATCH-SUBJECT(subj, m, m.getClass())
8: for each subject jSubj in jSubjs do
9: jPred := MATCH-PREDICATE(pred, jSubj)

10: jExpr := CREATE-JAVA-EXPR(jSubj, jPred, jExpr, pred)
11: end for
12: p.jExpression := jExpr
13: end for
14: return IN-ORDER-TRAVERSE(propositionGraph)
15: end function
16: Translates English text into logical formulas, as a forest of binary trees

(one per sentence). Internal nodes represent “and” and “or”.
17: function PARSE-INTO-PROPOSITION-GRAPH(t)
18: graph := {}
19: for each sentence s in t do
20: semGraph := GET-SEMANTIC-GRAPH(s) // Stanford Parser
21: subjectList := IDENTIFY-SUBJECTS(semGraph)
22: for each subject subj in subjectList do
23: proposition := 〈subj, IDENTIFY-PREDICATE(subj, semGraph)〉
24: graph := graph.add(proposition)
25: end for
26: end for
27: return graph
28: end function
29: Tries to match a string subj, representing a subject, to the most likely

Java element(s).
30: function MATCH-SUBJECT(subj, m, cut)
31: jElements := GET-JAVA-ELEMENTS-FOR-SUBJECT(m, cut)
32: return GET-MOST-SIMILAR-ELEMENTS(subj, jElements)
33: end function
34: Returns Java elements that a subject can potentially match: m’s parame-

ters, cut, and cut’s public fields and public nullary non-void methods.
35: function GET-JAVA-ELEMENTS-FOR-SUBJECT(m, cut)
36: Given a set of elements, forms a set of strings that contains the name

of each element, the name of its type, and the name of each supertype.
Finds the strings that have minimum Levenshtein edit distance from s.
Returns each element associated with those strings. Returns multiple
elements if there is a tie. Returns the empty set if the minimum edit
distance is greater than 8.

37: function GET-MOST-SIMILAR-ELEMENTS(s, elements)
38: Tries to match a string pred, representing a predicate, to the most likely

Java element(s).
39: function MATCH-PREDICATE(pred, jSubj)
40: match := PATTERN-MATCHING(pred) // see Section 3.2.3
41: if match 6= empty then
42: return match
43: else
44: jElements := GET-JAVA-ELEMENTS-FOR-PREDICATE(jSubj)
45: return GET-MOST-SIMILAR-ELEMENTS(pred, jElements)[0]
46: end if
47: end function
48: Returns Java elements that a predicate can potentially match: the public

fields and public nullary non-void methods of jSubj.
49: function GET-JAVA-ELEMENTS-FOR-PREDICATE(jSubj)
50: Returns a new Java expression that is the combination of the existing

Java expression jExpr and a new expression composed of subject jSubj
and predicate jPred. This function handles cases where a single subject is
actually referring to multiple Java elements. Also, this function decides
whether a condition should be evaluated to either true or false. See
Section 3.2.4.

51: function CREATE-JAVA-EXPR(jSubj, jPred, jExpr, pred)

Table 1: List of sentence structures from which Toradocu can correctly
extract the predicate.

Sentence Form Predicate comprises
Copula Negation modifier, copular verb, complement
Active Form Verb, complement
Passive Form Negation modifier, verb, passive auxiliary

3.2.2 Matching a Subject to a Java Element
Having parsed English text into propositions, where each propo-

sition consists of a subject and a predicate, Toradocu now tries to
match each subject and predicate to a Java element in the code, as
explained in this section and the next one.

The function MATCH-SUBJECT, called on line 7, tries to match the
subject to identifiers and types that appear in the code (lines 30–33).
In particular, a subject can be matched with (i) a formal parameter
of the documented method, (ii) a method of the CUT, or (iii) the
target object.

For case (ii), the algorithm considers matches with CUT’s nullary
non-void methods — that is, those that take no arguments and that
return a value. Matching the subject with such methods handles
cases in which the subject refers to a non-public field of the CUT
for which a getter method exists; the test oracle can access the
getter method. For instance, a sentence such as “the capacity of the
container” refers to capacity, which is a private field of the CUT.
This field cannot be accessed directly, but only by means of the
getter method getCapacity().

Javadoc comments often refer to parameter types, as in the case
of “the collection is empty”, which refers to a parameter of type
java.lang.Collection. For this reason the algorithm considers type
names, in addition to identifiers. It considers all supertypes: transi-
tive superclasses and implemented interfaces.

The example introduced in Section 2 is an example of case (iii)
and supertype names, since in the sentence “if the comparator is
locked” the subject (i.e., “the comparator”) refers to the instance of
the CUT itself (i.e., FixedOrderComparator), which implements the
Comparator interface.

Among all the possible matching candidates, the algorithm picks
the Java element with the smallest Levenshtein edit distance (number
of character insertions, deletions, and replacements). It returns no
candidate if the edit distance is greater than 8; we determined this
value experimentally.

3.2.3 Matching a Predicate to a Java Element
Given a Java element that matches the subject of the sentence,

the condition translator has to identify the Java element that the
predicate refers to. Toradocu’s main strategy is the same lexical
matching approach it takes for subjects (Section 3.2.2). Toradocu
takes advantage of the English text that the programmer has embed-
ded in identifier names, and looks for similarities with the English
text in the specification.

