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Abstract
Concurrency is a requirement for much modern software, but the
implementation of multithreaded algorithms comes at the risk of
errors such as data races. Programmers can prevent data races
by documenting and obeying a locking discipline, which indicates
which locks must be held in order to access which data.

This paper introduces a formal semantics for locking specifica-
tions that gives a guarantee of race freedom. A notable difference
from most other semantics is that it is in terms of values (which
is what the runtime system locks) rather than variables. The paper
also shows how to express the formal semantics in two different
styles of analysis: abstract interpretation and type theory. We have
implemented both analyses, in tools that operate on Java. To the
best of our knowledge, these are the first tools that can soundly infer
and check a locking discipline for Java. Our experiments compare
the implementations with one another and with annotations written
by programmers, showing that the ambiguities and unsoundness of
previous formulations are a problem in practice.

1. Introduction
Concurrency allows computations to occur inside autonomous

threads, which are distinct processes that share the same heap mem-
ory. Threads increase program performance by scheduling parallel
independent tasks on multicore hardware and enable responsive
user interfaces [23]. However, concurrency might induce problems
such as data races (concurrent access to shared data), with conse-
quent unpredictable or erroneous software behavior. Such errors
are difficult to understand, diagnose, and reproduce at run time.
They are also difficult to prevent: testing tends to be incomplete due
to nondeterministic scheduling choices made by the runtime, and
model-checking scales poorly to real-world code.

The standard approach to prevent data races is to follow a lock-
ing discipline while accessing shared data: always hold a given
lock when accessing a given shared datum. It is all too easy for
a programmer to violate the locking discipline. Therefore, tools
are desirable for formally expressing the locking discipline and for
verifying adherence to it [10, 33].

The book Java Concurrency in Practice [22] (JCIP) proposed the
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syntax @GuardedBy to express a locking discipline and ensure thread-
safety. The intention is that when a locking discipline is expressed
with @GuardedBy, then “No set of operations performed sequentially
or concurrently on instances of a thread-safe class can cause an
instance to be in an invalid state”; a thread-safe class is one that
“use[s] synchronization whenever accessing the [shared, mutable]
state”. This annotation has been widely adopted; for example,
GitHub contains about 35,000 uses of the annotation in 7,000 files
(https://github.com/search?l=java&q=GuardedBy&type=Code).

In an appendix, JCIP proposed a specification for @GuardedBy.
One of our contributions is our observation that this widely-used
specification is ambiguous; indeed, different tools interpret it in
different ways [36, 40]. A more important observation is that the
specification is incorrect: every interpretation of it permits data races
and therefore violates its design goal. Another of our contributions
is a formal specification for @GuardedBy that satisfies its design goals
and prevents data races. (This paper describes the semantics and
gives examples, but for reasons of space, the full formal develop-
ment appears in a technical report [14].) We have instantiated this
specification in two styles of analysis: abstract interpretation and
type-based analysis.

We have also implemented two tools that implement our specifica-
tion. One tool uses type-checking to validate @GuardedBy annotations
that are written in Java source code. The other tool uses abstract
interpretation to infer valid @GuardedBy annotations for unannotated
programs. Our techniques are not specific to Java and generalize
to other languages. It is not the goal of these implementations to
detect race conditions or give a guarantee that they do not exist. The
inference tool determines what locking discipline a program uses,
and the checking tool determines whether a program obeys a given
locking discipline, without judging whether the discipline is too
strict or too lax for some particular purpose.1

In an experimental evaluation, we compared these tools to one
another and to programmer-written annotations. Our evaluation
shows that programmers who use the @GuardedBy annotation do not
necessarily do so consistently with JCIP’s rules, and even when they
do, their programs still suffer data races.

An informal definition of @GuardedBy is that when a program-
mer writes @GuardedBy(E) on a program element, then a thread may
use the program element only while holding the lock E. Namely,
the documentation for JCIP’s @GuardedBy [27] states: “The field or
method to which this annotation is applied can only be accessed
when holding a particular lock”. Section 2 illustrates important am-
biguities in this informal definition. All of these need to be resolved
by a formal definition. The most important problem with JCIP’s
definition is that it provides name protection rather than value protec-
1The desired locking discipline is unknowable: some race conditions are benign, a
programmer may intend locking to be managed by a library or by clients, locking may
not be necessary for objects that do not escape their thread, etc.



tion [9]. Name protection is fine for primitive values, which cannot
be aliased in Java. Value protection is needed in order to prevent
data races on reference values, due to aliasing and because the Java
Language Specification defines locking in terms of values rather
than names [25]. Unfortunately, most tools that check @GuardedBy

annotations use JCIP’s inadequate definition and therefore permit
data races. Our definition prevents data races by providing value
protection: if a reference r is guarded by E, then for any value v
stored in r, v’s fields are only accessed while the lock E is held. (At
run time, a lock expression E is held on a given thread at a given time
if java.lang.Thread.holdsLock(E) evaluates to true on that thread at
that time.) Checking and inference of this definition requires track-
ing values v as they flow through the program, because the value
may be used through other variables and fields, not necessarily r.
Since this is relevant for reference values only, this article considers
value protection for reference variables and fields only.

The contributions of this paper include:

• A sound semantics for @GuardedBy that guarantees the absence
of data races, unlike the interpretation adopted by previous def-
initions and tools. The semantics is defined in terms of uses of
values (objects) rather than uses of names (variables).
• Two instantiations of the locking discipline semantics, using the

formalisms of abstract interpretation and type systems. Two
independent implementations for Java: as a modular type analysis
and as a whole-program abstract interpretation.
• Case studies of programmers’ use of @GuardedBy in practice. Previ-

ous specifications of the annotation have been vague, and we note
places where the programmers’ interpretation does not provide
a guarantee against data races. Furthermore, we note where pro-
grammers have written annotations that are incorrect, illustrating
the need for tools like ours.
• A practical comparison of the strengths of the two complementary

and independent implementations above: modular type-based and
global abstract interpretation.

The rest of this paper is organized as follows. Section 2 justifies
the need for a locking discipline in concurrent programs. Section 3
describes the type system approach. Section 4 presents the abstract
interpretation approach. Section 5 shows experiments with imple-
mentations of both approaches. Section 6 presents related work.
Finally, Section 7 concludes.

2. Locking discipline semantics
This section shows how a locking discipline can enforce mutual

exclusion and the absence of data races; lays out the design space for
a locking discipline semantics; and discusses why such a semantics
should provide value protection rather than name protection.

2.1 Dining philosophers example
To illustrate how to specify a locking discipline, consider the

traditional dining-philosophers example. More examples are given
later. A group of philosophers sit around a table; there is a fork
between each pair of philosophers; and each philosopher needs its
left and right forks to eat. The locking discipline provides each
fork with a lock, and a philosopher must hold the lock in order to
use the fork; this guarantees mutual exclusion and the absence of
race conditions. (To prevent deadlock, the locks are acquired in
increasing order, but that is not a concern of this paper.)

