
Formalisation of Ownership and Immutability Generic
Java (OIGJ) - Technical Report

Alex Potanin, Paley Li, Yoav Zibin, Michael D. Ernst

Contents

1 Introduction 2

2 Type Rules 3
2.1 FOIGJ Program . 3
2.2 Syntax . 3
2.3 Type Judgements and Auxiliary Functions 5
2.4 Lookup Functions . 5
2.5 Well-formed Types and Subtyping . 5
2.6 NoVariant Definition . 6

2.6.1 NoVariant Rule . 8
2.7 Expressions . 9

2.7.1 T-Field Rule . 10
2.7.2 T-Field-Set Rule . 10
2.7.3 T-Method Rule . 10

2.8 Class and Method Definitions . 10
2.9 Store . 13
2.10 Reduction Rules . 13

3 Theorems and Proofs 15
3.1 Preservation . 15
3.2 Progress . 19
3.3 Immutability and Ownership . 20

4 Additional Discussion 22
4.1 Related Work . 22
4.2 Refactoring of the Clone Method . 22

1

Chapter 1

Introduction

This technical report presents the full set of formal rules and proofs that accompany our
paper called “Ownership and Immutability in Generic Java (OIGJ)”. Questions regarding
this technical report should be directed to Alex Potanin (alex@ecs.vuw.ac.nz).

2

alex@ecs.vuw.ac.nz

Chapter 2

Type Rules

For simplicity we do not model the @Assignable field annotation and constructors in this
formalism. We also don’t model inner classes and make the change of this immutability
explicit, avoiding the need to model cJ [1].

2.1 FOIGJ Program

FOIGJ program consists of class declarations followed by the program’s expression (like
FGJ program [2]). Each class declaration is stored inside a class table CT for lookup
purposes. Each class declaration is type checked using the FOIGJ-Class rule. Finally, the
program’s expression is also type checked using the appropriate expression type rules. In
FOIGJ we also assume that class Object<O,I> is pre-declared and that there is no more
than one method with the same name per class. In this technical report we prove that
any FOIGJ program that is type checked using the rules presented in the paper and in
this chapter provides appropriate ownership and immutability guarantees as given by the
relevant theorems in Chapter 3.

2.2 Syntax

FOIGJ follows FGJ conventions. X represents type variables. N represents nonvari-
able types. O represents ownership type variable and nonvariable ownership types are:
Dominator, and Modifier. A special nonvariable ownership type World is also allowed
as the bound for the ownership type variable. I represents immutability type variable
and nonvariable immutability types are: ReadOnly, Immutable, and Mutable. For the
methods, nonvariable immutability type also includes AssignsFields.

Ownership and immutability types are no different from normal generic types. We
syntactically distinguish the first type parameter in the list of either class’s or method’s type
parameters as ownership type parameter and the second as immutability type parameter.
The hierarchy of ownership and immutability parameters is shown in Figure 2.1. This is
very similar in style to FOGJ’s treatment of ownership type parameters. Thus, ownership
and immutability are not required to be listed as part of the syntax shown in Figure 2.2.

Future Work: We plan to make location types to be looked up directly from store
rather than duplicating their type information in the general enviornment ∆.

3

Figure 2.1: Ownership and Immutability Parameters

T ::= X | N Type.
N ::= C < T > Nonvariable type.
L ::= class C < X / N > / N {T f; M} Class declaration.
M ::= < X / N > T m(T x) {return e; } Method declaration.
e ::= es | l | l > e | error Expressions.
es ::= x | e.f | e.m < T >(e) | new N() | (N) e Source expressions.

| e.f = e | null
v ::= l | null Values.
l ∈ locations Locations.
S ::= {l 7→ N(v)} Store.
∆ = {x 7→ T} ∪ {X 7→ N} ∪ {l 7→ N} Environment that maps

(1) variables to their types,
(2) type variables to
nonvariable types,
(3) locations to their types.

Figure 2.2: FOIGJ Syntax

∆ ` T OK Type T is OK.
∆ ` T <: U Type T is a subtype of type U.
∆ ` e : T Expression e is well typed.
∆ ` S OK Store (heap) is well formed.
∆ OK All locations are well-typed in ∆.
∆ ` < Y / P > T m(T x){return e0; } OK Method m definition is OK.
class C < X / N > / N {T f; M} OK Class C definition is OK.