This approach works when the predicate can be represented by
a method call with a camelCase name. However, it does not work
when the needed Java expression does not contain English text,
as for arithmetic and null comparisons. Therefore, the function
MATCH-PREDICATE (lines 39–47) implements two strategies:

• Textual pattern matching (lines 40–42): The function PATTERN-
MATCHING looks for an exact match of the predicate with a
set of predefined patterns that covers common cases (listed in
Table 2). For instance, the pattern “is positive”, which can be
applied to numeric types (byte, short, int, long, float, and double),
produces the Java predicate subjectElement>0. When the subject

216

Table 2: List of predicate patterns that Toradocu directly translates.
Predicate Translates to
is/are positive >0
is/are negative <0
is/are true ==true
is/are false ==false
is/are null ==null
is/are < 1 <1
is/are <= 0 <=0

element’s type is a reference type (a non-primitive type), the
only relevant pattern is a check whether an object is null (i.e.,
“is null”→ == null). If pattern matching does not produce any
result, MATCH-PREDICATE moves on to lexical matching.
• Lexical matching (lines 44–45): MATCH-PREDICATE looks for

matching candidates among the public fields and methods of the
subject instance. Thus, if the subject refers to the class itself,
MATCH-PREDICATE looks at methods declared and inherited
by the CUT. If the subject refers to a non-primitive variable
(i.e., parameter or field), then the predicate matcher considers
the methods in the subject’s declared type. For example, the “is
locked” predicate would match the isLocked() method that Fixe-
dOrderComparator class declares. MATCH-PREDICATE limits its
search to methods that return boolean values and take no param-
eters. Similarly to the logic of the function MATCH-SUBJECT,
the matcher selects the method that has the lowest Levenshtein
distance to the predicate that is less than 8.

3.2.4 Creating the Java Condition
The last step of Algorithm 1 is to produce the final Java “condition

template” (line 10) that the oracle will instantiate.
This includes the decision whether to produce a condition that

should be evaluated to either true or false. If the predicate contains
the substring “not” or “n’t”, as in the sentence “the comparator is
not locked”, the predicate matcher produces a negative condition
such as (comparatorInstance.isLocked() == false).

CREATE-JAVA-EXPR also concatenates multiple Java expressions
into a single one. Consider the comment “either array is null”
where subject “either array” refers to multiple Java elements (e.g.,
the formal parameters of the commented method). The function
CREATE-JAVA-EXPR concatenates the expressions with a suitable
conjunction. If the sentence starts with “either”, it uses the conjunc-
tion is “||” otherwise it uses “&&”.

3.3 Oracle Generator
At this point, a Javadoc @throws comment has been translated to

a boolean expression by the condition translator. More concretely,
the output of the condition translator is a triple 〈method m, expected
exception type e, boolean Java condition c〉 for a given method m
that is supposed to throw exception e when condition c holds.

The oracle generator converts the output of the condition trans-
lator into a test oracle and injects the oracle into any test case that
invokes the method m. The oracle generator modifies the test case
such that, right before each invocation of m, it checks whether c
holds or not. If c holds, the oracle expects an exception e as the
result of the invocation of m, and makes the test case fail if this does
not happen.

Toradocu employs aspect oriented programming and AspectJ4 to
embed oracles in existing test suites.

Given the triple 〈method m, exception e, condition c〉, Toradocu
automatically generates a custom aspect for method m, and later

4http://www.eclipse.org/aspectj

uses this aspect to instrument the bytecode of a provided test suite.
As an example, the custom aspect for method FixedOrderCompara-
tor.checkLocked() appears below. AspectJ will weave it into the test
case and it will execute when the test case does.

1 @Around("call(protected void checkLocked())")
2 public Object advice(ProceedingJoinPoint jp) {
3 Object target = jp.getTarget();
4 Object[] args = jp.getArgs();
5 List〈Class〉 expectedExcepts = getExpectedExcepts(target, args);
6 if (! expectedExcepts.isEmpty()) {
7 try {
8 jp.proceed(args); // checkLocked() is invoked here
9 fail("Expected exception not thrown");

10 } catch (Throwable e) {
11 if (! expectedExcepts.contains(e.getClass())) {
12 fail("Unexpected exception thrown");
13 } else {
14 return null; // success
15 }
16 }
17 }
18 return jp.proceed(args); // checkLocked() is invoked here
19 }

21 // Returns a list of exceptions that method checkLocked is expected to
22 // throw, based on run-time checks of conditions from its Javadoc.
23 private List〈Class〉 getExpectedExcepts(Object target, Object[] args) {
24 List〈Class〉 expectedExcepts = new ArrayList〈Class〉();
25 if (target.isLocked()) { // condition is checked here
26 expectedExcepts.add(
27 Class.forName("java.lang.UnsupportedOperationException"));
28 }
29 return expectedExcepts;
30 }

The Toradocu-generated custom aspect checks whether method
checkLocked() behaves correctly according to the described excep-
tional behavior. At run time, the aspect first builds a list of expect-
edExceptions (lines 5, 23–30) by performing a run-time check of
each boolean Java condition that was output by the condition trans-
lator, adding exceptions to the list whose condition currently holds
(lines 25–27). In our example there is only 1 @throws clause and
at most 1 element in the list. The list of expected exceptions may
contain more than 1 element if multiple conditions hold at run time
that lead to different exceptions. As an example, consider method
foo(Object x, int y) with Javadoc “@throws NullPointerException if
x is null” and “@throws IllegalArgumentException if y is negative”.
The invocation foo(null, -10) is permitted to raise either of the two
exceptions, and the aspect accepts either one as correct behavior.

If Toradocu was not able to derive any information about the ex-
ceptional behavior of the method, then getExpectedExcepts returns
an empty list. If none of the extracted conditions is currently true,
the list of expected exceptions is empty (line 6). In such cases, the
method checkLocked() is invoked just as in the original test case
(line 18).

When the list of expected exceptions is not empty (line 6), as in
our example, the aspect invokes the method at line 8, catching any
exception that its execution would generate. If the method correctly
raised the expected exception, the aspect masks the exception by
returning null (line 14), because a non-void aspect requires a return
value. The test case fails if
• no exception is thrown (line 9), or
• the exception type differs from the list of expected exceptions

(line 12).

If a method that is not expected to throw any exception throws an
exception during its execution, and thus executes line 18, the test
case fails, flagging a likely problem due to: (i) a missing @throws

217

tag in the documentation documenting the thrown exception, or
(ii) an error in the implementation that led to the exception. It is
also possible that the thrown exception is a permitted behavior that
is intentionally not documented.