Figure 1 shows Java code for the fork. The fork contains mutable
information (which philosopher holds it) in order to demonstrate
how a locking discipline can protect access to a mutable field. A
philosopher (Figure 2) is modeled as a thread whose run method re-
peatedly thinks, locks its two forks, eats, and unlocks the forks. The

1 public class Fork implements Comparable<Fork> {
2 private static int nextId = 0;
3 private final int id = nextId++;
4 // who is holding the fork, or null if on the table
5 private Philosopher usedBy = null;
6
7 void pickUp(Philosopher philosopher) {
8 this.usedBy = philosopher;
9 }

10
11 void drop() {
12 this.usedBy = null;
13 }
14
15 public int compareTo(@GuardedBy("itself") Fork other) {
16 return id - other.id;
17 }
18
19 public synchronized String toString() {
20 if (usedBy != null)
21 return "fork " + id + " used by " + usedBy.getName();
22 else
23 return "fork " + id + " on the table";
24 }
25 }

Figure 1: A fork, possibly held by a philosopher.

26 public class Philosopher extends Thread {
27 private final @GuardedBy("itself") Fork left;
28 private final @GuardedBy("itself") Fork right;
29
30 Philosopher(String name, @GuardedBy("itself") Fork left,
31 @GuardedBy("itself") Fork right) {
32 super(name);
33 // a fixed ordering avoids deadlock
34 if (left.compareTo(right) < 0) {
35 this.left = left; this.right = right;
36 } else {
37 this.left = right; this.right = left;
38 }
39 }
40
41 public void run() {
42 while (true) {
43 think();
44 synchronized (left) {
45 left.pickUp(this);
46 synchronized (right) {
47 right.pickUp(this);
48 eat();
49 right.drop();
50 }
51 left.drop();
52 }
53 }
54 }
55
56 private void think() { ... }
57
58 @Holding({ "left", "right" })
59 private void eat() { ... }
60 }

Figure 2: A philosopher.

code illustrates a situation in which classes cooperate to implement
a synchronization policy, rather than the less challenging case of all
code being in the same class.

In Java, each object is associated with a monitor [25, §17.1] or
intrinsic lock. A synchronized statement or method locks the moni-
tor, and exiting the statement or method unlocks the monitor. Java
also provides explicit locks, which our theory and implementations
handle, but which this paper omits for brevity.

The @GuardedBy type qualifiers express the locking discipline. In
the semantics that we will introduce in this article, the type qualifier
@GuardedBy("itself") on a variable’s type states that the variable
holds a value v whose non-final fields are only accessed at moments



when v’s monitor is locked by the current thread.
Our tools infer and verify the @GuardedBy annotations in these

figures. The @GuardedBy("itself") type qualifiers on fields left and
right guarantee that philosophers use their forks only after properly
locking them. The unlocked access to the final field id on line 16
of fig. 1 does not violate the @GuardedBy("itself") specification.

2.2 Design space for locking discipline semantics
Recall the informal definition of @GuardedBy: when a programmer

writes @GuardedBy(E) on a program element, then a thread may use
the program element only while holding the lock E. This definition
suffers the following ambiguities related to the guard expression E.

1. May a definite alias of E be locked? Given a declaration @GuardedBy

("lock") Object shared;, is the following permitted?
Object lockAlias = lock;
synchronized (lockAlias) {

... use shared ...
}

2. Is E allowed to be reassigned while locked? Given a declaration
@GuardedBy("lock") Object shared;, is the following permitted?

synchronized (lock) {
lock = new Object();
... use shared ...

}

What about other side effects to E? Given a declaration @GuardedBy

("anObject.field") Object shared;, are the following permitted?
synchronized (anObject.field) {

foo(); // might side-effect anObject and reassign field
... use shared ...

}

synchronized (anObject.field) {
foo(); // might side-effect but not reassign field
... use shared ...

}

3. Should E be interpreted at the location where it is defined or at
the location where it is used? Given a declaration

class C {
@GuardedBy("this") Object field;
...

}

are the following permitted?
C c;
synchronized (this) {

... use c.field ...
}
synchronized (c) {

... use c.field ...
}

The latter use assumes contextualization, such as viewpoint adap-
tation [13].

The informal definition suffers further ambiguities in the inter-
pretation of the program element being guarded. These can be sum-
marized by asking, what is a “use” of the shared program element?
Is it any occurrence of the variable name or only certain opera-
tions; do uses of aliases count, and are reassignment and side effects
permitted? More relevantly, does the @GuardedBy annotation spec-
ify restrictions on uses of a variable name (“name protection”), or
restrictions on uses of values (“value protection”)?

Current definitions of @GuardedBy do not provide guidance about
any of the ambiguities regarding the lock expression. Thus, there
is a danger that different tools interpret them differently, including
unsound interpretations that do not prevent data races. There is also

1 public class Observable {
2 private @GuardedBy("this") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constr.
6 synchronized (original) {
7 listeners.addAll(original.listeners);
8 }
9 }

10 public void register(Listener listener) {
11 synchronized (this) {
12 listeners.add(listener);
13 }
14 }
15 public List<Listener> getListeners() {
16 synchronized (this) {
17 return listeners;
18 }
19 }
20 }

Figure 3: An implementation of the observer design pattern in which
locking is performed on the container Observable object. This imple-
mentation suffers data races. The implementation satisfies the name-
protection semantics for @GuardedBy, but not the value-protection se-
mantics.

a danger that programmers will assume a different definition than a
tool provides, and thus do not obtain the guarantee they expect.

Current definitions of @GuardedBy are clearer about what consti-
tutes a use of the program element — any access to (that is, lexical
occurrence of) the name. This definition provides name protection,
but unfortunately it does not prevent data races. A program that
obeys this locking discipline might not be thread-safe and may still
suffer data races, as illustrated below. Therefore, any definition that
provides name protection is in general incorrect, because it does not
satisfy the stated goals of the @GuardedBy annotation.

2.3 Name protection and value protection
Name protection and value protection are distinct and incompa-

rable. Neither one implies the other. To illustrate the differences,
consider an implementation of the observer design pattern [20],
which is a key part of model-view-controller and other software
architectures. Figures 3 and 4 are patterned after the implementa-
tion found in the Java JDK. An Observable object allows clients to
concurrently register listeners. When an event of interest occurs, a
callback method is invoked on each listener.

Synchronization is required to avoid data races. Synchronization
in the register method and copy constructor prevents simultane-
ous modifications of the listeners list, which might result in a
corrupted list or lost registrations. Synchronization is needed in
the getListeners() method as well, or otherwise the Java memory
model would not guarantee the inter-thread visibility of the regis-
trations. In fig. 3, synchronization is performed on the container
object, and in fig. 4, synchronization is performed on a field.

Figure 3 satisfies all interpretations of the name protection seman-
tics: every use of listeners occurs at a program point where the
current thread locks its container.2 Nevertheless, a data race is pos-
sible, since two threads could call getListeners() and later access
the returned value concurrently. This demonstrates that the name
protection semantics does not prevent data races. Figure 3 does not
satisfy the value-protection semantics (which prevent data races),
because the return type of getListeners() is not compatible with
the return statement. Figure 3 could be made to satisfy the value-
protection semantics by annotating the return type of getListeners()
as @GuardedBy("this"), which would force the client program to do

2It also satisfies an interpretation of @GuardedBy that does not do contextualization or
viewpoint adaptation, since the constructor is implicitly synchronized on this.



