
Michael Ernst, page 1

Quickly Detecting
Relevant Program Invariants

Michael Ernst, Adam Czeisler,
Bill Griswold (UCSD), and David Notkin

University of Washington

http://www.cs.washington.edu/homes/mernst/daikon

Michael Ernst, page 2

Overview

Goal: improve dynamic invariant detection
[ICSE 99, TSE]

Relevance improvements:

• add desired invariants (2 techniques)

• eliminate undesired ones (3 techniques)

Experiments validate the success

Michael Ernst, page 3

Program invariants

Detect invariants (as in asserts or specifications)

• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

Michael Ernst, page 4

Uses for invariants

• Write better programs [Gries 81, Liskov 86]

• Document code

• Check assumptions: convert to assert

• Maintain invariants to avoid introducing bugs

• Locate unusual conditions

• Validate test suite: value coverage

• Provide hints for higher-level profile-directed

compilation [Calder 98]

• Bootstrap proofs [Wegbreit 74, Bensalem 96]

Michael Ernst, page 5

Dynamic invariant
detection is accurate

Recovered formal specifications, found bugs

Target programs:

• The Science of Programming [Gries 81]

• Program checkers [Detlefs 98, Xi 98]

• MIT 6.170 student programs

• Data Structures and Algorithm Analysis in Java [Weiss 99]

Michael Ernst, page 6

Dynamic invariant
detection is useful

563-line C program: regexp search & replace
[Hutchins 94, Rothermel 98]

• Explicated data structures

• Contradicted expectations, preventing bugs

• Revealed bugs

• Showed limited use of procedures

• Improved test suite

• Validated program changes

Michael Ernst, page 7

Dynamic invariant detection

Look for patterns in values the program computes:

• Instrument the program to write data trace files

• Run the program on a test suite

• Invariant engine reads data traces, generates potential

invariants, and checks them

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect

invariants

Michael Ernst, page 8

Checking invariants

For each potential invariant:

• instantiate
(determine constants like a and b in y = ax + b)

• check for each set of variable values

• stop checking when falsified

This is inexpensive: many invariants, each cheap

Michael Ernst, page 9

Relevance

Usefulness to a programmer for a task

Contingent on task and programmer

We manually classified invariants

Perfect output is unnecessary (and impossible)

Michael Ernst, page 10

Improved invariant relevance

Add desired invariants:

1. Implicit values

2. Unused polymorphism

Eliminate undesired invariants
(and improve performance):

3. Unjustified properties

4. Redundant invariants

5. Incomparable variables

Michael Ernst, page 11

1. Implicit values

Goal: relationships over non-variables

Examples:

• for array a: length(a), sum(a), min(a), max(a)

• for array a and scalar i: a[i], a[0..i]

• for procedure p: #calls(p)

Michael Ernst, page 12

Derived variables

Successfully produces desired invariants

Adds many new variables

Potential problems:

• slowdown: interleave derivation and inference

• irrelevant invariants: techniques 3–5, later in talk

Michael Ernst, page 13

2. Unused polymorphism

Variables declared with general type, used

with more specific type

Example: given a generic list that contains only

integers, report that the contents are sorted

Also applicable to subtype polymorphism

Michael Ernst, page 14

Unused polymorphism
example

class MyInteger { int value; … }

class Link { Object element; Link next; … }

class List { Link header; … }

List myList = new List();

for (int i=0; i<10; i++)

myList.add(new MyInteger(i));

Desired invariant: in class List,

header.closure(next) is sorted by
over key .element.value

Michael Ernst, page 15

Polymorphism elimination

Daikon respects declared types

Pass 1: front end outputs object ID, runtime

type, and all known fields

Pass 2: given refined type, front end outputs

more fields

Sound for deterministic programs

Effective for programs tested so far

Michael Ernst, page 16

3. Unjustified properties

Given three samples for x:
x = 7
x = –42
x = 22

Potential invariants:

x 0

x 22

x –42

Michael Ernst, page 17

Statistical checks

Check hypothesized distribution

To show x 0 for v values of x in range of size r,

probability of no zeroes is

Range limits (e.g., x 22):

