
Ownership and Immutability in 
Generic Java (OIGJ)

Yoav Zibin+, Alex Potanin*

Paley Li*, Mahmood Ali^, and Michael Ernst$

Presenter: Yossi Gil+

+IBM *Victoria,NZ ^MIT   $Washington



Ownership + Immutability 

� Our previous work

� OGJ: added Ownership to Java

� IGJ: added Immutability to Java

� This work

2/22

� This work

� OIGJ: combine Ownership + Immutability

� The sum is greater than its parts

� IGJ could not type-check existing code for creating 
immutable cyclic data-structures (e.g., lists, trees)

� We found a non-trivial connection between 
ownership and immutability 



Contributions

� No refactoring of existing code 
� Prototype implementation

� No syntax changes (uses type-annotations in Java 7)

� No runtime overhead

� Backward compatible

Verified that Java’s collection classes are properly 

3/22

� Verified that Java’s collection classes are properly 
encapsulated (using few annotations)

� Flexibility
� OIGJ can type-check more code than previous work: 
cyclic structures, the factory and visitor design patterns

� Formalization
� Formalized the concepts of raw/cooked immutable objects 
and wildcards as owner parameters

� Proved soundness



Problem 1: Representation exposure

� Internal representation leaks to the outside

� private doesn’t offer real protection!

Real life example!class Class {
private List signers;

4/22

private List signers;
public List getSigners() {

return this.signers;
}

}

http://java.sun.com/security/getSigners.html
Bug: the system thinks that code signed by one 
identity is signed by a different identity 

Forgot to copy signers!



Solution for Representation Exposure

� Ownership!

� Class should own the list signers

� No outside alias can exist

� Ownership can be nested: note the tree structure

5/22

Class

signers

entry1 entry2 entryN…

elem1 elem2 elemN…

X

X

X



Ownership: Owner-as-dominator

� Dominators in graph theory

� Given: a directed rooted graph

� X dominates Y if any path from the root to Y passes X

� Owner-as-dominator

6/22

� Owner-as-dominator

� Object graph; roots are the static variables

� An object cannot leak outside its owner, i.e.,

� Any path from a root to an object passes its owner

� Conclusion: No aliases to internal state



Problem 2: Unintended Modification

� Modification is not explicit in the language

� can  Map.get() modify the map?

� for (Object key : map.keySet()) { 
map.get (key); }

throws

7/22

map.get (key); }
throws ConcurrentModificationException
for the following map
new LinkedHashMap(100, 1, true)

Reorders elements 
according to last-accessed 
(like a cache)



Solution: Immutability

� Varieties of Immutability
� Class immutability (like String or Integer in Java)

� Object immutability
� The same class may have both mutable and immutable 
instances

Reference immutability 

8/22

� Reference immutability 
� A particular reference cannot be used to mutate its referent 
(but other aliases might cause mutations)

class Student {
@Immutable Date dateOfBirth; …
void setTutor( @ReadOnly Student tutor) @Mutable { … }

}

Method may modify the this object

Example in IGJ syntax



Objects vs. References

� Objects

� mutable or immutable

� Creation of an immutable object

� Raw state: Fields can be assigned

9/23

� Raw state: Fields can be assigned

� Cooked state: Fields cannot be assigned

� References

� mutable, immutable, or readonly



Challenge: Cyclic Immutability

� Cooking a cyclic data-structure is complicated

� Many objects must be raw simultaneously to 
manipulate backward pointers

� Then everything must become immutable � Then everything must become immutable 

simultaneously 

� OIGJ’s novel idea:

� Prolong the cooking phase by using ownership

information

� Enables creation of immutable cyclic structures



Cooking immutable objects

� Previous work 

� An object becomes cooked when its constructor 
finishes

� OIGJ’s observation

11/22

� OIGJ’s observation

� An object becomes cooked when its owner’s
constructor finishes

� The outside world will not see this cooking phase

� The complex object with its representation 
becomes immutable simultenously



Cooking LinkedList (1 of 2) 

1 : LinkedList(Collection<E> c) {
2 :  this();
3 :  Entry<E> succ = this.header, pred = succ.prev;
4 :  for (E e : c) {
5 :    Entry<E> entry = 
6 :      new Entry<E>(e,succ,pred);
7 :    // An entry is modified after it’s constructor finished
8 :    pred.next = entry; pred = entry;

Sun’s code is similar

12/22

� No refactoring – the original code must 
compile in OIGJ

8 :    pred.next = entry; pred = entry;
9 :  }
10:  succ.prev = pred;
11: }



Cooking LinkedList (2 of 2) 