1 public class Observable {
2 private @GuardedBy("itself") List<Listener> listeners
3 = new ArrayList<>();
4 public Observable() {}
5 public Observable(Observable original) { // copy constr.
6 synchronized (original.listeners) {
7 listeners.addAll(original.listeners);
8 }
9 }

10 public void register(Listener listener) {
11 synchronized (listeners) {
12 listeners.add(listener);
13 }
14 }
15 public @GuardedBy("itself") List<Listener> getListeners() {
16 synchronized (listeners) {
17 return listeners;
18 }
19 }
20 }

Figure 4: An implementation of the observer design pattern in which
locking is performed on the listeners field.

its own locking and would prevent data race.
Figure 4 specifies a different locking discipline. First consider

the value-protection semantics. @GuardedBy("itself") means that
all dereferences (field accesses) of the value of listeners occur
while the current thread locks that value. The annotation on the
return type of getListeners() imposes the same requirement on
clients of Observable. The field listeners could have been anno-
tated @GuardedBy("listeners"), but the syntax for the return type of
getListeners() would have been more complex, thus the @Guarded-

By("itself") syntax. Figure 4 also satisfies the name-protection
semantics. Depending on how the semantics handles aliasing and
side effects, the semantics may prevent clients of this program from
suffering data races.

Figure 4’s choice of locking the field rather than the container
permits additional flexibility. Consider the following client code:

List<Listener> l = new Observable(original).getListeners();
... use l ...

At the use of l, there is no syntactic handle for the container, and
it might even have been garbage-collected. Instead, the annotation
@GuardedBy("itself") is perfectly meaningful for l.

Regardless of other choices for the semantics of @GuardedBy, the
name-protection and value-protection variants are not comparable:
neither entails the other. In fig. 5, field x is declared as @Guarded-

By("itself"). This annotation holds in the value-protection seman-
tics, since its value is only accessed at line 11 inside a synchroniza-
tion on itself, but not in name-protection semantics: x is used at
line 8. Field y is @GuardedBy("this.x") for name protection but not
for value protection: its value is accessed at line 14 via w. In some
cases the semantics do coincide. Field z is @GuardedBy("itself")

according to both semantics: its name and value are only accessed at
line 11, where they are locked. Field w is not @GuardedBy according
to any semantics: its name and value are accessed at line 14.

2.4 Definition of @GuardedBy

We can now state our semantics for the @GuardedBy annotation. In
this article, by dereference of a value v we mean the access of a
non-final field of v. The key idea is that values are protected rather
than names, and that dereferences of v are considered uses of v.

Suppose that the type of expression x contains the qualifier @Guard-
edBy(E). A program satisfies the locking discipline if, at program
point p where the program dereferences a value that has ever been
bound to x, the program holds the lock on the value of expression
E. Furthermore, the value of E must not change (in any thread)
during the time that the thread holds the lock. The protection is

1 public class K {
2 private K1 x = new K1();
3 private K2 y = new K2();
4 private K1 z;
5 private K2 w;
6
7 public void m() {
8 z = x;
9 w = new K2();
10 synchronized (z) {
11 y = z.f;
12 w = y;
13 }
14 w.g = new Object();
15 }
16 }

17 class K1 {
18 K2 f = new K2();
19 }
20
21 class K2 {
22 Object g = new Object();
23 }

name value
var protection protection
x – @GB("itself")

y @GB("this.x") –
z @GB("itself") @GB("itself")

w – –

Figure 5: Comparison of name-protection and value-protection seman-
tics for @GuardedBy (abbreviated as @GB).

shallow, since it applies to the value that x evaluates to, not to all
values reachable from it. There is no restriction on copying values,
including passing values as arguments (including as the receiver) or
returning values.

This definition resolves the ambiguities noted in section 2.2. A
definite alias of the guard expression E is permitted to be locked.
The guard expression is not allowed to be reassigned to a different
value while locked. Side effects to the guard value are permitted,
since they do not affect the monitor. The lock expression undergoes
viewpoint adaptation so that it makes sense in the context of use.
A use of the program element is a dereference of any value it may
hold, regardless of aliasing, reassignment, and side effects.

We have formalized this definition, and also an alternate one that
provides name protection, as a structural operational semantics in
the style of Plotkin [41]. Our formalization includes a definition
of a data race and a proof that our definition prevents data races.
For reasons of space, the formal development appears as a technical
report [14].

A set of @GuardedBy annotations expresses a locking discipline.
An inference tool infers a maximal locking discipline that the pro-
gram satisfies. A checking tool verifies that the program satisfies
its locking discipline. Every program trivially satisfies the empty
locking discipline.

2.5 Definition of @Holding

The @GuardedBy annotation is sufficient for expressing a locking
discipline. Inferring or checking a locking discipline requires rea-
soning about which locks are held at any given point in the program.
Our implementations provide a @Holding(E) annotation to express
these facts explicitly to aid in program comprehension or modular
checking.3 It annotates a method declaration to indicate that when
the method is called, the current value of E (possibly viewpoint-
adapted) is locked. An example appears on line 58 of fig. 2.

3. Locking discipline checking
We have expressed our semantics as a type system. Then, we im-

plemented the type system as a modular static analysis that verifies
a locking discipline expressed as Java @GuardedBy and @Holding an-
notations. It is publicly available at http://checker-framework.org/.

If the type-checker issues no warnings for a given program, then
it guarantees that the program satisfies the locking discipline; that
is, a value that is held in an expression of @GuardedBy type in the
program is never dereferenced unless the values of all the lock
expressions indicated in the @GuardedBy annotation are locked by the
thread performing the dereference, at the time of the dereference.
3JCIP overloads the name @GuardedBy for two distinct purposes as a field annotation and
a method precondition. For clarity, this paper always refers to the latter as @Holding.



@GB({E1,E2}) ... 

⊥ 

⊥ 

@GB({}) @GB(E1) @GB(E2) 

Figure 6: The subtype hierarchy of the @GuardedBy type qualifiers in
the locking-discipline type system. E1 and E2 are lexically distinct ex-
pressions.

Our approach is standard for a static analysis. The goal is to
determine facts about values, but the program is written in terms
of variables and expressions. Therefore, the analysis computes an
approximation (an abstraction) in terms of expressions. Our static
analysis simultaneously computes two approximations. (1) The
analysis approximates the values that each expression in the pro-
gram may evaluate to. (2) The analysis approximates the locks that
the program currently holds. The implementation represents these
approximations using annotations such as @GuardedBy and @Holding.

Both abstractions are sound, so that if the type system approves
a program, the program satisfies the locking discipline; however,
the abstraction is conservative, so the type system might reject a
program that never suffers a race condition at run time.

