
Object and Reference Immutability
using Java Generics

Yoav Zibin, Alex Potanin(*), Mahmood Ali,
Shay Artzi, Adam Kiezun, and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab, USA

* Victoria University of Wellington, New Zealand

2/23

Immutability – What for?

 Program
comprehension

 Verification

 Compile- & run-time
optimizations

 Invariant detection

 Refactoring

 Test input generation

 Regression oracle
creation

 Specification mining

 Modelling

3/23

Immutability varieties

 Class immutability
 No instance of an immutable class can be mutated

after creation (e.g., String, Integer)

 Object immutability
 The same class may have both mutable and

immutable instances

 Reference immutability
 A particular reference cannot be used to mutate its

referent (but other aliases might cause mutations)

4/23

Previous work

 Access rights

 Java with Access-Control (JAC)
 readnothing < readimmutable < readonly < writeable

 Capabilities for sharing

 Lower-level rights that can be enforced at compile- or
run- time

 Reference immutability:

 Universes (ownership + reference immutability)

 C++’s const

 Javari

5/23

IGJ - Immutability Generic Java

 Class immutability

 All instances are immutable objects

 Object immutability:

 An object: mutable or immutable

 Reference immutability:

 A reference: mutable, immutable, or readonly

6/23

IGJ syntax

Java syntax is not modified:

 One new generic parameter was added

 Some method annotations were added (shown later)

1: // An immutable reference to an immutable date;

// Mutating the referent is prohibited, via this or any other reference.

Date<Immutable> immutD = new Date<Immutable>();

2: // A mutable reference to a mutable date;

// Mutating the referent is permitted, via this or any other reference.

Date<Mutable> mutD = new Date<Mutable>();

3: // A readonly reference to any date;

// Mutating the referent is prohibited via this reference.

Date<ReadOnly> roD = ... ? immutD : mutD;

7/23

IGJ design principles

 Transitivity
 Transitive (deep) immutability protects the entire abstract

state from mutation

 Mutable fields are excluded from the abstract state

 Static
 No runtime representation for immutability

 Polymorphism
 Abstracting over immutability without code duplication

 Simplicity
 No change to Java’s syntax; a small set of typing rules

8/23

Hierarchies in IGJ

The subtype hierarchy
for Object and Date

ReadOnly

Mutable Immutable

Object<Immutable>

Object<ReadOnly>

Object<Mutable>

Date<Immutable>

Date<ReadOnly>

Date<Mutable>

Immutability parameters
hierarchy

Object

Date

The subclass hierarchy
for Object and Date

9/23

Covariance problem and immutability

 IGJ’s Solution:

 ReadOnly, Immutable – allow covariance

 Mutable – disallow covariance

void foo(Object[] a) { a[0] = new Integer(1); }

foo(new Object[42]); // OK, stores an Integer in an Object array

foo(new String[42]); // Causes ArrayStoreException at runtime

List<ReadOnly,String> is a subtype of List<ReadOnly,Object>
List<Mutable,String> is NOT a subtype of List<Mutable,Object>

void foo(ArrayList<Object> a) { … }

foo(new ArrayList<Object>()); // OK

foo(new ArrayList<String>()); // Compilation error!

11/23

IGJ typing rules

 There are several typing rules
(next slides)
 Field assignment

 Immutability of this

 Method invocation

 Let I(x) denote the immutability of x

 Example:
Date<Mutable> d;

I(d) is Mutable

12/23

Field assignment rule

Employee<ReadOnly> roE = …;

roE.address = …; // Compilation error!

o.someField = …;

is legal iff I(o) = Mutable

Example:

13/23

Immutability of this

 this immutability is indicated by a
method annotation
 @ReadOnly, @Mutable, @Immutable

 We write I(m.this) to show the context

of this

 Example:
 @Mutable void m() {... this ...}

 I(m.this) = Mutable

14/23

Method invocation rule

1: Employee<Mutable> mutE = ...;