Figure 2.3: FOIGJ Judgements

4

CT (C) The class lookup function for class C

fields(C < T >) The fields lookup function
mtype(m, C < T >) The method type lookup function
mbody(m < V >, C < T >) The method type lookup function
bound∆(T) The bound of type function
typeparams∆(T) Recursively look up all type parameters
O∆(T) The owner of type T

I∆(T) The immutability type of type T

FV (C) The free variable function for class C

Figure 2.4: FOIGJ Functions

this The special variable this

Dominatorl The runtime dominator owner parameter for location l
Modifierl The runtime modifier owner parameter for location l

Figure 2.5: FOIGJ Special Variables

2.3 Type Judgements and Auxiliary Functions

Following FGJ, Y corresponds to type variables and P corresponds to nonvariable types (like
X and N). Figure 2.3 shows FOIGJ judgements which are very close to FOGJ. Figure 2.4
shows FOIGJ functions. Figure 2.5 shows specially treated variables in FOIGJ. Figure 2.6
shows FOIGJ bound function that is identical to FGJ bound function.

2.4 Lookup Functions

Figure 2.7 shows ownership and immutability lookup functions. Figure 2.9 shows the
standard lookup functions based on FGJ (the only rule that is slightly different is F-Object).
Figure 2.8 shows the additional lookup function used by FOIGJ.

2.5 Well-formed Types and Subtyping

Figure 2.10 shows type well-formedness rules. They include the owner nesting rule for
the class’s type parameters from OGJ that is used to enforce deep ownership. Note that
the nesting of Dominator <: O <: World is enforced by FOIGJ-Class rule. We also omit the
immutability parameters in the ownership nesting check in WF-Type rule.

Bound of Type:
bound∆(X) = ∆(X)
bound∆(N) = N

Figure 2.6: FOIGJ Bound Function (Identical to FGJ)

5

Owner Lookup :

O∆(O) = O

O∆(World) = World

O∆(Dominator) = Dominator

O∆(Modifier) = Modifier

O∆(X) = O∆(∆(X))
O∆(C < O, I, T >) = O

O∆(Object < O, I >) = O

Immutability Lookup:

I∆(X) = I∆(∆(X))
I∆(C < O, I, T >) = I

I∆(Object < O, I >) = I

Figure 2.7: FOIGJ Ownership and Immutability Lookup Functions

typeparams∆(X) = {∆(X)}
typeparams∆(C < T >) = T ∪

⋃
T∈T typeparams∆(T)

Figure 2.8: FOIGJ Additional Lookup Function

We enforce that Dominator is inside Modifier without using the subtyping rule
because making Dominator a subtype of Modifier will permit declaration of invalid
classes.

Future Work: We plan to express the interaction of modifiers and dominators in a
nicer way than the exception for Modifier in WF-Type.

Figure 2.11 shows the FOIGJ subtyping rules. These include the partial variance rules
allowed by FIGJ. Please refer to the next section for CoVariant definition.

Finally, note that the owner parameter can never be subject to variance for ownership
guarantees.

Future Work: We plan to prove the S-Owner rule relationship since it is implied by
our construction in FOIGJ-Class rule.

2.6 NoVariant Definition

Figure 2.12 shows the definition of CoVariant as used in the subtyping rule to detect
the cases when variance of read-only or immutable objects should be prohibited due to
potential loophole due to additional generic type parameters. Please see the IGJ paper
for a more detailed description of this problem.

6

Field Lookup:
fields(Object < O, I >) = • (F-Object)

CT (C) = class C < X / N > / N {S f; M}
fields([T/X]N) = U g

fields(C < T >) = U g, [T/X]S f

(F-Class)

Method Type Lookup:
CT (C) = class C < X / N > / N {S f; M}

< Y / P > U m(U x){ return e; } ∈ M

mtype(m, C < T >) = [T/X](< Y / P > U→ U)
(MT-Class)

CT (C) = class C < X / N > / N {S f; M} m /∈ M

mtype(m, C < T >) = mtype(m, [T/X]N)
(MT-Super)

Method Body Lookup:
CT (C) = class C < X / N > / N {S f; M}

< Y / P > U m(U x){ return e0; } ∈ M

mbody(m < V >, C < T >) = x.[T/X, V/Y]e0

(MB-Class)

CT (C) = class C < X / N > / N {S f; M} m /∈ M

mbody(m < V >, C < T >) = mbody(m < V >, [T/X]N)
(MB-Super)