3.1 Type qualifiers and hierarchy
The type system contains a single parameterized type qualifier,

@GuardedBy. Figure 6 shows the subtype hierarchy. One surpris-
ing feature is that no two @GuardedBy annotations are related by
subtyping. If Eset1 6= Eset2, then @GuardedBy(Eset1) and @Guard-

edBy(Eset2) are siblings in the type hierarchy. It might be expected
that @GuardedBy("x", "y")T is a supertype of @GuardedBy("x")T. The
first type requires two locks to be held, and the second requires only
one lock to be held and so could be used in any situation where
both locks are held. Our type system conservatively prohibits this
in order to prevent type-checking loopholes that would result from
aliasing and side effects — that is, from having two references, of
different types, to the same data. If our analysis incorporated a more
precise analysis of such effects, its type hierarchy could be enriched.
@Holding is not part of the type hierarchy because it is a method
pre-condition rather than a type qualifier.

3.2 Typing rules
The type system enforces the usual object-oriented subtyping

rules at assignments, method calls, overriding method declarations,
etc. It also enforces behavioral subtyping [32] for @Holding precon-
ditions in overriding method declarations.

Throughout its lifetime, a value is only ever referenced by expres-
sions with the identical @GuardedBy type qualifiers (modulo viewpoint
adaptation), and this ensures that the value is never dereferenced
without the appropriate lock expressions being held.

The receiver type of a field dereference or method invocation
must be @GuardedBy(...) (that is, not > which indicates that the set
of locks guarding the receiver is unknown or ⊥ which indicates a
null receiver), and for field dereferences, all the locks in the type
must be held. In addition, a method invocation type-checks only if
all the locks mentioned in any @Holding precondition are held at the
method call.

The Lock Checker supports other features, such as side effect
specifications and type qualifier polymorphism both without (@Poly-
GuardedBy) and with (@GuardSatisfied) a guarantee that the value’s
guarding locks are held at the time of the call. For complete type-
checking rules for all features, see the Lock Checker manual [8].

The Lock Checker inherits additional features from the Checker
Framework (http://CheckerFramework.org/) on which it is built: sound
analysis of Java reflection [4], flow-sensitive type inference [39],
and more. The type analysis is context-insensitive. Call-graph con-
struction is done by javac. Points-to information is approximated
by types (any possibly-aliased expressions have the same type), and
in addition utilizes a custom type-theoretic alias analysis [4, 8].

3.3 Held lock expressions analysis
The Lock Checker conservatively and flow-sensitively estimates

the lock expressions that are held at each point in a program. That
is, it computes a set of expressions whose locks are definitely held.
This process can be viewed as local type inference.

The Lock Checker considers a lock expression held starting when

• the lock expression is used to acquire a lock, or
• a @Holding annotation asserts that the lock is held.
• entering the scope of an if (java.lang.Thread.holdsLock(E)){...}

test.

The Lock Checker conservatively assumes different lock expressions
may evaluate to different values; it does not track aliasing among
lock expressions, but as shown in fig. 6 requires lock expressions
to be syntactically identical. The Lock Checker considers a lock
expression no longer known to be held when

• the lock is released (explicitly or due to scoping), or
• the lock expression may be side-effected, or
• exiting the scope of a Thread.holdsLock test.

The analysis makes conservative approximations about when an
expression may be side-effected. A non-final field whose guard is
not locked may be havoced at any time by another thread. A call to
a method not explicitly annotated as side-effect free is considered
to side-effect any mutable lock expression. This is like other type-
checkers built on the Checker Framework and was not an undue
burden in our experiments.

3.4 Modular analysis and libraries
Our type analysis is modular: it analyzes each procedure in isola-

tion. This makes the analysis scalable and permits separate compi-
lation. A modular analysis requires a summary for each procedure
that is called by the one being analyzed. The Lock Checker uses
the programmer-written annotations as this specification. The type
analysis is sound for reflection, but unanalyzed code is trusted, us-
ing signatures/summaries for natives and unanalyzed libraries. The
Lock Checker ships with trusted annotations for relevant parts of
the JDK.

To verify uses of Java’s monitor locks, the annotations as de-
scribed so far are sufficient. Because monitor locks are held through-
out the dynamic scope of a synchronized statement or invocation of a
synchronized method, a routine cannot affect the locks held, from the
point of view of the caller, and the @Holding method annotation can
specify a single set of held locks. For explicit locks, the summary
needs to be able to indicate different locks held on method entry and
method exit. For an analysis focused on deadlocks, the summaries
need to be even more complex [48], but deadlock detection and
prevention is outside the scope of this paper.

4. Locking discipline inference
Our abstract-interpretation-based, whole-program inference has

been implemented inside the Julia static analyzer [30]. It uses four
static analyses to infer @GuardedBy annotations (fig. 7), as described
in this section. Inference of @Holding is based on similar techniques
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Figure 7: The structure of the abstract interpretation inference.

but is simpler. Creation points and definite aliasing analysis have
been previously published [45, 37], including technical details of
their abstract domains, and hence sections 4.1 and 4.2 only describe
their use for the inference of a locking discipline. Definite locked
expression analysis and locking discipline inference are described
in sections 4.3 and 4.4. These four static analyses are sound, up to
the use of reflection and native methods, where the analysis conser-
vatively assumes the method may return any value of any known
type, but optimistically assumes that the call has no side effects.
Soundness and the use of a definite aliasing analysis entail that our
analysis never mistakenly infers a field/variable as @GuardedBy(E).
However, it might fail to infer some @GuardedBy(E) annotations that
actually hold in the program, since the aliasing analysis might be
approximated or since E might be too complex or the creation points
analysis might be too coarse. Also note that an inference tool in-
fers not what the programmer intended, but what the programmer
implemented.

Julia only infers E made up of final fields and the special variable
itself, which refers to the same value being protected. This is a
common, safe programming practice and caused no problems in our
case studies.

4.1 Creation points analysis
Creation points analysis is an instance of class analysis [47]

and its first use in Julia is to build the call-graph of the program
under analysis. Julia implements a concretization of Parlsberg and
Schwarzbach’s class analysis [38, 45]. For each variable and field of
reference type, creation points analysis infers an overapproximation
of the set of program points where the value bound to that variable or
field might have been created. This is a concretization since it does
not track types of values, but rather their creation point, from which
the type can be derived. The approximation of local variables in this
analysis is flow-sensitive, while the approximation of object fields is
flattened, context-insensitive [45]. Hence this analysis is sound for
concurrent programs. For efficiency, allocation sites and function
call sites are not context-sensitive (it is a 0-CFA analysis [45]).

