
Jeremy Nimmer, page 1

Automatic Generation
of Program Specifications

Jeremy Nimmer

MIT Lab for Computer Science

http://pag.lcs.mit.edu/

Joint work with Michael Ernst

Jeremy Nimmer, page 2

Synopsis

Specifications are useful for many tasks

• Use of specifications has practical difficulties

Dynamic analysis can capture specifications

• Recover from existing code

• Infer from traces

• Results are accurate (90%+)

• Specification matches implementation

Jeremy Nimmer, page 3

Outline

• Motivation

• Approach: Generate and check specifications

• Evaluation: Accuracy experiment

• Conclusion

Jeremy Nimmer, page 4

Advantages of
specifications

• Describe behavior precisely

• Permit reasoning using summaries

• Can be verified automatically

Jeremy Nimmer, page 5

Problems with
specifications

• Describe behavior precisely

• Tedious and difficult to write and maintain

• Permit reasoning using summaries

• Must be accurate if used in lieu of code

• Can be verified automatically

• Verification may require uninteresting annotations

Jeremy Nimmer, page 6

Solution
Automatically generate and check

specifications from the code

Specification

Code

Checker

Generator
myStack.push(elt);

Q.E.D.

myStack.isEmpty() = false

Proof

Jeremy Nimmer, page 7

Solution scope

• Generate and check “complete” specifications

• Very difficult

• Generate and check partial specifications

• Nullness, types, bounds, modification targets, ...

• Need not operate in isolation

• User might have some interaction

• Goal: decrease overall effort

Jeremy Nimmer, page 8

Outline

• Motivation

• Approach: Generate and check specifications

• Evaluation: Accuracy experiment

• Conclusion

Jeremy Nimmer, page 9

Previous approaches

Generation:

• By hand

• Static analysis

Checking

• By hand

• Non-executable models

Specification

Code

Checker

Generator
myStack.push(elt);

Q.E.D.

myStack.isEmpty() = false

Proof

Jeremy Nimmer, page 10

Our approach

• Dynamic detection proposes likely properties

• Static checking verifies properties

• Combining the techniques overcomes the
weaknesses of each

• Ease annotation

• Guarantee soundness

Specification

Code

Checker

Generator
myStack.push(elt);

Q.E.D.

myStack.isEmpty() = false

Proof

Jeremy Nimmer, page 11

Daikon:
Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Invariant detector reads data traces, generates

potential invariants, and checks them

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

Jeremy Nimmer, page 12

ESC/Java:
Invariant checking

• ESC/Java: Extended Static Checker for Java

• Lightweight technology: intermediate between

type-checker and theorem-prover; unsound

• Intended to detect array bounds and null

dereference errors, and annotation violations

/*@ requires x != null */

/*@ ensures this.a[this.top] == x */

void push(Object x);

• Modular: checks, and relies on, specifications

Jeremy Nimmer, page 13

Integration approach

Run Daikon over target program

Insert results into program as annotations

Run ESC/Java on the annotated program

All steps are automatic.

Specification

Code

ESC/Java

Daikon
myStack.push(elt);

Q.E.D.

myStack.isEmpty() = false

Proof

Jeremy Nimmer, page 14

/*@

invariant theArray != null;

invariant \typeof(theArray) == \type(Object[]);

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;

invariant theArray[0..topOfStack] != null;

invariant theArray[topOfStack+1..] == null;

*/

public class StackAr {

Object[] theArray;

int topOfStack;

...

Stack object invariants

A YUOE ItheArray

topOfStack

invariant theArray != null;

invariant \typeof(theArray) == \type(Object[]);

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;

invariant theArray[0..topOfStack] != null;

invariant theArray[topOfStack+1..] == null;

Jeremy Nimmer, page 15

Stack push method

/*@ requires x != null;

requires topOfStack < theArray.length - 1;

modifies topOfStack, theArray[*];

ensures topOfStack == \old(topOfStack) + 1;

ensures x == theArray[topOfStack];

ensures theArray[0..\old(topOfStack)];

== \old(theArray[0..topOfStack]); */

A WYUOE ItheArray

topOfStack

public void push(Object x) {

...

