Are Mutants a Valid Substitute for Real Faults in Software Testing?

René Just*, Darioush Jalali*, Laura Inozemtseva[†], Michael D. Ernst*, Reid Holmes[†], Gordon Fraser[‡]

*University of Washington [†]University of Waterloo [‡]University of Sheffield

TO DE LE DE

November 20, 2014

How good is my test suite?

A good test suite detects real faults

Test quality metric is necessary in many areas:

Test generation, minimization, prioritization, ...

How good is my test suite?

A good test suite detects real faults

Test quality metric is necessary in many areas:

Test generation, minimization, prioritization, ...

Problem: Set of real faults is unknowable

Solution: Use a proxy metric for test quality

- Code coverage ratio
- Mutant detection rate

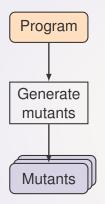
How good is my test suite?

A good test suite detects real faults

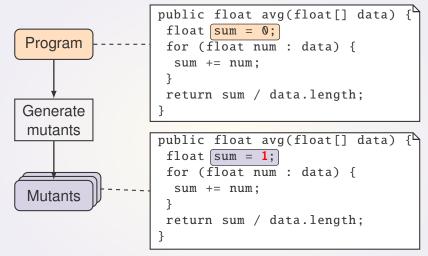
Test quality metric is necessary in many areas:

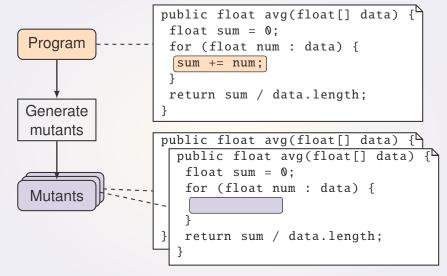
Test generation, minimization, prioritization, ...

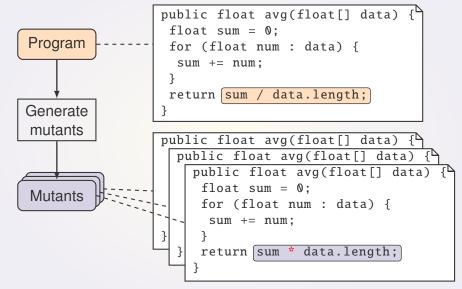
Problem: Set of real faults is unknowable

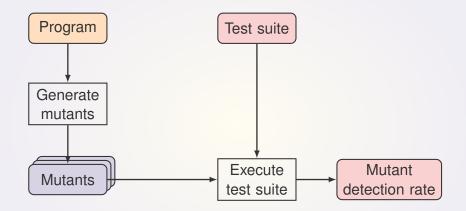

Solution: Use a proxy metric for test quality

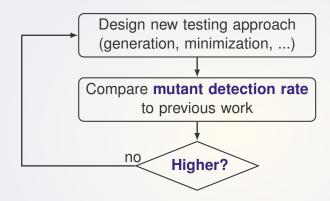
- Code coverage ratio
- Mutant detection rate

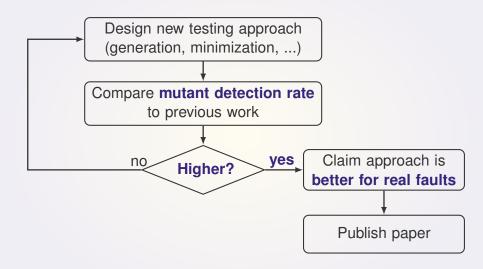

Mutant detection rate \approx Real fault detection rate?