Using aspects, Toradocu automatically injects test oracles every
time method checkLocked() is invoked in a test case. Thus, given a
test case such as this one from Section 2:

1 void test() {
2 FixedOrderComparator c = new FixedOrderComparator(...);
3 c.compare(...);
4 c.checkLocked();
5 }

Toradocu uses AspectJ to weave the aspect into the test case, yielding
this final test case:

1 void test() {
2 FixedOrderComparator c = new FixedOrderComparator(...);
3 c.compare(...);

5 List〈Class〉 expectedExcepts=getExpectedExcepts(c,newObject[0]);
6 if (! expectedExcepts.isEmpty()) {
7 try {
8 c.checkLocked();
9 fail("Expected exception not thrown");

10 } catch (Throwable e) {
11 if (! expectedExcepts.contains(e.getClass())) {
12 fail("Unexpected exception thrown");
13 }
14 }
15 } else {
16 c.checkLocked();
17 }
18 }

20 // Returns a list of exceptions that method checkLocked is expected to
21 // throw, based on run-time checks of conditions from its Javadoc.
22 private List〈Class〉 getExpectedExcepts(Object target, Object[] args) {
23 List〈Class〉 expectedExcepts = new ArrayList〈Class〉;
24 if (target.isLocked()) { // condition is checked here
25 expectedExcepts.add(
26 Class.forName("java.lang.UnsupportedOperationException"));
27 }
28 return expectedExcepts;
29 }

Toradocu does not explicitly output the source code of the resulting
test cases. Rather, it outputs the source code of the aspects and uses
AspectJ to instrument the bytecode of given test cases to add the
oracles.

4. EXPERIMENTAL EVALUATION
The key contribution of Toradocu is the ability to automatically

generate test oracles from Javadoc comments. Combined with test
input generation tools such as EvoSuite and Randoop, Toradocu can
automatically generate test cases with oracles that reveal faults in
exceptional behaviors. Our experiments evaluate the effectiveness
of our test oracles when integrated with automatically-generated test
inputs. Thus, our experiments show the effectiveness of Toradocu
combined with test generators as a uniquely powerful tool to auto-
matically generate complete and accurate test suites for exceptional
behavior.

Our evaluation addresses the following research questions:

RQ1 Do developers test exceptional behavior less than normal
behavior?
This research question assesses whether developers tend to over-
look exceptional behaviors when testing their software. A pos-
itive answer to this question would make Toradocu relevant in
practice. Section 4.1 reports the results.

co
lle

ct
io

ns

em
ai

l

la
ng

m
at

h

co
m

pr
es

s cl
i io

po
ol

pr
im

iti
ve

s

gu
av

a

%
 c

ov
er

ed
 s

ta
te

m
en

ts

0

20

40

60

80

100

All Statement Coverage Throw Statement Coverage

Figure 2: All statements coverage vs. exceptional statements coverage
achieved by the test suites written by the Apache Commons and Google
Guava developers.

RQ2 To what extent does Toradocu reduce the number of false
positives that test input generation tools produce?
Test input generation tools such as EvoSuite and Randoop do
not produce test oracles, or they use simple heuristics to classify
exceptional behaviors. Depending on the heuristic, they suffer
false positives (reporting as a failure an intended behavior) and/or
false negatives (considering correct a failing execution). Tora-
docu reduces the number of such errors. Section 4.2 reports the
design and results of this experiment.

RQ3 Does Toradocu reveal faults in the implementation of excep-
tional behavior?
Test input generation plus Toradocu has the potential to reveal
bugs where developers do not correctly implement the expected
exceptional behavior. Section 4.3 describes our experiment in
which this approach found defects in student assignment sub-
missions, and in which it found previously-unknown defects in
Google Guava, which the developers have acknowledged and
fixed.

4.1 RQ1: Exceptional Behavior Coverage
We selected 10 popular, well-tested open source libraries (9

Apache Commons projects and Google Guava) to evaluate whether
Java developers pay equal attention to exceptional behavior and
normal behavior when writing tests.

We ran the developer-written test suites for each project, and
Figure 2 plots two coverage metrics:

• all statement coverage: The standard quality metric for test suites,
this is the number of statements executed at least once by the
test suite, divided by the total number of statements. It is a ratio
between 0 and 1, inclusive. Higher numbers are better.
• throw statement coverage: This ratio is the number of throw

statements executed at least once by the test suite, divided by
the total number of throw statements. This metric represents the
amount of exceptional behavior that test suites cover.

218

Table 3: Toradocu’s effectiveness in avoiding false positives for selected classes in Google Guava. Specification size is reported as the number of
@throws tags in the method and the number of those tags that Toradocu was able to convert into an oracle (number of correct and complete oracles,
number of correct but incomplete oracles, and oracles that Toradocu was unable to translate; Toradocu never produced an incorrect oracle). The
EvoSuite-generated test suites are classified as passing, or failing due to an exception being thrown. Test failures are classified as true positives (defects
in the code or the documentation) or false positives (Toradocu weaknesses or illegal inputs generated by EvoSuite).

EvoSuite EvoSuite + Toradocu
Spec size Fail Fail

Toradocu True False Pos. True False Pos.
Subject class @throws C I U Pass Pos. Input Pass Pos. TW Input
ArrayListMultimap 1 1 0 0 3 0 6 4 0 0 5
AtomicDoubleArray 1 1 0 0 20 0 10 21 0 0 9
ConcurrentHashMultiset 12 8 1 3 32 0 15 40 0 1 6
Doubles 4 3 1 0 42 0 12 47 0 2 5
Floats 4 3 1 0 43 0 18 47 0 2 12
MoreObjects 1 1 0 0 17 0 4 18 0 0 3
Shorts 6 3 1 2 22 0 22 30 0 3 11
Strings 1 1 0 0 6 0 9 9 0 0 6
Verify 4 4 0 0 4 4 1 5 4 0 0
Total 34 25 4 5 189 4 97 221 4 8 57

The test suites achieve high code coverage: always higher than
75%, and usually higher than 90%. Developers do not pay equal
attention to testing exceptional behavior: the coverage of throw
statements is never higher than of the overall coverage, and is usually
significantly lower, in two cases below 50%.

Exceptional behavior is just as legal and expected as normal
behavior, and it should be tested just as well. The results of our
empirical evaluation show that our Toradocu technique is needed to
augment existing, high-quality manually written test suites too.