The use of creation point analysis in the inference of @GuardedBy
is for computing an overapproximation of run-time values, since
two variables that hold the same object (value) must have the same
creation point, while the converse does not hold in general. Figure 8
shows the result of Julia’s creation points analysis at some selected
points of the program of figs. 1 and 2 and a client program that
creates forks and philosophers and starts the philosopher processes.
It reports where the values of the variables at those program points
and of the fields of the objects have been created by a new statement.
For instance, the figure shows that variable other at line 16 contains
a value of type Fork that can only be created in the driver program.
The same holds for the values held in fields left and right of all
Philosopher objects in memory. Figure 8 also reports the creation
points of the objects passed to the Java library, including the implicit
argument (receiver) of getName, which will be needed later. Note
that, in Java bytecode, those arguments are held in stack variables,
hence the creation points analysis computes that information. In
this simple example, the approximation is always a singleton, but
in general it could be a set of creation points. If the line numbers

lines variable/field creation points
8,12,16 this {Fork@80}
20,21,23 this {Fork@80}

16 other {Fork@80}
35,37 this {Philosopher@84}

- Philosopher.left {Fork@80}
- Philosopher.right {Fork@80}

21,21,23 arg. to String.concat {κ,π}
21 arg. to Thread.getName {Philosopher@84}

Figure 8: Creation points analysis of our example. Creation point π

stands for a generic creation point inside the Java library code; κ stands
for an object held in the constant pool.

lines definite aliases of locked value
19 {this}
44 {this.left}
46 {this.right}

lines definite aliases of the container of the field
8,12,20 {this}

Figure 9: Expression aliasing analysis of our example.

are dropped from column creation points, one gets a class analysis.
That extra information makes it into a creation points analysis.

4.2 Definite aliasing analysis
This analysis infers, at each program point and for each local vari-

able, expressions that are definitely aliased with that variable [37].
Definite means that aliasing must hold at the program point, however
it is reached. This analysis is limited to alias expressions built from
variables and final fields (or fields that are never modified after being
initialized). Hence this analysis is sound for concurrent programs.

In particular, we are interested in definite aliases of values used in
the synchronized statements in our example. Those values are held
in a stack variable in bytecode, whose definite aliases are shown in
fig. 9, as computed by the analysis. Note that the approximation is
semantic. For instance, the analysis would not change if one mod-
ified the code at line 44 into Fork f = left; synchronized (f) ...

Later, it will be useful to know the definite aliases of the container
E in each field access expression E. f where f is a non-final field.
Figure 9 provides that information for our example as well.

4.3 Definite locked expressions analysis
This analysis computes, at each program point, a set of expres-

sions that are definitely locked by the current thread at that point.
It uses the result of the definite aliasing analysis as a prerequi-
site. It works as a data flow analysis. Namely, let Lp be a set of
definite locked expressions at each given program point p. The
analysis builds an inclusion constraint for every statement. In most
cases, those constraints just propagate the approximation, such as
from line 42 to line 43: L42 ⊇ L43. Where a synchronization oc-
curs, the set of definitely locked expressions is instead enlarged
with the definite aliases of the locked value, as previously com-
puted by the definite alias analysis (fig. 9). This is the case at
line 44: L44 ∪{this.left} ⊇ L45. At the end of the synchroniza-
tion, the analysis builds a constraint that conservatively kills all
definitely locked expressions whose type is compatible with that
of the unlocked expression, such as at line 50 of our example:
L50 \ {l ∈ L50 | l has type Fork} ⊇ L51. The analysis is interproce-
dural. Namely, definitely locked expressions are renamed at method



lines definitely locked expressions
8,12,20,21,23 {this}

16,35,37 {}

Figure 10: Definite locked expressions analysis of our example.

call, such as at line 45, to implement parameter passing:l
[

a1 7→ this

a2 7→ philosopher

]∣∣∣∣∣∣∣∣
l ∈ L45, the receiver of pickUp
is definitely aliased to a1,
the parameter of pickUp
is definitely aliased to a2

⊇L7

Analysis of monitors is simplified because in Java a callee cannot
unlock a monitor taken by its caller, nor lock a value without unlock-
ing it before returning to the caller (section 3.4). Hence method calls
can be safely approximated as no-ops: L43 ⊇ L44. The same prop-
erty is enforced by the Java Virtual Machine and a violation leads
to an IllegalMonitorStateException. However, the implementation
of this check is not mandatory. For simplicity, we assume that it is
implemented or that the analyzed code is generated from Java. This
simplification does not apply to explicit locks implemented through
classes in the standard Java libraries. For them, a side-effects anal-
ysis is used to determine if they might ever be modified during a
method call. For simplicity, this article only describes the inference
for Java monitors.

In general, programmers do not modify the value of the expres-
sions that they use as locks, such as this.left, and this is the case
in our example. However, the analysis copes with the unusual
case of field updates that affect the locked expressions. For in-
stance, if line 45 were modified to left = right and left made
non-final, then Julia would build a constraint that conservatively
kills all potentially affected locked expressions: L45 \ {l ∈ L45 |
left occurs in l} ⊇ L46. However, the analysis would be unsound if
field updates were allowed from a concurrent thread. For this reason,
we preferred to keep the analysis sound and, like some other work,
only allow final fields in the inferred definitely locked expressions.

After inclusion constraints have been built for each pair of consec-
utive statements and from callers to callees, the analysis computes a
fixpoint of the resulting set-constraint. Since this is a definite anal-
ysis, a maximal fixpoint is computed. The result for our example,
projected on some program points, is shown in fig. 10.

4.4 Inference of the locking discipline
Once the three previous supporting analyses have been performed,

Julia infers @GuardedBy(E) annotations for fields and method param-
eters (fig. 7). This amounts to finding expressions E such that the
non-final fields of all possible values ever held in those fields or
parameters are only accessed at a program point where E is locked
by the current thread. Julia uses creation points as a conservative
approximation of the identity of run-time values. Objects created at
distinct creation points must be distinct, while the converse might
not hold. Namely, it uses the following algorithm to infer the @Guard-

edBy annotations for a field or parameter x:

1. it uses the creation points analysis to determine an overapproxi-
mation C of the creation points of the values ever held in x;

2. it computes the set of program points where a field of an object
created at C might be accessed, that is, A = {p | a non-final field
f is accessed at p as Ep. f and the set Cp

Ep
of all possible creation

points of Ep at p is such that Cp
Ep
∩C 6= /0};

3. for each p ∈ A, it computes a set of expressions that are definitely
locked there, using itself as a shorthand for the expression itself:

Lp = {E[Ep 7→ itself] | E is a definite alias of Ep at p
and E is definitely locked at p};

4. it computes L =
⋂

p∈A Lp;
5. it infers the annotations @GuardedBy("E") for each E ∈ L where no

variable occurs, but for itself.

Consider for instance field left in fig. 2. According to the creation
point analysis (fig. 8), we have C = {Fork@80}. Access to non-final
fields occur as this.usedBy at lines 8,12,20 and we have C8

this =

C12
this = C20

this = {Fork@80} (fig. 8). Hence A = {8,12,20}. At
those program points, this is obviously a definite alias of itself
(fig. 9). According to fig. 10, the expression this is always locked
at 8, 12 and 20. Then Lp = {this[this 7→ itself]} = {itself} for
each p ∈ A, and hence L = {itself}. Therefore, Julia infers the
annotation @GuardedBy("itself") for field left.