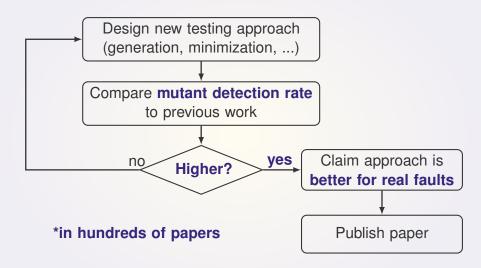


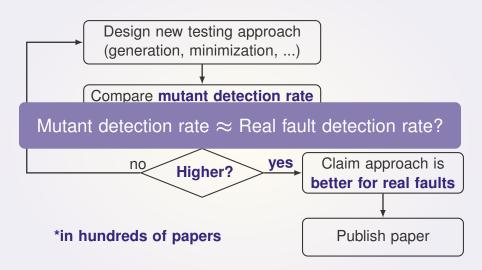





Each mutant contains one small syntactic change




Mutation analysis: How it is used


Mutation analysis: How it is used

Mutation analysis: How it is used*

Mutation analysis: How it is used*

ISSTA'96¹ ICSE'05² **FSE'14**

¹ Daran and Thévenod-Fosse, *ISSTA'96*. ² Andrews et al., *ICSE'05*.

René Just, UW CSE

	ISSTA'96 ¹	ICSE'05 ²	FSE '14
KLOC	1	6	321

¹Daran and Thévenod-Fosse, *ISSTA'96*. ²Andrews et al., *ICSE'05*.

René Just, UW CSE

	ISSTA'96 ¹	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357

¹Daran and Thévenod-Fosse, *ISSTA'96*. ²Andrews et al., *ICSE'05*.

René Just, UW CSE

	ISSTA'961	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000

¹Daran and Thévenod-Fosse, *ISSTA'96*. ²Andrews et al., *ICSE'05*.

René Just, UW CSE

Related work

	ISSTA'961	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000
Tests	generated	generated	generated & developer-written

¹Daran and Thévenod-Fosse, *ISSTA'96*. ²Andrews et al., *ICSE'05*.

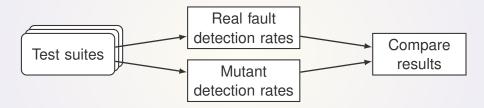
René Just, UW CSE

Related work

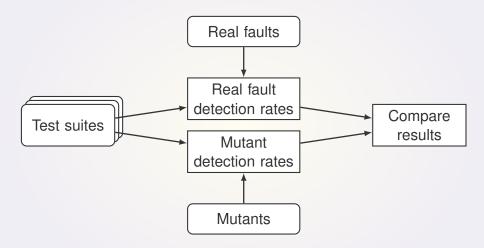
	ISSTA'961	ICSE'05 ²	FSE'14
KLOC	1	6	321
Faults	12	38	357
Mutants	24	1,100	230,000
Tests	generated	generated	generated & developer-written
	-	-	Effect of code coverage considered
	—	_	Qualitative study of real faults

¹Daran and Thévenod-Fosse, *ISSTA'96*.

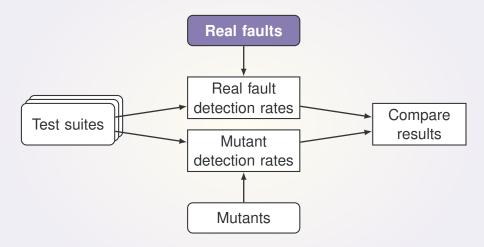
²Andrews et al., ICSE'05.

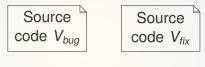

René Just, UW CSE

Are mutants a valid substitute for real faults?

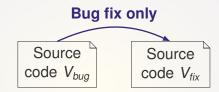

Research Questions

- 1. Do stronger test suites detect more mutants?
- 2. What types of real faults are not represented by mutants?
- 3. Is mutant detection correlated with fault detection?