Figure 2.9: FOIGJ Lookup Functions (Almost Identical to FGJ)

X ∈ dom(∆)
∆ ` X OK

(WF-TypeVar)

∆ ` I <: ReadOnly ∆ ` O <: World
∆ ` Object < O, I > OK

(WF-Object)

(WF-Type):

CT (C) = class C < X / N > / N {. . .} ∆ ` T OK ∆ ` T <:[T/X]N
∆ ` N <: Object < O, I > ∆ ` I <: ReadOnly ∆ ` O <: World
∀T ∈ T : ¬(∆ ` T <: ReadOnly)⇒ (O∆(C < T >) <: O∆(T))

(O∆(C < T >) = Dominator ∧O∆(T) = Modifier)
∆ ` C < T > OK

Figure 2.10: FOIGJ Type Well-Formedness Rules

7

Subtyping:

∆ ` T <: T (S-Refl)
∆ ` X <:∆(X)

(S-TypeVar)

∆ ` S <: T ∆ ` T <: U
∆ ` S <: U (S-Trans)

CT (C) = class C < X / N > / N {. . .}
∆ ` C < T > <:[T/X]N

(S-Class)

(S-O-Hierarchy):

∆ ` Dominator <: World ∆ ` Modifier <: World

(S-I-Hierarchy):

∆ ` AssignsFields <: ReadOnly

∆ ` Mutable <: AssignsFields

∆ ` Immutable <: ReadOnly

l ∈ dom(∆)
∆ ` Dominatorl <:O∆(∆(l))

(S-Owner)

(S-Variance):

T = C < O, I, S > T′ = C < O, I′, P > ∆ ` I <: I′
CT (C) = class C < X / N > / N {. . .}

∀S, P, X ∈ S, P, X : (S = P)∨
(∆ ` Immutable <: I′) ∧ (∆ ` S <: P) ∧ (CoV ariant(X, C))

∆ ` T <: T′

Figure 2.11: FOIGJ Subtyping Rules

2.6.1 NoVariant Rule

Figure 2.13 shows how class Bar has all three type parameters marked as novariant because
of their use in mutable superclass, mutable not this-owned field, and in the position of
another no-variant type parameter.

Future Work: Rewrite CV rule and the novariant rules to require @NoVariant

declaration and make the type rules in class declaration simply check that it is used
correctly. This will avoid the ”not” oddity in CV since the proofs of ”not provable” are
too hard. There also may be a better way that can be thought of later.

NoVariant I-rule A type parameter must be no-variant if it is used in a mutable

8

NoVariant:

CT (C) = class C < X / N > / N {T f; M} N = D < P >

X ∈ P ∧ I∆(N) = Mutable

NoV ariant(X, C)
(NV-Superclass-Mutable)

CT (C) = class C < X / N > / N {T f; M}
∀T ∈ T : (T = D < P >)⇒ X ∈ P∧

(I∆(T) = Mutable ∨ I∆(T) = AssignsFields)∧
(O∆(T) = Dominator ∨O∆(T) = Modifier)

NoV ariant(X, C)

(NV-Field-Mutable)

CT (C) = class C < X / N > / N {T f; M}
∀T ∈ T, N : (T = D < P >)⇒ NoV ariant(X, D)

NoV ariant(X, C)
(NV-NoVariant-Position)

CT (C) = class C < X / N > / N {T f; M}
∀T ∈ T, N : (T = D < P >)⇒

∀P ∈ P : (P = D′ < P′ >)⇒ NoV ariant(X, D′)
NoV ariant(X, C)

(NV-NoVariant-Subterms)

CoVariant:
¬NoV ariant(X, C)
CoV ariant(X, C)

(CV)

Figure 2.12: FOIGJ Novariant definition

class Bar <O extends World , I extends ReadOnly ,

E1 extends Object , E2 extends Object , E3 extends Object >

extends Foo <Dominator , Mutable , E1 > {

Foo <World , Mutable , E2 > f1;

Foo <World , Immutable , E3 , E2 , E1 > f2;

}

Figure 2.13: Example of NoVariant derivation

superclass, a mutable field or an assignable field that is not this-owned, or in the
position of another no-variant type parameter.

2.7 Expressions

Figures 2.14 and 2.15 gives the FOIGJ expression typing rules.