4.2 RQ2: Reducing False Positives in Test Ex-
ecutions

Test input generation tools such as EvoSuite and Randoop rely
on heuristic oracles. For instance, one common heuristic is to
consider any runtime exception as a failure without regard for
the specification of the code under test. This heuristic results in
many false alarms. Toradocu reduces the amount of false alarms
in automatically-generated test suites by augmenting automatically-
generated test cases with test oracles for exceptional behaviors. We
evaluated how well it does so.

4.2.1 Methodology
We selected 9 subject classes from the packages base, collections,

and primitives of the Google Guava project (Table 3). We chose
these packages because of our familiarity with them, which reduces
the effort to manually inspect the results.

We used EvoSuite to generate a test suite for each class under test.
We configured EvoSuite to avoid false negatives (missed alarms),
by producing test suites without regression oracles. (EvoSuite can
generate regression oracles with test suites. In this case, it treats
every unchecked exception5 as a failure and every other exception
as expected behavior. These choices lead to both false positives and
false negatives; we configured EvoSuite to avoid false negatives or
missed alarms, by not treating any exception as expected behavior, as
a careful test engineer might do.) We directed EvoSuite to maximize
all its search goals with a search budget of 60 seconds.

We then used Toradocu on each class to automatically generate
oracles describing the exceptional behavior of each method.

We ran each test suite with and without Toradocu’s oracles em-
bedded, and we manually analyzed the failing test cases.

5In Java, an “unchecked exception” is one that a client is not required to catch
and handle: RuntimeException, Error, and their subclasses.

4.2.2 Results
Table 3 reports the results of our empirical evaluation. Toradocu

generates aspects only for those methods that contain or inherit
Javadoc comments using the @throws or @exception tags. When
a method can throw different exceptions, Toradocu generates one
single aspect checking multiple exceptional behaviors of the method.

Out of 290 EvoSuite-generated test executions, 101, or 35%,
fail because the test inputs trigger exceptional behaviors that throw
exceptions. For classes ArrayListMultimap, Strings, and Verify, Evo-
Suite generated more failing tests than passing tests. This is because
these classes have a large amount of exceptional behaviors and Evo-
Suite strives to avoid redundant tests. When Toradocu’s oracles are
embedded in the same test suites, the number of false positives is
reduced from 97 to 65, which is an absolute decrease of 11% or a
relative decrease of 33%.

We manually examined every test failure. There are three possi-
bilities:

True positive that reveals a defect in the CUT. Three test fail-
ures are true positives due to missing @throws comments about
unchecked exceptions that the code throws. Based on careful
reading of the code and documentation, including comparing
these methods with other similar methods, we judged that the
developers had probably intended that these exceptions should
be documented with a @throws comment.
Two examples are that method removeExactly throws IllegalArgu-
mentException if its occurrences parameter is negative, and that
method verify throws VerifyException if its argument expression
is false.
We reported the 3 new documentation errors to the Guava de-
velopers.6 The Guava developers acknowledged the problems
and accepted our fixes to the documentation. The fact that all
of these bug reports and fixes were accepted indicates that our
categorization of tests was accurate.
One further test, in class Verify, is also a true positive due to an
incorrect specification. The test failed Toradocu’s oracle due to a
null pointer exception thrown by the test code verifyNotNull(null,
"dstk", null). Toradocu’s oracle expected the invocation to throw a
VerifyException instead, because the documentation indicates that
if the first parameter is null, the method throws a VerifyException:
6https://github.com/google/guava/pull/2099 and https://github.com/google/

guava/pull/2106

219

139 /∗∗
152 ∗ @throws VerifyException if reference is null
153 ∗/
155 public static <T> T verifyNotNull(
156 @Nullable T reference,
157 @Nullable String errorMessageTemplate,
158 @Nullable Object... errorMessageArgs) {

The erroneous NullPointerException is due to the fact that er-
rorMessageArgs is null, which the specification permits via the
@Nullable annotation on that formal parameter.
Although we were not previously aware of this defect in Guava,
it had been independently reported.7 This independent report
shows that documentation errors do cause problems and confu-
sion. The Google developers confirmed the documentation bug.
We speculate that they have not yet fixed it because of limitations
of the FindBugs @Nullable annotation that they are using. Their
confirmation of the bug indicated that the intended specification
was that errorMessageArgs should be non-null but that its ele-
ments may be null. Use of a more expressive tool for specifying
and checking nullness [17, 34] would resolve the problem.

False positive due to a limitation of Toradocu. The Javadoc com-
ment correctly documents the expected exceptional behavior, but
Toradocu could not parse the sentence correctly to generate a
Java expression and an aspect. Therefore, the (correct) thrown
exception was surfaced as a test failure.
This caused 8 test failures in Toradocu test suites. In class Con-
currentHashMultiset, the method toArray(T[]) throws an exception
when “the runtime type of the specified array is not a supertype
of the runtime type of every element in this collection”. Toradocu
failed to create the right assertion for this method. Similarly, in
classes Floats and Doubles it failed to correctly generate a correct
and complete aspect from 4 Javadoc comments that look like
“if collection or any of its elements is null”. Toradocu correctly
processed the information that when the collection is null the
method should throw an exception. However, it failed to gener-
ate a complete oracle because it did not check that the method
throws an exception when an element of the collection is null.

False positive due to an unexpected input generated by Evo-
Suite. The remaining 57 failing test cases are exceptions that
the code under test is allowed, but not required, to throw, given
the non-typical inputs that EvoSuite generated.
The Javadoc documentation does not mention any expected ex-
ception because the specification is intentionally incomplete. A
common reason for this is that the method has precondition
contracts that forbid clients from passing a particular parameter
value. In such a case, the documentation should not specify what
exception is thrown if the precondition is violated. For example,
a binary search routine requires that its array input is sorted, but
does not promise any particular behavior if the array input is not
sorted. As an example, EvoSuite generated a test containing the
method invocation Doubles.tryParse(null), which threw NullPoint-
erException. As another example, an EvoSuite-generated test
passed a very large value to the ArrayListMultimap static construc-
tor create(int, int), then invoked the method createCollection(),
which threw OutOfMemoryException.
We used our best judgment in determining whether the specifica-
tion was intentionally incomplete. Our results are conservative,
since this category might contain some cases where the develop-
ers truly intended to write a complete specification.