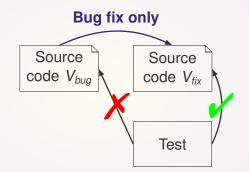

Methodology: Overview


Methodology: Overview

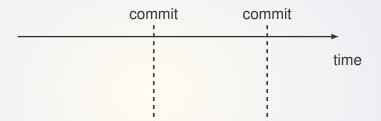
Methodology: Overview

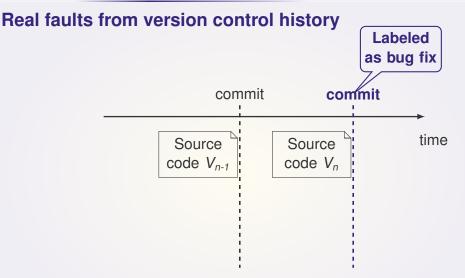


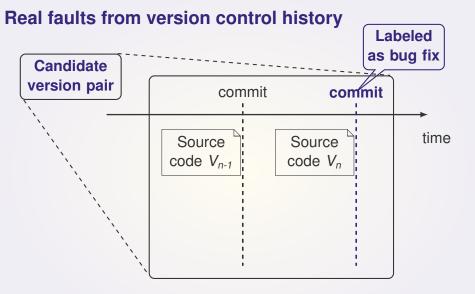
Reproducible and isolated real faults

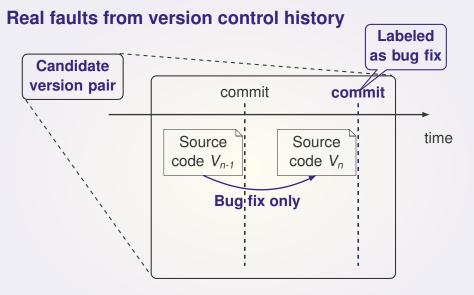


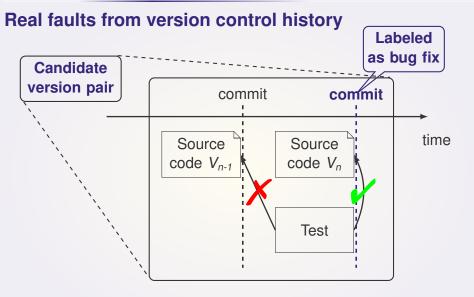
Buggy version Fixed version


Reproducible and isolated real faults

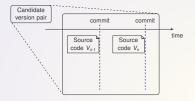


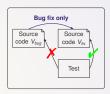

Reproducible and isolated real faults




Real faults from version control history

Subject programs


5 open source Java programs


- Different application domains
- Version control and bug tracking systems
- Comprehensive test suites

	KLOC	Test KLOC	Tests
JFreeChart	96	50	2,205
Closure Compiler	90	83	7,927
Commons Math	85	19	3,602
Joda Time	28	53	4,130
Commons Lang	22	6	2,245
Total	321	211	20,109

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

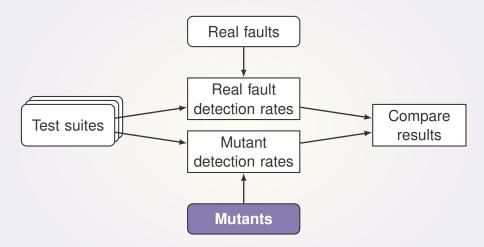
Result

Real faults

357 reproducible and isolated real faults

	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

Result


Real faults

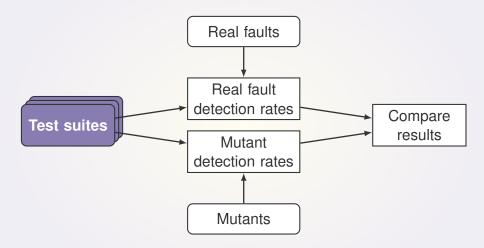
357 reproducible and isolated real faults

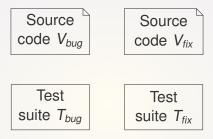
	Candidates	Compilable	Reproducible	Isolated
JFreeChart	80	62	28	26
Closure Compiler	316	227	179	133
Commons Math	435	304	132	106
Joda Time	75	57	29	27
Commons Lang	273	186	69	65
Total	1,179	836	437	357