4.5 Calls to library methods
The algorithm sketched in section 4.4, at its step 2, requires to

check all program points A where a non-final field in accessed.
This includes the program points inside the libraries as well. Hence
the inference of @GuardedBy("itself") for field left above should be
corrected by considering in A also the program points outside the
application shown in figs. 1 and 2 and the driver program. However,
as already sketched in section 3.4, a simplifying and computationally
effective alternative solution is to consider only program points A
inside the application under analysis, as long as we also include in
A the program points where a value is passed to the libraries. That
is, point 2 of the algorithm from section 4.4 can be modified to

2. it computes the set of program points A = {p in the application
| a non-final field f is accessed at p as Ep. f or an expression
Ep is passed as an argument to libraries and the set Cp

Ep
of all

possible creation points of Ep at p is such that Cp
Ep
∩C 6= /0};

By applying this inference algorithm, to figs. 1 and 2 and the
driver program, Julia infers the @GuardedBy annotations in figs. 1
and 2.

5. Experiments
We performed experiments to understand how programmers cur-

rently use @GuardedBy and to evaluate the utility of our semantics.
Our implementations of the abstract-interpretation-based inference
for locking disciplines (section 4) and of the type-system-based
checker for locking disciplines (section 3) were written by different
people and they share no code, so the fact that they agree provides
extra confidence that they correctly implement the semantics.

5.1 Subject programs and methodology
We chose 15 open-source subject programs that use locking

(fig. 11). The programmers had partially documented the lock-
ing discipline in 5 of them. We counted not only @GuardedBy and
@Holding annotations but also commented annotations and English
comments containing the string “guard”. The programmers some-
times used comments to document a locking discipline without
adding a compile-time and run-time dependency on the @GuardedBy

annotation. However, the documented locking discipline may be
incorrect because it was not checked by any tool.

We determined a goal set of correct annotations, i.e. those whose
locking discipline the program obeys. To determine this set, we
manually analyzed every annotation written by the programmer or
inferred by Julia.4 We retained every annotation from either set
4There might exist other correct annotations that neither Julia, the original programmer,
nor we are aware of.



Programmer-written Inference
Project Version LoC @GuardedBy @Holding time
BitcoinJ 0.12.2 102458 46 14 238
Daikon 5.2.24 169710 0 0 1596
Derby Engine 10.11.1.1 119594 12 9 4077
Eclipse ECJ 4.4 161701 0 0 924
Guava 18.0 118190 64 72 621
Jetty Server 9.2.6.v20141205 59611 0 0 109
Velocity 1.7 54549 0 0 94
Zookeeper 3.4.6 75475 0 0 118
Catalina 8.0.15 121959 0 0 472
Coyote 8.0.15 71527 1 0 110
Dbcp 8.0.15 53181 16 0 84
Jasper 8.0.15 67380 0 0 105
Jni 8.0.15 32682 0 0 49
Util 8.0.15 42115 0 0 58
Websocket 8.0.15 39928 0 0 75

Figure 11: Subject programs. The last 7 are part of Tomcat. LoC is
the approximate number of lines of code reached by Julia during the
analysis. It is the count of the entries in the line number table of each
class analyzed, plus 3 for each method or constructor. Inference time is
measured in seconds.

Goal Programmer-written Inference Type-checking
name value value value

Project # # P% R% P% R% # P% R% # P% R%
BitcoinJ 47 46 87 85 30 30 7 100 15 6 100 86
Daikon 5 0 - 0 - 0 1 100 20 1 100 100
Derby Engine 16 12 83 63 58 44 6 100 38 6 100 100
Eclipse ECJ 6 0 - 0 - 0 6 100 100 6 100 100
Guava 22 64 19 55 14 41 5 100 23 5 100 100
Jetty Server 1 0 - 0 - 0 1 100 100 1 100 100
Velocity 4 0 - 0 - 0 4 100 100 4 100 100
Zookeeper 5 0 - 0 - 0 5 100 100 5 100 100
Catalina 2 0 - 0 - 0 2 100 100 2 100 100
Coyote 24 1 100 4 0 0 23 100 100 23 100 100
Dbcp 20 16 88 70 56 45 6 100 30 6 100 100
Jasper 7 0 - 0 - 0 7 100 100 7 100 100
Jni 1 0 - 0 - 0 1 100 100 1 100 100
Util 4 0 - 0 - 0 4 100 100 4 100 100
Websocket 9 0 - 0 - 0 9 100 100 9 100 100

Figure 12: Experimental results for @GuardedBy annotations. The
table lists the number of annotations written by the programmer, in-
ferred by Julia, and verified by the Lock Checker. Goal is the number
of goal annotations. The precision (R%) and recall (R%) are given
separately when annotations are interpreted according to the name-
protection or value-protection semantics. For the type-based analysis,
the goal is the inference results of the abstract interpretation. Compu-
tations whose denominator is zero are reported as “-”.

such that the program is guaranteed not to suffer a data race on the
annotated program element. (We did not observe any data races that
appeared to be intentional.) Then, we compared the goal annota-
tions to both the programmer-written and the inferred ones. This
comparison was not syntactical: annotations that are conceptually
the same or are expressing the same thing are considered equal.

As is standard for an information retrieval problem [44], we report
results in terms of precision (number of correct reported annotations
divided by total number of reported annotations) and recall (number
of correct reported annotations divided by total number of goal
annotations). Precision and recall are measurements between 0%
and 100% inclusive, and larger numbers are better.

5.2 Inference experiments
We used Julia to infer the locking discipline in terms of @Guard-

edBy and @Holding with value-protection semantics.5 Experimental
results for @GuardedBy annotations appear in fig. 12, and results for
@Holding appear in fig. 13. Programmers made significant numbers
5Julia has two modes and can also infer annotations for name protection, but this article
focuses on value protection.

Programmer-written Abstract interp. Type-based analysis
Project Goal OGoal # Corr P% R% OR% # Corr P% R% # Corr P% R%
BitcoinJ 113 45 14 14 100 12 31 113 113 100 100 112 112 100 99
Daikon 3 0 0 0 - 0 - 3 3 100 100 3 3 100 100
Derby Engine 121 13 9 7 78 6 54 120 120 100 99 119 119 100 99
Eclipse ECJ 1 0 0 0 - 0 - 1 1 100 100 1 1 100 100
Guava 126 45 72 38 53 30 84 110 110 100 87 110 110 100 100
Jetty Server 4 0 0 0 - 0 - 4 4 100 100 4 4 100 100
Velocity 20 0 0 0 - 0 - 20 20 100 100 20 20 100 100
Zookeeper 16 0 0 0 - 0 - 16 16 100 100 16 16 100 100
Catalina 98 0 0 0 - 0 - 98 98 100 100 98 98 100 100
Coyote 13 0 0 0 - 0 - 13 13 100 100 13 13 100 100
Dbcp 18 0 0 0 - 0 - 18 18 100 100 16 16 100 89
Jasper 2 0 0 0 - 0 - 2 2 100 100 2 2 100 100
Jni 1 0 0 0 - 0 - 1 1 100 100 1 1 100 100
Util 4 0 0 0 - 0 - 4 4 100 100 4 4 100 100
Websocket 4 0 0 0 - 0 - 4 4 100 100 4 4 100 100

Figure 13: Experimental results for @Holding annotations. Numbers
are as in fig. 12, but @Holding means the same thing in both the
name- and value-protection semantics. The number of correct anno-
tations (Corr) is given together with the precision and recall. OGoal
(for “omission-tolerant goal”) is the number of goal annotations whose
guard expression the programmer used elsewhere, and OR% is the pro-
grammer recall based on the omission-tolerant goal set.

of mistakes (as shown by low precision) and omitted significant
numbers of annotations (as shown by low recall).