This experiment shows that Toradocu can reduce the number of
false positive failures in a test suite, thus making the suite more

7https://github.com/google/guava/issues/1701

Table 4: Subjects of the evaluation of revealing implementation errors.
Column Methods includes both methods and constructors.

Implementation
Class Methods snapshots
collections.map.FilterIterator 10 401
collections.comparators.FixedOrderComparator 9 391
math.genetics.ListPopulation 13 269
collections.map.PredicatedMap 7 283

fruitful for people to examine. Furthermore, Toradocu identified 4
defects in the Google Guava project, 3 of which were previously
unknown and have now been fixed in response to our bug reports.

While these initial results are extremely encouraging, we caution
that they have been performed on only 9 classes taken from one
project. We cannot know whether the results will generalize.

4.3 RQ3: Revealing Implementation Errors
Our last experiment evaluated whether Toradocu effectively re-

veals buggy code: defects in the implementation of exceptional
behavior. This experiment assumes a complete and correct natural-
language Javadoc specification. In such a scenario, Toradocu should
produce failing test cases when developers do not correctly imple-
ment the expected exceptional behavior.

4.3.1 Methodology
Rojas et al. [37] studied how developers use the EvoSuite test

input generation tool when developing new software. They asked 41
developers to implement 4 different Java classes (Table 4) starting
from their Javadoc documentation. The 4 classes were selected from
the Apache Commons Collections and Apache Commons Math
libraries. Rojas et al. recorded a snapshot of the implementation
whenever the developers chose to run EvoSuite to test their imple-
mentation.

For each subject class, we used Toradocu to generate the aspects
describing its exceptional behavior. We then used EvoSuite and
Randoop to generate test suites for each implementation snapshot
of each class.8

For Randoop, we used its default heuristic for oracles. Randoop
outputs two distinct test suites: a suite of passing tests (the Randoop
manual calls these the “regression tests”) and a suite of failing tests
(the Randoop manual calls these the “error-revealing tests”). Since
Randoop uses heuristics to classify tests as passing or failing, the
regression tests may contain false negatives (missed alarms), and
the error-revealing tests may contain false positive alarms. For
EvoSuite, we used the default heuristic: any thrown exception is
expected behavior. This avoids false positive alarms but is prone to
false negatives (missed alarms).

We ran each test suite with and without Toradocu oracles, and
we evaluated the fault-finding effectiveness of the test suites. We
measured the fault-finding effectiveness in terms of number of test
cases that fail, thus revealing an exception-related error in the im-
plementation.

Similarly to the previous evaluation, we manually analyzed the
test executions. Given the large amount of data, we sampled 20
executions for each kind of test outcome (passing, failing because
of a runtime exception, and failing because of a failing assertion).

8We included Randoop because a recent study found that “debugging was sig-
nificantly more efficient when Randoop test cases are used [compared to manual
test cases]”, but “debugging was equally effective with manual and EvoSuite test
cases” [9].

220

Table 5: Toradocu effectiveness with developers’ implementations of a Javadoc specification. Specification size is as in Table 3. Tests are classified as
passing, failing due to an exception being thrown (FE), or failing due to a test assertion (FA). Randoop generates two test suites: one containing only
passing tests (RandoopR) and one containing only failing tests (RandoopE). The bottom row shows false negative rates for the “Pass” column, and
false positive rates for the “FE” and “FA” columns; in both cases, smaller numbers are better. The bottom row was determined by manual inspection
of 20 randomly-chosen tests from each cell of the table.

Spec size
Toradocu EvoSuite EvoSuite+Toradocu RandoopR RandoopR+Toradocu RandoopE RandoopE+Toradocu

Subject Class @throws C I U Pass FE FA Pass FE FA Pass FE FA Pass FE FA Pass FE FA Pass FE FA
FilterIterator 4 2 0 2 2748 3 0 2325 3 423 17440 0 0 8927 0 8513 0 12453 0 1423 7998 3032
FixedOrderComparator 9 5 0 4 4045 0 0 3980 0 65 12910 0 0 12670 0 240 0 23670 0 26 23382 262
ListPopulation 10 2 0 8 3536 2 0 3421 2 115 11614 28 0 11543 21 78 0 12693 0 97 12434 162
PredicatedMap 4 2 0 2 1968 4 0 1548 4 420 6186 0 0 6076 0 110 0 24257 0 136 24084 37
False pos./neg. rate 45% 78% n/a 40% 78% 0% 35% 43% n/a 20% 24% 0% n/a 90% n/a 0% 90% 0%

4.3.2 Evaluation Results
Table 5 presents the results of our evaluation. All of the aspects

generated by Toradocu were correct and complete.
The results show that automatic test case generator tools are rather

weak in revealing exception-related implementation errors, due to
a lack of proper test oracles. For instance, EvoSuite generates 9
failing test cases, of which only 2 are true positives (2 NullPointer-
Exception due to implementation errors for ListPopulation). The
other 7 are due to malformed test input (5 ClassCastException and
2 InitializationError).

When we augment the EvoSuite test suites with Toradocu’s or-
acles, the number of test cases failing for a run-time exception
remains unchanged, while the number of test cases failing due to an
assertion dramatically increases (from 0 to 1023). This is the direct
effect of the test oracles we injected in the test suites. We manually
inspected 20 randomly sampled tests leading to failures and we
confirmed that all of them are true positives: they fail because of a
bug in the implementation or because the implementation is entirely
missing.

We confirmed the same results with the Randoop test suites (from
0 to 8941 failed assertions and from 0 to 3493, all true positives
among the inspected ones).

Overall, Toradocu makes the test suites much more useful to de-
velopers. EvoSuite alone generated only 9 failing tests, of which
78% were false positives. EvoSuite+Toradocu generated 1031 fail-
ing tests, of which less than 1% were false positives. Randoop’s
regression test suite contained 28 failing tests, of which 43% were
false positives. Randoop+Toradocu eliminated 7 false positives (a
reduction from 43% to 24%) and created 8941 true positive tests that
revealed errors in the implementations. Randoop’s error-revealing
test suite contained 90% false positives, but Randoop+Toradocu
correctly identified 1682 of them as false positives and identified
3493 of them as true positives, permitting a developer to focus on
true positive test failures and to create richer, correct regression test
suites.