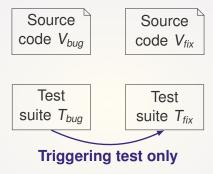
Methodology: Overview

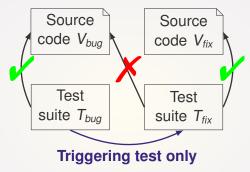
Mutants

230,000 mutants generated by Major mutation framework


Mutation operators^{1,2}


- Replace operators
- Replace literals
- Delete statements
- Modify branch conditions

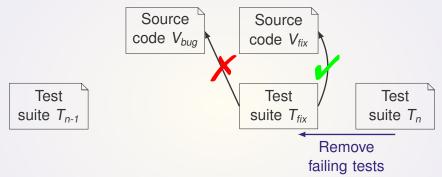

¹Namin et al., *ICSE'08*. ²Jia and Harman, *TSE'11*.


Result

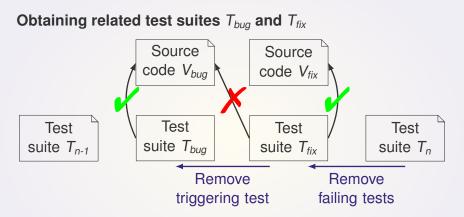
Methodology: Overview

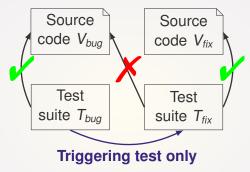
Obtaining related test suites T_{bug} and T_{fix}





We cannot directly use T_{n-1} and T_n from version control


- T_{n-1} and T_n might include failing tests
- T_n might include additional tests (unrelated to the fault)


We cannot directly use T_{n-1} and T_n from version control

- T_{n-1} and T_n might include failing tests
- T_n might include additional tests (unrelated to the fault)

We cannot directly use T_{n-1} and T_n from version control

- T_{n-1} and T_n might include failing tests
- T_n might include additional tests (unrelated to the fault)

Automatically-generated test suites

EvoSuite, Randoop, and JCrasher

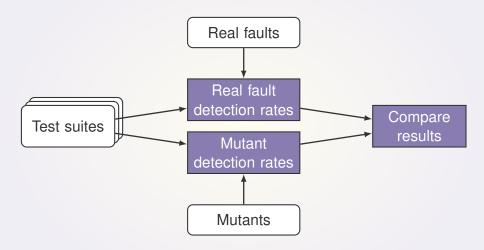
Multiple configurations and test objectives

Workflow

- 1. Generate tests for fixed program version
- 2. Automatically remove failing tests

Test suites: Summary

Developer-written test suites


- Related test suite pairs T_{bug} and T_{fix}
- Average statement coverage of T_{bug}: 90%

Automatically-generated test suites

- 35,141 test suites
- Average statement coverage: 55%

Results

Methodology: Overview

Evaluation: Overview

Research Questions

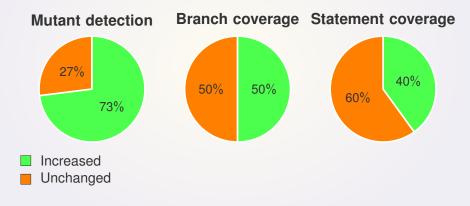
- 1. Do stronger test suites detect more mutants?
- 2. What types of real faults are not represented by mutants?
- 3. Is mutant detection correlated with fault detection?

RQ1: Do stronger test suites detect more mutants?

Setup

- Developer-written test suite pairs T_{bug} and T_{fix}
- Does T_{fix} have a higher mutant detection rate than T_{bug} ?

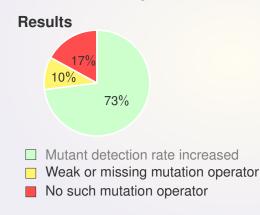
RQ1: Do stronger test suites detect more mutants?