2: mutE.setAddress(...); // OK

3: mutE.getAddress(); // OK

4: Employee<ReadOnly> roE = mutE;

5: roE.setAddress(...); // Compilation error!

o.m(...)

is legal iff I(o) is a subtype of I(m.this)

15/23

Reference immutability (ReadOnly)

1 : class Edge<I extends ReadOnly> {

2 : long id;

3 : @Mutable Edge(long id) { this.setId(id); }

4 : @Mutable void setId(long id) { this.id = id; }

5 : @ReadOnly long getId() { return this.id; }

6 : @ReadOnly Edge<I> copy() { return new Edge<I>(this.id); }

7 : static void print(Edge<ReadOnly> e) {... }

8 : }

10: class Graph<I extends ReadOnly> {

11: List<I,Edge<I>> edges;

12: @Mutable Graph(List<I,Edge<I>> edges) { this.edges = edges; }

13: @Mutable void addEdge(Edge<Mutable> e) { this.edges.add(e);}

14: static <X extends ReadOnly>

15: Edge<X> findEdge(Graph<X> g, long id) { ... }

16: }

16/23

Object immutability: Motivation

@ReadOnly synchronized long getId() { return id; }

@Immutable long getIdImmutable() { return id; }

 Compile- & run-time optimizations

 Program comprehension

 Verification

 Invariant detection

 Test input generation

 ...

 Example: Immutable objects need no synchronization

17/23

Object immutability: Challenge

1: class Edge<I extends ReadOnly> {

2: private long id;

3: @????????????? Edge(long id) { this.setId(id); }

4: @Mutable void setId(long id) { this.id = id; }

 Challenge: How should the constructor be annotated?

 @Mutable ?

 A mutable alias for this might escape

 @Immutable or @ReadOnly ?

 Cannot assign to any field, nor call this.setId

18/23

Object immutability: Solution

1: class Edge<I extends ReadOnly> {

2: private long id;

3: @AssignsFields Edge(long id) { this.setId(id); }

4: @AssignsFields void setId(long id) { this.id = id; }

5: Edge<I> e;

6: @Mutable void foo(long id) { this.e.id = id; }

 @AssignsFields

 Can only assign to the fields of this,
i.e., it is not transitive

 Private: cannot write Date<AssignsFields>

 Conclusion: this can only escape as ReadOnly

ReadOnly

AssignsFields Immutable

Mutable

20/23

Case studies

 IGJ compiler
 Small and simple extension of javac

 Using the visitor pattern for the AST

 Modified isSubType according to IGJ’s
covariant subtyping

 Case studies:
 Jolden benchmark, htmlparser, svn client

 328 classes (106 KLOC)

 113 JDK classes and interfaces

21/23

Case studies conclusions

 Representation exposure errors
 In htmlparser: constructor takes an array and

assigns it to a field, without copying; an accessor
method also returns that array

 Conceptual problems
 In Jolden: an immutable object is mutated only once

immediately after it creation.
We refactored the code, inserting the mutation to the
constructor

 Found both immutable classes and objects
 Date, SVNURL, lists

22/23

See the paper for ...

 CoVariant and NoVariant type parameters
 Method overriding
 Mutable and assignable fields

 Inner classes
 Circular immutable data-structures
 Formal proof (Featherweight IGJ)

23/23

Conclusions

 Immutability Generic Java (IGJ)
 Both reference, object, and class immutability

 Simple, intuitive, small, no syntax changes

 Static – no runtime penalties (like generics)

 Backward compatible, no JVM changes

 High degree of polymorphism using generics
and safe covariant subtyping

 Case study proving usefulness

 Formal proof of soundness

24/23

Future work

 Add default immutability

class Graph<I extends ReadOnly default Mutable>

 An alternative syntax
(in JSR 308 for Java 7)

 Runtime support (e.g. down-cast)

new @mutable ArrayList<@immutable Edge>(...)