This evaluation shows that Toradocu improves the effectiveness of
a test input generation tool. It reduces the number of false negative
test results, thus revealing more true faults. It reduces the number of
false positives, thus saving developers’ time in inspecting test results.

5. RELATED WORK
Our work uses NLP to automatically extract conditional expres-

sions regarding exceptional behavior from Javadoc comments. We
see our work as particularly beneficial for test input generation tech-
niques, since they typically lack a means to determine on the success
(or failure) of a test execution.

Section 5.1 describes how test input generation tools treat excep-
tional behaviors. Section 5.2 surveys the related techniques that

automatically generate test oracles from sources of information other
than natural language documents. Section 5.3 concludes by present-
ing other techniques that infer specifications, which can sometimes
be used as test oracles, from natural-language documents.

5.1 Treatment of Exceptions by Test Genera-
tion Tools

The state of the art in automated test generation uses heuristics to
create oracles for exceptional behavior.

JCrasher [13] and CnC [14] use a heuristic for classifying whether
a test that throws an exception should be reported as a possible bug.
There are four cases. (1) Throws of java.lang.Error are always
ignored, because they indicate a drastic problem. (2) Throws of de-
clared exceptions are always ignored, because they might be part of
the contract. (3) Throws of most undeclared exceptions are bugs only
if they are thrown by the method under test; throws by transitively-
called methods are ignored. (4) Throws of undeclared exceptions
IllegalArgumentException, IllegalStateException, and NullPoint-
erException are bugs if they are thrown by some public method that
is (transitively) called by the method under test. They are ignored
otherwise, including if they are thrown by the method under test
itself or by a non-public method that is transitively called. These
heuristics suffer both false alarms and missed alarms. JCrasher and
CnC also use a heuristic to group exceptions before presenting them
to the user — if the backtrace is the same, the tool just shows one of
them.

Randoop [31, 32, 36] also uses heuristics to classify each test as
passing, failing, or invalid. Passing tests are output as regression
tests, failing tests are output as indicating a likely bug in the software
under test, and invalid tests are ignored and never shown to the user.
When a test throws a: (1) checked exception except as noted below,
the test is treated as passing, (2) unchecked exception except as
noted below, the test is treated as passing, (3) NullPointerException
and no null values were used in the test, the test is treated as failing,
(4) NullPointerException and some null value was used in the test,
the test is treated as invalid, (5) out-of-memory exception, the test
is treated as invalid, or (6) different exceptions on different test
executions, the test is treated as invalid due to nondeterminism.
(7) Furthermore, a test that violates a contract stated in the JDK
documentation (such as reflexivity, symmetry, and transitivity of
equals()) is treated as failing. All of the above behaviors can be
customized by the user. Randoop’s default settings aim to avoid
false positive test failures, so as not to annoy the user by reporting
too many possible errors in the program, when an exception may
have been caused by incorrect usage of the software under test by
the randomly-generated test. However, this does not eliminate all
false positives, and it means that Randoop suffers false negatives —
it fails to report some real errors that its test inputs have revealed.

221

The faults identified by JTest [35] “are usually . . . illegal argu-
ments or special object states” [51], where the latter probably means
a violated precondition, such as calling pop() on an empty stack.
JTest suppresses warnings about any exception documented with
the @exception comment tag; that tag does not indicate conditions,
just the exception name.

EvoSuite [19, 21, 46] is intended to produce regression tests, not
to detect errors. Thus, by default EvoSuite assumes any exception
thrown is the correct, intended behavior. This behavior can be
overridden by the user.

Other test generators do not use any heuristic to treat exceptional
behaviors. Unlike EvoSuite, they report every undeclared exception
to the user, thus including many false alarms [5, 23, 40].

All the aforementioned tools and corresponding techniques are
orthogonal to the contributions presented in this paper. Integrating
Toradocu with any of these tools would improve them.

5.2 Automatic Generation of Test Oracles
Baresi et al. [6] and Barr et al. [7] wrote surveys on automatic

test oracle generation techniques.
Many such techniques can automatically generate test oracles

starting from formal specifications, which can be in the form of
algebraic specifications [2, 22], assertions [3, 11, 28, 38, 45], Z
specifications [27, 29], context-free grammars [15], JML annota-
tions [12], and finite state machines [20], among others. However,
formal specifications are seldom available, and this limits the appli-
cability of these techniques in practice. By contrast, Toradocu relies
on Javadoc comments, a form of specification that is frequently
available in Java projects.

Metamorphic testing generates oracles by comparing two opera-
tions that are supposed to have the same behavior [8, 10, 18, 24, 30].
The effectiveness of these oracles is limited to cases where such
symmetric properties exist.

Toradocu is currently limited to deal with exceptional behavior,
but can potentially be extended to other cases. Moreover, Toradocu
is likely to complement techniques that generate test oracles from
other sources of information.

5.3 Using NLP to Extract Specifications
Toradocu uses NLP techniques and heuristics to extract test or-

acles from natural language comments. Other works use similar
techniques for similar purposes.

A number of works use NLP to extract specifications from natural
language documents. Wu et al. parse Web services documentation to
infer dependency constraints on service parameters [49]. Xiao et al.
extract security policies [50]. Wong et al. extract input constraints
from program documents to provide a better guidance during sym-
bolic execution [48]. Zhong et al.’s Doc2Spec analyzes Javadoc
comments to infer automata describing the resource-related behavior
of Java programs [54]. Toradocu uses similar techniques to the ones
that these works employ, but for a different purpose.

Pandita et al. proposed an approach to automatically extract func-
tion contracts from natural language documents [33]. Their work
extracts information that could also be useful to generate test oracles,
but they did not use it for this purpose.

Natural language processing techniques have also been used to
automatically detect inconsistencies between code and correspond-
ing comments. For example, iComment [42] and aComment [43]
derive rules about specific properties from code comments using
both NLP and heuristics. Then they statically check the extracted
rules to check whether there is any inconsistency between comments
and code. DocRef combines NLP with island parsing to highlight
inconsistencies between code and API documentation, thus reveal-

ing likely bugs in the documentation [53]. Rubio-González and
Liblit exploit static analysis to collect all the return error codes of
system calls in Linux. Then they compare this information with
the documentation of the Linux manual to find undocumented error
codes. Their analysis revealed over 1700 inconsistencies looking
only at file-related system calls [39]. Although these techniques
have similar goals as Toradocu, they do not produce test oracles.