• same number of samples as neighbors (uniform)

• more samples than neighbors (clipped)

v

r

1
1

variable value

#
 o

f
s
a

m
p

le
s

variable value

#
 o

f
s
a
m

p
le

s

Michael Ernst, page 18

Duplicate values

Array sum program:

// Sum array b of length n into variable s.

i := 0; s := 0;
while i n do

{ s := s+b[i]; i := i+1 }

b is unchanged inside loop

Problem: at loop head,

–88 b[n – 1] 99

–556 sum(b) 539

Reason: more samples inside loop

Michael Ernst, page 19

Disregard duplicate values

Idea: count a value if its var was just modified

Front end outputs modification bit per value

• compared techniques for eliminating duplicates

Result: eliminates undesired invariants

Michael Ernst, page 20

4. Redundant invariants

Given:

0 i j

Redundant:

a[i] a[0..j]

max(a[0..i]) max(a[0..j])

Redundant invariants are logically implied

Implementation contains many such tests

Michael Ernst, page 21

Suppress redundancies

Avoid deriving variables: suppress 25-50%

• equal to another variable

• nonsensical (a[i] when i < 0)

Avoid checking invariants:

• false invariants: trivial improvement

• true invariants: suppress 90%

Avoid reporting trivial invariants: suppress 25%

Michael Ernst, page 22

5. Unrelated variables

Problem: the following are of no interest

bool b;
int *p;

b < p

int myweight, mybirthyear;

myweight < mybirthyear

Michael Ernst, page 23

Limit comparisons

Check relations only over comparable variables

• declared program types

• Lackwit [O’Callahan 97]: value flow analysis

based on polymorphic type inference

Michael Ernst, page 24

Comparability results

Comparisons:

• declared types: 60% as many comparisons

• Lackwit: 5% as many comparisons; scales well

Runtime: 40-70% improvement

Few differences in reported invariants

Michael Ernst, page 25

Future work
Online inference

Proving invariants

Characterize good test suites

New invariants: temporal, existential

User interface

• control over instrumentation

• display and manipulation of invariants

Further experimental evaluation

• apply to more and bigger programs

• apply to a variety of tasks

Michael Ernst, page 26

Related work

Dynamic inference

• inductive logic programming [Bratko 93, Cypher 93]

• program spectra [Reps 97, Harrold 98]

• finite state machines [Boigelot 97, Cook 98]

Static inference

• checking specifications [Detlefs 96, Evans 96, Jacobs 98]

• specification extension [Givan 96, Hendren 92]

• other [Jeffords 98, Henry 90, Ward 96]

Michael Ernst, page 27

Conclusions

Naive implementation is infeasible

Relevance improvements: accuracy, performance

• add desired invariants

• eliminate undesired invariants

Experimental validation

Dynamic invariant detection is promising for

research and practice

Michael Ernst, page 28

Questions?

Michael Ernst, page 29

Ways to obtain invariants

• Programmer-supplied

• Static analysis: examine the program text
[Cousot 77, Gannod 96]

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis: run the program

• complementary to static techniques

Michael Ernst, page 30

Unused polymorphism
example

class MyInteger { int value; … }

class Link { Object element; Link next; … }

class List { Link header; … }

List myList = new List();

for (int i=0; i<10; i++)

myList.add(new MyInteger(i));

Desired invariant: in class List,

header.closure(next).element.value: sorted by

Michael Ernst, page 31

Comparison with AI

Dynamic invariant detection:

Can be formulated as an AI problem

Cannot be solved by current AI techniques

• not classification or clustering

• no noise

• no negative examples; many positive examples

• intelligible output

Michael Ernst, page 32

Is implication obvious?

Want:

size(topOfStack.closure(next)) =
size(orig(topOfStack.closure(next))) + 1

Get:

size(topOfStack.next.closure(next)) =
size(topOfStack.closure(next)) – 1

topOfStack.next.closure(next) =
orig(topOfStack.closure(next))

Solution: interactive UI, queries on variables