}

/*@ requires x != null;

requires topOfStack < theArray.length - 1;

modifies topOfStack, theArray[*];

ensures topOfStack == \old(topOfStack) + 1;

ensures x == theArray[topOfStack];

ensures theArray[0..\old(topOfStack)];

== \old(theArray[0..topOfStack]); */

Jeremy Nimmer, page 16

Stack summary

• Reveal properties of the implementation

(e.g., garbage collection of popped elements)

• No runtime errors if callers satisfy preconditions

• Implementation meets generated specification

• ESC/Java verified all 25 Daikon invariants

Jeremy Nimmer, page 17

Outline

• Motivation

• Approach: Generate and check specifications

• Evaluation: Accuracy experiment

• Conclusion

Jeremy Nimmer, page 18

Accuracy experiment

• Dynamic generation is potentially unsound

• How accurate are its results in practice?

• Combining static and dynamic analyses

should produce benefits

• But perhaps their domains are too dissimilar?

Jeremy Nimmer, page 19

Programs studied

• 11 programs from libraries, assignments, texts

• Total 2449 NCNB LOC in 273 methods

• Test suites

• Used program’s test suite if provided (9 did)

• If just example calls, spent <30 min. enhancing

• ~70% statement coverage

Jeremy Nimmer, page 20

invariant theArray != null;

invariant topOfStack >= -1;

invariant topOfStack < theArray.length;

invariant theArray[0..length-1] == null;

invariant theArray[0..topOfStack] != null;

invariant theArray[topOfStack+1..] == null;

Accuracy measurement

• Standard measures from info ret [Sal68, vR79]

• Precision (correctness) : 3 / 4 = 75%

• Recall (completeness) : 3 / 5 = 60%

• Compare generated specification to a

verifiable specification

Jeremy Nimmer, page 21

Experiment results

• Daikon reported 554 invariants

• Precision: 96% of reported invariants verified

• Recall: 91% of necessary invariants were reported

Jeremy Nimmer, page 22

Causes of inaccuracy

• Limits on tool grammars

• Daikon: May not propose relevant property

• ESC: May not allow statement of relevant property

• Incompleteness in ESC/Java

• Always need programmer judgment

• Insufficient test suite

• Shows up as overly-strong specification

• Verification failure highlights problem; helpful in fixing

• System tests fared better than unit tests

Jeremy Nimmer, page 23

Experiment conclusions

• Our dynamic analysis is accurate

• Recovered partial specification

• Even with limited test suites

• Enabled verifying lack of runtime exceptions

• Specification matches the code

• Results should scale

• Larger programs dominate results

• Approach is class- and method-centric

Jeremy Nimmer, page 24

Value to programmers

Generated specifications are accurate

• Are the specifications useful?

• How much does accuracy matter?

• How does Daikon compare with other

annotation assistants?

Answers at FSE'02

Jeremy Nimmer, page 25

Outline

• Motivation

• Approach: Generate and check specifications

• Evaluation: Accuracy experiment

• Conclusion

Jeremy Nimmer, page 26

Conclusion

• Specifications via dynamic analysis

• Accurately produced from limited test suites

• Automatically verifiable (minor edits)

• Specification characterizes the code

• Unsound techniques useful in program

development

Jeremy Nimmer, page 27

Questions?

Jeremy Nimmer, page 28

Formal specifications

• Precise, mathematical desc. of behavior [LG01]

• (Another type of spec: requirements documents)

• Standard definition; novel use

• Generated after implementation

• Still useful to produce [PC86]

• Many specifications for a program

• Depends on task

• e.g. runtime performance

Jeremy Nimmer, page 29

Effect of bugs

• Case 1: Bug is exercised by test suite

• Falsifies one or more invariants

• Weaker specification

• May cause verification to fail

• Case 2: Bug is not exercised by test suite

• Not reflected in specification

• Code and specification disagree

• Verifier points out inconsistency