Programmer mistakes. In every program where programmers doc-
umented a locking discipline, they wrote incorrect annotations that
express a locking discipline that the code does not satisfy. For exam-
ple, Guava’s LocalCache and MapMakerInternalMap classes incorrectly
use Segment.this as a guard expression. Julia infers the correct guard
this. In other cases, a lock is acquired only at write accesses but
not at read accesses to a variable. This can lead to corrupted data
reads for data larger than 32 bits (i.e. long and double values, that
on some machines are accessed in two steps). For 32-bit data, it
can lead to inconsistent multiple reads of a variable because the
Java memory model permits delayed publication. An example is
in the Guava class SerializingExecutor: the field private boolean

isThreadScheduled is annotated as @GuardedBy("internalLock"), but
it is read without protection at line 135, despite being always written
after acquiring the lock.

The most common programmer mistake, however, was creating
external aliases to a value. If a reference to a variable’s value
leaks, then a data race can occur even if a lock is held whenever
the variable is read or written. In other words, in the presence of
aliasing the value-protection semantics provides no guarantee. This
is a natural problem, given the lack of automated checking and even
the lack of a mention of the danger of aliasing in references such
as JCIP [22], where only instance confinement is mentioned. An
example is BitcoinJ field PaymentChannelClient.conn. It is always
accessed holding a lock inside the class, but the field is initialized
with a parameter of a public constructor. So there exists an external
alias to the object that can potentially be used to access the object
without protection.

Programmer omissions. The private BitcoinJ method Payment-

ChannelServer.truncateTimeWindow(long) is inferred to be @Holding(-

"lock"), and is indeed called always with lock held. Nevertheless,
the programmer didn’t write the annotation.

In Apache Velocity, a template engine, Julia finds four objects that
are @GuardedBy("itself"): the field XPATH_CACHE, in XPathCache, is
accessed in a synchronized(XPATH_CACHE) block; the field SimplePool

pool, in ParserPoolImpl, uses methods put and get of SimplePool,
that modify the object’s state inside a synchronized(this) block; the
receivers of the same two methods are thus guarded as well.

Inference mistakes. Julia’s output was correct: its precision is
100%, just as for any sound tool that infers definite information.



Inference omissions. There are two reasons that Julia fails to infer
a correct programmer-written locking discipline: either (1) the pro-
gram’s correctness is too subtle for Julia to reason about, or (2) the
locking discipline is inexpressible in the value-protection semantics.

(1) Julia incompleteness: Julia missed 1 @Holding in Derby Engine
and 16 in Guava because methods in the Monitor, AbstractService,
and ServiceManager classes use complex reasoning, ensuring for
instance that a call to a method happens only in flows of execution
where the lock is held by the executing thread. At the moment Julia
does not understand these tricks.

Julia only allows itself and final fields in a guard expression.
This is sufficient but not necessary to ensure that the guard expres-
sion evaluates to the same value throughout the scope of the guard
(section 2.4). Programmers usually use variables in guard expres-
sions (sometimes correctly, sometimes incorrectly). As future work,
we plan to support the container this in guard expressions, which
still protects against data races if it is never aliased.

(2) Value-protection semantics inflexibility: Only one example
seems a genuine value-protection programmer-written annotation
that is not inferred by Julia. The static field in Dbcp
private static Timer _timer; //@GuardedBy("EvictionTimer.class")

is always accessed in synchronized static methods, it never escapes,
and is assigned with _timer = AccessController.doPrivileged(new

PrivilegedNewEvictionTimer()). The doPrivileged method is na-
tive, and executes the run method of the PrivilegedNewEvictionTimer

class, that simply returns a new Timer object. The guard refers to the
class object and is permitted under the value-protection semantics.

5.2.1 Omission-tolerant results
We computed two sets of recall numbers for programmer-written

@Holding annotations (fig. 13). First, we determined the overall
recall, based on the full set of goal annotations. Second, we deter-
mined the recall based on a reduced set of goal annotations. The
reduced, or omission-tolerant, set contains only @Holding annota-
tions whose guard expressions appear in @GuardedBy annotations that
the programmer wrote. This latter metric considers only locks that
the programmer deemed significant enough to document.

The rationale for reporting two different measurements is that
there are two different reasons that a @Holding annotation might be
missing from the programmer-written set:

• The programmer wrote @GuardedBy on some variable v but omitted
@Holding(v). This incomplete specification of the locking disci-
pline for v is a programmer error. For example, the programmer
correctly annotated the unary method Wallet.maybeUpgradeToHD

as @Holding("keychainLock") in BitcoinJ, but didn’t annotate the
no-argument overloaded version.
• The programmer omitted @GuardedBy on some variable v and also

omitted @Holding(v). It is conceivable that the programmer only
intended to write specifications for some guarded variables and
intentionally omitted the @GuardedBy annotation on other variables.
The OR% measurement assumes every such omission was inten-
tional, even though the practice is undesirable because someone
calling or modifying the code could misuse it. For example,
Julia infers @Holding("enumConstantCache") for Guava’s private
method Enums.populateCache, which needs it for a call to put. In-
deed, the only invocation of populateCache is in a synchronized

(enumConstantCache) block. Nevertheless, the programmer did not
annotate it as @GuardedBy("enumConstantCache").

5.3 Type-checking experiments

5.3.1 Methodology

In order to run the type-checking approach, we performed the fol-
lowing steps for each target program: (1) Remove all the programmer-
written @GuardedBy and @Holding annotations from the program’s
source code. Leave all programmer-written @SuppressWarnings anno-
tations, as they are trusted. (2) Insert the Julia-inferred annotations
in the program’s source code. These use the value-protection seman-
tics, which is what the Lock Checker verifies. (3) Repeatedly run
the Lock Checker and edit the annotations or the code to eliminate
the warning (e.g., add a missing annotation), until the Lock Checker
issues no more warnings.

A set of @GuardedBy and @Holding annotations is verified by the
Lock Checker if the Lock Checker issues no warnings when only
those annotations are present in the source code.

5.3.2 Type-checking results
Figures 12 and 13 describe the annotations that were verified

by the Lock Checker. Overall, there were 5 annotations that were
inferred by Julia but could not be verified by the Lock Checker.

One was due to a difference in the tools’ abstraction (static approx-
imations to the semantics). That annotation is @Holding("#1.lock")

on BitcoinJ’s method Transaction.isConsistent(TransactionBag,

boolean), where #1 refers to the first parameter of the method. Since
TransactionBag is an interface, the expression #1.lock is not legal
Java (interfaces cannot contain fields) and cannot be processed by
the Lock Checker. Julia’s whole-program, closed-world analysis
determined that every implementing class has a field named lock.
If the TransactionBag interface were modified to include a getLock()

method, the Lock Checker would be able to resolve the expression
#1.getLock().