Bacherler et al. [4] designed a technique to automatically generate
test cases out of natural language documents. Their technique works
under the assumption that the documents use a restricted, formalized
English vocabulary. Toradocu is more flexible since it does not have
this assumption.

Zhang et al. exploit NLP techniques to generate test inputs and
a small set of related assertions from a set of test names provided by
the developer [52]. Since Toradocu generates test oracles for arbi-
trary test inputs, the two techniques address complementary goals.

tComment by Tan et al. is the work that is most closely related
to ours [44]. Similar to Toradocu, they aim to generate test cases
with oracles derived from the Javadoc comments of the class under
test. tComment, however, resolves only exact pattern matchings
between Java elements in the code and names in the documentation,
and handles only null value checking.

6. CONCLUSIONS
This paper presented Toradocu, a technique to automatically gen-

erate test oracles for exceptional behavior. It works from Javadoc
comments, which are informal documentation that programmers are
already accustomed to writing. Toradocu uses natural language pro-
cessing techniques to identify subjects and predicates in comments,
and then maps them to concepts in the source code, thus creating
conditional expressions that describe the programmer-intended be-
havior. In combination with an automatic test input generation tool,
Toradocu creates test suites with oracles that are able to detect errors
in error-handling code in Java programs.

We performed an empirical evaluation that shows that developers
under-test exceptional behavior, motivating the need for a technique
that can automatically generate test cases for exceptional cases, even
when manually-written test suites already exist.

Our evaluation shows that Toradocu reduces the number of false
alarms that automatically-generated test cases typically report, and
at the same time it is effective at detecting real faults in imple-
mentations. Toradocu identified 4 defects in the Google Guava
documentation, 3 of them previously unknown.

Toradocu is just a first prototype of what we envision as a powerful
and general tool to generate test oracles. In the future we plan to
improve the abilities of the NLP component to resolve more complex
conditions. Moreover, we also plan to look at other parts of the
Javadoc comments besides @throws tags.

7. ACKNOWLEDGMENTS
This work was supported in part by the Swiss National Science

Foundation with the project ReSpec (grant n. 146607), by the Euro-
pean Union FP7-PEOPLE-COFUND project AMAROUT II (grant
n. 291803), by the Spanish Ministry of Economy project DEDETIS,
and by the Madrid Regional Government project N-Greens Software
(grant n. S2013/ICE-2731). This material is based on research spon-
sored by DARPA under agreement numbers FA8750-12-2-0107,
FA8750-15-C-0010, and FA8750-16-2-0032. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

222

8. REFERENCES
[1] G. Angeli, M. J. J. Premkumar, and C. D. Manning. Leveraging

linguistic structure for open domain information extraction. In
ACL 2015, Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, pages 344–354,
2015.

[2] S. Antoy and D. Hamlet. Automatically checking an
implementation against its formal specification. IEEE
Transactions on Software Engineering, 26(1):55–69, 2000.

[3] W. Araujo, L. C. Briand, and Y. Labiche. Enabling the runtime
assertion checking of concurrent contracts for the Java
modeling language. In ICSE’11, Proceedings of the 33rd
International Conference on Software Engineering, pages
786–795, 2011.

[4] C. Bacherler, B. Moszkowski, C. Facchi, and A. Huebner.
Automated test code generation based on formalized natural
language business rules. In ICSEA’12, Proceedings of the 7th
International Conference on Software Engineering Advances,
pages 165–171, 2012.

[5] L. Baresi, P. L. Lanzi, and M. Miraz. Testful: An evolutionary
test approach for Java. In ICST’10, Proceedings of the 3rd
International Conference on Software Testing, Verification and
Validation, pages 185–194, 2010.

[6] L. Baresi and M. Young. Test oracles. Technical Report
CIS-TR-01-02, University of Oregon, Department of Computer
and Information Science, 2001.

[7] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The
oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, May
2015.

[8] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and M. Pezzè.
Cross-checking oracles from intrinsic software redundancy. In
ICSE’14, Proceedings of the 36th International Conference on
Software Engineering, pages 931–942, 2014.

[9] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and
P. Tonella. Do automatically generated test cases make
debugging easier? An experimental assessment of debugging
effectiveness and efficiency. ACM Transactions on
Programming Languages and Systems, 25(1):5:1–5:38,
December 2015.

[10] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou. Metamorphic
testing and beyond. In STEP’03, Proceedings of the 11th
International Workshop on Software Technology and
Engineering Practice, pages 94–100, 2003.

[11] Y. Cheon. Abstraction in assertion-based test oracles. In
QSIC’07, Proceedings of the 7th International Conference on
Quality Software, pages 410–414, 2007.

[12] Y. Cheon and G. T. Leavens. A simple and practical approach
to unit testing: The JML and JUnit way. In ECOOP 2002 —
Object-Oriented Programming, 16th European Conference,
pages 231–255, 2002.

[13] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and Experience,
34(11):1025–1050, September 2004.

[14] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining
static checking and testing. In ICSE’05, Proceedings of the
27th International Conference on Software Engineering, pages
422–431, St. Louis, MO, USA, May 18–20, 2005.

[15] J. D. Day and J. D. Gannon. A test oracle based on formal
specifications. In SOFTAIR’85, Proceedings of the 2nd
Conference on Software Development Tools, Techniques, and
Alternatives, pages 126–130, 1985.

[16] L. Del Corro and R. Gemulla. Clausie: Clause-based open
information extraction. In WWW 2013, Proceedings of the 22nd
International World Wide Web Conference, pages 355–366,
2013.

[17] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and T. Schiller.
Building and using pluggable type-checkers. In ICSE’11,
Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA,
May 25–27, 2011.

[18] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Transactions on
Software Engineering and Methodology, 3(2):101–130, 1994.

[19] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. IEEE Transactions on Software Engineering,
38(2):278–292, March–April 2012.