Setup

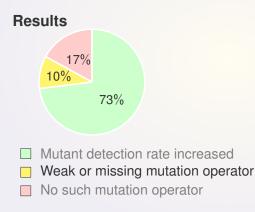
- Developer-written test suite pairs T_{bug} and T_{fix}
- Does T_{fix} have a higher mutant detection rate than T_{bug} ?

RQ1: Do stronger test suites detect more mutants?

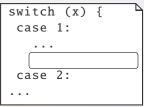
Comparison to code coverage


Setup

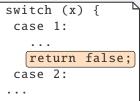
- Qualitative study for 27% of faults
- Weakness or general limitation?


Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?



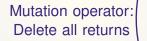
Setup

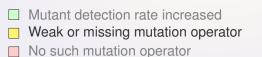

- Qualitative study for 27% of faults
- Weakness or general limitation?

Buggy version

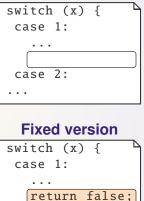
Fixed version

Setup

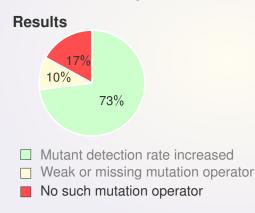

Results

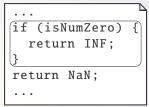

17%

73%

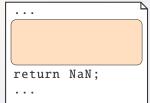

10%

- Qualitative study for 27% of faults
- Weakness or general limitation?


Buggy version

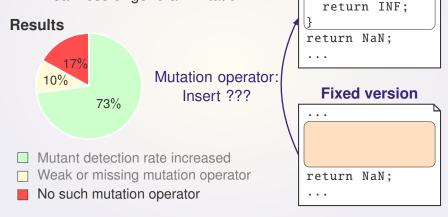

. . .

Setup


- Qualitative study for 27% of faults
- Weakness or general limitation?

Buggy version

Fixed version


Buggy version

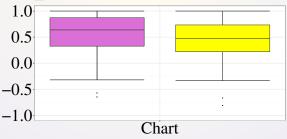
if (isNumZero)

RQ2: What types of faults are not represented by mutants?

Setup

- Qualitative study for 27% of faults
- Weakness or general limitation?

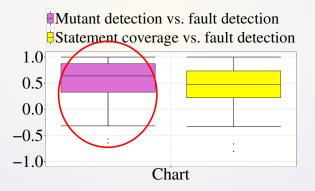
Setup


- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Setup

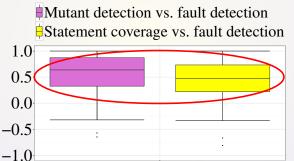
- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Results


Mutant detection vs. fault detection
Statement coverage vs. fault detection

Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?


Results

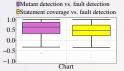
Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?

Results

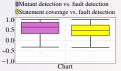
Setup

- 35,141 automatically-generated test suites
- How well does mutant detection predict fault detection?


Results

Mutant detection vs. fault detection
Statement coverage vs. fault detection

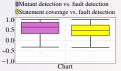
Mutants are a valid substitute for most real faults


Mutant detection is positively correlated with fault detection

Mutation-based test generation is promising

Mutants are a valid substitute for most real faults

Mutant detection is positively correlated with fault detection


Mutation-based test generation is promising

Mutant detection is more sensitive to faults than coverage

Don't use code coverage for test suite minimization: You might miss up to 60% of real faults!

Mutants are a valid substitute for most real faults

Mutant detection is positively correlated with fault detection

Mutation-based test generation is promising

Mutant detection is more sensitive to faults than coverage

Don't use code coverage for test suite minimization: You might miss up to 60% of real faults!

17% of faults cannot be represented by any mutants

Mutation results do not generalize to those faults

http://mutation-testing.org

http://defects4j.org

René Just, UW CSE

Are Mutants a Valid Substitute for Real Faults in Software Testing?