1 : LinkedList( @ReadOnly Collection<E> c) @Raw {
2 :  this();
3 :  @This @I Entry<E> succ = this.header, pred = succ.prev;
4 :  for (E e : c) {
5 :    @This @I Entry<E> entry = 
6 :      new @This @I Entry<E>(e,succ,pred);
7 :    // An entry is modified after it’s constructor finished
8 :    pred.next = entry; pred = entry;

Sun’s code is similar

13/22

� The list owns its entries

� Therefore, it can mutate them, even after 
their constructor finished

8 :    pred.next = entry; pred = entry;
9 :  }
10:  succ.prev = pred;
11: } Code in OIGJ; Annotations next slide.



Hierarchies in OIGJ

World

ReadOnly

Raw Immut

14/22

Immutability hierarchy
ReadOnly – no modification

Raw – object under    

construction

Ownership hierarchy
World – anyone can access

This – this owns the object

This Mutable



OIGJ syntax: fields (1 of 2)

1:class Foo {
2: // An immutable reference to an immutable date.

@O @ImmutDate imD = new @O @ImmutDate ();
3: // A mutable reference to a mutable date.

@O @Mutable Date mutD = new @O @Mutable Date();
4: // A readonly reference to any date. Both roD and imD cannot mutate

// their referent, however the referent of roD might be mutated by an 
// alias, whereas the referent of imD is immutable.

15/22

� Two annotations per type

// alias, whereas the referent of imD is immutable.
@O @ReadOnly Date roD = ... ? imD : mutD;

5: // A date with the same owner and immutability as this
@O @I Date sameD;

6: // A date owned by this ; it cannot leak.
@This @I Date ownedD;

7: // Anyone can access this date.
@World @I Date publicD;



OIGJ syntax: methods (2 of 2)

8 : // Can be called on any receiver; cannot mutate this . 
int readonlyMethod() @ReadOnly {...}

9 : // Can be called only on mutable receivers; can mutate this .
void mutatingMethod() @Mutable {...}

10: // Constructor that can create (im)mutable objects.
Foo( @O @I Date d) @Raw {

11:   this.sameD = d;
12:   this.ownedD = new @This @I Date ();

16/22

� Method receiver’s annotation has a dual purpose:
� Determines if the method is applicable.

� Inside the method, the bound of @I is the annotation.

12:   this.ownedD = new @This @I Date ();
13:   // Illegal, because sameD came from the outside.

// this.sameD.setTime(...);
14:   // OK, because Raw is transitive for owned fields.

this.ownedD.setTime(...);
15: }



Formalization: Featherweight OIGJ

� Novel idea: Cookers
� Every object o in the heap is of the form:

� o’ is the owner of o

o�Foo<o’, Immut >o�Foo<o’,Mutable> or o”

17/22

� o’ is the owner of o

� o” is the cooker of o, i.e., when the constructor 
of o” finishes then o becomes cooked

� We keep track of the set of ongoing constructors

� Subtyping rules connect cookers and owners

� Proved soundness and type preservation



Case studies

� Implementation uses the checkers framework

� Only 1600 lines of code (but still a prototype)

� Requires type annotations available in Java 7

� Java’s Collections case study

18/22

� 77 classes, 33K lines of code

� 85 ownership-related annotations

� 46 immutability-related annotations



Case studies conclusions

� Verified that collections own their representation

� Method clone is problematic
� clone makes a shallow copy that breaks ownership

� Our suggestion: compiler-generated clone that 
nullifies fields, and then calls a copy-constructor

19/22

nullifies fields, and then calls a copy-constructor



Previous Work

� Universes
� Relaxed owner-as-dominator to owner-as-modifier

� ReadOnly references can be freely shared

� Constrains modification instead of aliasing, i.e., 

20/22

� Constrains modification instead of aliasing, i.e., 

only the owner can modify an object

� Reference immutability:

� C++’s const 

� Javari



Future work

� Inferring ownership and immutability 

annotations

� Bigger case study

21/22

� Extending OIGJ

� owner-as-modifier

� uniqueness or external uniqueness



Conclusions

� Ownership Immutability Generic Java (OIGJ)
� Simple, intuitive, small

� Static – no runtime penalties (like generics)

� Backward compatible, no JVM changes

22/22

� Case study proving usefulness

� Formal proof of soundness

� Paper submitted to OOPSLA. Links:
� http://ecs.victoria.ac.nz/twiki/pub/Main/Technical

ReportSeries/

� http://code.google.com/p/checker-framework/

� http://code.google.com/p/ownership-immutability/