[20] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite state models. IEEE
Transactions on Software Engineering, 17(6):591–603, 1991.

[21] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving search-based
test suite generation with dynamic symbolic execution. In
ISSRE’13, Proceedings of the IEEE International Symposium
on Software Reliability Engineering, pages 360–369, 2013.

[22] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction,
implementation, specification, and testing. ACM Transactions
on Programming Languages and Systems, 3(3):211–223, 1981.

[23] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In PLDI 2005, Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, Chicago, IL, USA, June 13–15,
2005.

[24] A. Gotlieb. Exploiting symmetries to test programs. In
ISSRE’03, Proceedings of the IEEE International Symposium
on Software Reliability Engineering, pages 365–375, 2003.

[25] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55–60, 2014.

[26] M. Marneffe, B. Maccartney, and C. Manning. Generating
typed dependency parses from phrase structure parses. In
LREC’06, Proceedings of the workshop on Cross-Framework
and Cross-Domain Parser Evaluation, pages 449–454, 2006.

[27] J. Mcdonald. Translating Object-Z specifications to passive test
oracles. In ICFEM’98, Proceedings of the 1998 International
Conference on Formal Engineering Methods, pages 165–174,
1998.

[28] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1st edition, 1988.

[29] E. Mikk. Compilation of Z specifications into C for automatic
test result evaluation. In ZUM’95, Proceedings of the 9th
International Conference of Z Users, pages 167–180, 1995.

[30] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of
software applications using the in vivo testing approach. In
ICST’09, Proceedings of the 2nd International Conference on
Software Testing, Verification and Validation, pages 111–120,
2009.

[31] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and
classification of test inputs. In ECOOP 2005 —
Object-Oriented Programming, 19th European Conference,
pages 504–527, Glasgow, Scotland, July 27–29, 2005.

[32] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE’07,

223

Proceedings of the 29th International Conference on Software
Engineering, pages 75–84, Minneapolis, MN, USA,
May 23–25, 2007.

[33] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar. Inferring method specifications from natural
language API descriptions. In ICSE’12, Proceedings of the
34th International Conference on Software Engineering, pages
815–825, Zurich, Switzerland, 2012.

[34] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In ISSTA 2008,
Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA,
July 22–24, 2008.

[35] Parasoft Corporation. Jtest version 4.5.
http://www.parasoft.com/.

[36] Randoop Developers. Randoop manual.
https://randoop.github.io/randoop/manual/, January 2016.
Version 2.1.1.

[37] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit test
generation during software development: A controlled
experiment and think-aloud observations. In ISSTA 2015,
Proceedings of the 2015 International Symposium on Software
Testing and Analysis, pages 338–349, 2015.

[38] D. S. Rosenblum. A practical approach to programming with
assertions. IEEE Transactions on Software Engineering,
21(1):19–31, 1995.

[39] C. Rubio-González and B. Liblit. Expect the unexpected: error
code mismatches between documentation and the real world. In
PASTE’10, Proceedings of the ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, pages 73–80, 2010.

[40] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In ESEC/FSE 2005: Proceedings of the
10th European Software Engineering Conference and the 13th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 263–272, Lisbon, Portugal, September 7–9,
2005.

[41] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri. Do automatically generated unit tests find real
faults? An empirical study of effectiveness and challenges. In
ASE 2015: Proceedings of the 30th Annual International
Conference on Automated Software Engineering, pages
201–211, Lincoln, NE, USA, November 11–13, 2015.

[42] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*iComment: Bugs
or bad comments?*/. In SOSP 2007, Proceedings of the 21st
ACM Symposium on Operating Systems Principles, pages
145–158, Stevenson, WA, USA, October 14–17, 2007.

[43] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining
annotations from comments and code to detect interrupt related
concurrency bugs. In ICSE’11, Proceedings of the 33rd
International Conference on Software Engineering, pages
11–20, 2011.

[44] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tComment:
Testing Javadoc comments to detect comment-code
inconsistencies. In Fifth International Conference on Software
Testing, Verification and Validation (ICST), pages 260–269,
Montreal, Canada, April 18–20, 2012.

[45] R. N. Taylor. An integrated verification and testing environment.
Software: Practice and Experience, 13(8):697–713, 1983.

[46] M. Vivanti, A. Mis, A. Gorla, and G. Fraser. Search-based
data-flow test generation. In ISSRE’13, Proceedings of the
IEEE International Symposium on Software Reliability
Engineering, pages 370–379. IEEE, 2013.

[47] W. Weimer and G. C. Necula. Finding and preventing run-time
error handling mistakes. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 2004), pages
419–431, Vancouver, BC, Canada, 2004.

[48] E. Wong, L. Zhang, S. Wang, T. Liu, and L. Tan. Dase:
Document-assisted symbolic execution for improving
automated software testing. In ICSE’15, Proceedings of the
37th International Conference on Software Engineering, pages
620–631, Florence, Italy, 2015.

[49] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei.
Inferring dependency constraints on parameters for web
services. In Proceedings of the 22nd International Conference
on World Wide Web, pages 1421–1432, Rio de Janeiro, Brazil,
2013.

[50] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie.
Automated extraction of security policies from
natural-language software documents. In FSE 2012,
Proceedings of the ACM SIGSOFT 20th Symposium on the
Foundations of Software Engineering, pages 12:1–12:11, Cary,
North Carolina, 2012.

[51] T. Xie and D. Notkin. Tool-assisted unit test selection based on
operational violations. In ASE 2003: Proceedings of the 18th
Annual International Conference on Automated Software
Engineering, pages 40–48, Montreal, Canada, October 8–10,
2003.

[52] B. Zhang, E. Hill, and J. Clause. Automatically generating test
templates from test names. In ASE 2015: Proceedings of the
30th Annual International Conference on Automated Software
Engineering, pages 506–511, Lincoln, NE, USA,
November 11–13, 2015.

[53] H. Zhong and Z. Su. Detecting API documentation errors. In
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2013), pages 803–816, Indianapolis,
Indiana, USA, 2013.

[54] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
ASE 2009: Proceedings of the 24th Annual International
Conference on Automated Software Engineering, pages
307–318, Washington, DC, USA, 2009.

224