The other 4 other differences were due to limitations of the Java 8
language syntax. Julia inferred a @GuardedBy annotation on the re-
ceiver parameter of a method declaration of an anonymous inner
class, and @Holding annotations on the constructors of anonymous
inner classes. These parts of the program are implicit — they can-
not be written in the Java source code. Therefore, there was no
way to communicate this information to the Lock Checker, which
reads and verifies annotations in source code. An example is that
Julia inferred that the constructor of the anonymous class within
BitcoinJ method PaymentChannelClient.incrementPayment should be
annotated with @Holding("#1.lock") and its receiver with @Guarded-

By("itself.lock").

5.4 Abstract interpretation vs. type-checking
The abstract interpretation approach allows a codebase to be an-

notated from scratch, producing valuable documentation and also
permitting the type-checking approach to verify the absence of bugs
relevant to the locking discipline described by these annotations,
whereas a pure type-checking approach can only verify annotations
already present in the code. In a codebase completely free of annota-
tions, the type-checking approach will issue no warnings, regardless
of any bugs that might be present.

Type-checking is a compositional analysis. Given a specification
of the locking discipline expressed as annotations, it can verify part
of a program and ensure that subclasses or other extensions are
consistent with the intended design. By contrast, inference learns
from uses, so it needs enough uses (if there are no uses, no @Guard-

edBy annotations are necessary), and the uses must be bug-free.
Without heuristics such as statistical analysis, it cannot be used for
bug-finding, which requires a specification; Julia implements such a
statistical analysis.

A specific observation is the need to extend the syntax of the
type system to handle expressions that are not legal Java, such as
#1.lock as described in section 5.3.2. We also observed the need to



extend the Java language itself to make explicit locations that were
previously implicit. Java 8 already made an important step toward
this by permitting a programmer to optionally write the receiver
formal parameter explicitly — a change that was motivated by the
desire to write type annotations on the receiver [29]. That capability
was essential in our case studies, where 49 out of the 87 inferred
annotations were on receivers.

It is interesting that these new syntax limitations became clear
only with the integration with an inference tool that inferred all
possible guards, even though the Lock Checker has been publicly
available in the Checker Framework distribution since June 2009
(over 70 monthly releases before the current writing). We speculate
that this is an issue of “out of sight, out of mind”: Java programmers
didn’t think about annotations on those locations and so they did not
specify them. The programmers also may have simply suppressed
type-checking errors related to those locations.

6. Related work
Despite the need for a formal specification for reasoning about

Java’s concurrency and for building verification tools [10, 33, 5], we
are not aware of any previous tool built upon a formalization of the
semantics of Java’s concurrency annotations [22]. The JML (Java
Modeling Language) monitors_for statement [42, 31] corresponds
to the JCIP @GuardedBy annotation [22], together with its limitations:
name protection and semantic ambiguities. Currently, [42] requires
to write such annotation, manually, in source code, together with
other, non-obvious annotations about the effects of each method.
Once that hard manual task is done, the JML annotations can be
model-checked, which is only proved to work on small code.

Warlock [46] was an early tool that checked user-written specifi-
cations of a locking discipline, including annotations for variable
guards and locks held on entry to functions. ESC/Modula-3 [12]
and ESC/Java [18] provided similar syntax and checked them via
verification conditions and automated theorem-proving, an approach
also applied to other concurrency problems [17]. All these tools are
unsound and do checking rather than inference. Similarly to our
inference, [35] infers locking specifications by generating the set
of locks which must be held at a given program location and then
checking the lockset intersection of aliasing accesses. It is based on
possible rather than definite aliasing and hence is unsound.

Our approach is a pure, flow-sensitive type system. A heavier-
weight alternative is a type-and-effect system, which can prevent
not just race conditions but also deadlocks [15, 1]. It can associate
guards not just with variables but also with specific side effects [34].

Most approaches, including ours, explicitly associate each vari-
able with a lock that guards access to it. An alternative is to use
ownership types and make each field protected by its owner, which
is not necessarily the object that contains it [7, 11]. This approach is
somewhat less flexible, but it can leverage existing object encapsu-
lation specifications and can be extended to prevent deadlocks [6].

These concepts can also be expressed using fractional permis-
sions [49]. Grossman [26] extended type-checking for data races to
Cyclone, a lower-level language, but did not implement or experi-
mentally evaluate it.

Previous inference techniques include unsound dynamic infer-
ence of lock types [2, 43] and sound inference via translation to
propositional satisfiability, for most of Java [16]. In [28], a trace
of execution events is recorded at runtime, then, offline, permuta-
tions of these events are generated under a certain causal model of
scheduling constraints. This leads to a fast, but unsound, bug-finding
technique for concurrency problems. By contrast, our approach is
sound, more precise, and more scalable. Improving our aliasing
analysis [3] would improve the recall of our implementations.

Type systems have been applied to other concurrency problems,
such as atomicity [19]. Deadlocks are generally handled by impos-
ing a lock ordering: if all locks are acquired in the given order, then
no deadlock occurs. Recent type systems permit the lock ordering
not to be static throughout the program [21, 24].

JCIP [22] does not mention aliasing, but it does mention instance
confinement. JCIP notes that instance confinement only works with
an “appropriate locking discipline”, but does not define the latter
term. Our use of aliasing is less restrictive and more flexible, and
our analysis is effective without a separate instance confinement
analysis.

7. Conclusion
A locking discipline makes concurrent programming manageable.

Used properly, it guarantees the lack of data races. Used improperly
(with vague definitions or no mechanical checking), it is error-prone
at best and misleading at worst.

Current definitions of locking disciplines and their implementa-
tions suffer from many ambiguities; furthermore, they often specify
name protection rather than value protection, even though name pro-
tection does not in general provide a guarantee of freedom from race
conditions. These ambiguities and unsoundness are a real issue in
practice. We have formalized and proved a value-protection seman-
tics, eliminating both the ambiguities and the unsoundness. Our lock-
ing discipline formalism is a common language for discussing data
races and can also be used to express value protection. The leap from
name to value semantics may be desirable in other domains as well.

Our case studies of real-world code show that programmers of-
ten make mistakes (precision 19–100%, recall 6–84%): they write
locking-discipline specifications that their programs do not follow,
and they fail to write ones that their programs do follow. Program-
mers seem to often assume an unsound name-protection semantics
for the locking-discipline specifications. We have shown that the
value-protection semantics is more restrictive and possibly harder to
use; but the more accurate documentation and the reduction in bugs
should be worth it.

Two popular analysis approaches are abstract interpretation and
type-checking. We have implemented one of each type of tool. Each
tool is based on a firm semantic foundation that guarantees no data
races (modulo standard assumptions, such as regarding native code).
Abstract interpretation is generally assumed to be more powerful and
precise, but we have quantified the differences, leading to insights
about the analysis approaches. In the future, others will be able
to make a more informed decision between the approaches. The
two tools have completely independent implementations, and the
fact that their results agree, up to differences in their underlying
analysis, lends confidence to our semantics and implementations.
Our inference tool can also find bugs by reporting when a value is
usually but not always accessed when a lock is taken. Our tools are
scalable, robust, and publicly available, so programmers can take
advantage of them today.
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