9

(T-New):

∆ ` N OK fields(N) = T f ∆ ` e : S ∆ ` S <: T
∆ ` new N(e) : N

∆ ` N OK ∆ ` e0 : T0
∆ ` (N)e0 : N

(T-Cast)
∆ ` e : T

∆ ` l > e : T
(T-Context)

∆ ` x : ∆(x)
(T-Var)

∆ ` l : ∆(l)
(T-Loc)

∆ ` T OK

∆ ` error : T
(T-Error)

∆ ` T OK

∆ ` null : T
(T-Null)

Figure 2.14: FOIGJ Expression Typing 1 of 2

Future Work: Add the case of immutability of the field being immutable to the rule
on viewpoint adaptation in the paper.

Future Work: Why are we so conservative on the viewpoint adaptation? Why not
only replace with readonly the immutability parameters recursively under the modifier
one and not all of them in the type?

2.7.1 T-Field Rule

Field access O-rule Accessing o.f, where o 6= this, is illegal when O(f) = Dominator,
and requires view-point adaptation when one of the owners in the type of O(f) is
Modifier. We use auxiliary typeparams function to recursively lookup all the type
parameters involved in the full type signature.

2.7.2 T-Field-Set Rule

Field assignment I-rule o.f = ... is legal iff one of the following holds:

I (o) = Mutable

I (o) = AssignsFields and (o = this or O(o)
.
= this)

f is annotated as @Assignable

2.7.3 T-Method Rule

Method invocation I-rule o.m(...) is legal iff I (o) <: I (m) and (I (m) = AssignsFields

implies that (o = this or Ø(o
.
= this)).

2.8 Class and Method Definitions

Figure 2.16 gives FOIGJ Method and FOIGJ Class definition rules.

10

(T-Field-Dominator):

∆ ` e0 : T0 fields(bound∆(T0)) = T f ∆ ` T OK

O∆(Ti) = Dominator⇒ e0 = this T = Ti

∆ ` e0.fi : T

(T-Field-Other):

∆ ` e0 : T0 fields(bound∆(T0)) = T f ∆ ` T OK

O∆(Ti) 6= Dominator

Modifier ∈ typeparams∆(Ti)⇒ e0 = this T = Ti

∆ ` e0.fi : T

(T-Field-VA):

∆ ` e0 : T0 fields(bound∆(T0)) = T f ∆ ` T OK

O∆(Ti) 6= Dominator Modifier ∈ typeparams∆(Ti) e0 6= this

(T = [ReadOnly/Mutable, ReadOnly/AssignsFields, ReadOnly/I]Ti∧
I∆(Ti) 6= Immutable) ∨ (T = Ti ∧ I∆(Ti) = Immutable))

∆ ` e0.fi : T

(T-Field-Set):

∆ ` e0 : T0 ∆ ` e : T fields(bound∆(T0)) = T f

∆ ` T <: Ti ∆T OK (I∆(T0) = Mutable ∧
((O∆(Ti) = Dominator ∨O∆(Ti) = Modifier)⇒ e0 = this)) ∨

((e0 = this ∨O∆(T0) = Modifier ∨O∆(T0) = Dominator)
∧(I (e0) = AssignsFields))

∆ ` e0.fi = e : T

(T-Method):
∆ ` e : S ∆ ` T OK ∀S′ ∈ S : (∆ ` S′ OK) ∆ ` e0 : T0

mtype(m, bound∆(T0)) = < Y / P > U→ U

mbody(m, bound∆(T0)) = e.e′ ∆ ` e′ : Q Q <: U

∀V′ ∈ V : (∆ ` V′ OK ∨ ∆ ` V′ <: World ∨ ∆ ` V′ <: ReadOnly)
∀V′ ∈ V : (∆ ` V′ <: World⇒ ∆ ` O <:O∆(V′))

I∆(Q) <: I∆(U) I∆(T0) <: I I = AssignsFields⇒
(e0 = this ∨O∆(T0) = Modifier ∨O∆(T0) = Dominator)
T′ = [V/Y]U ∧ ((O∆(U) = Dominator)⇒ (e0 = this))

∆ ` V <:[V/Y]P ∧ (∀P′ ∈ P : ((O∆(P′) = Dominator)⇒ (e0 = this)))
∆ ` S <:[V/Y]U ∧ (∀U′ ∈ U : ((O∆(U′) = Dominator)⇒ (e0 = this)))
(Modifier ∈ typeparams∆(T′) ∧ e0 6= this ∧ I∆(T′) 6= Immutable)⇒
T = [ReadOnly/Mutable, ReadOnly/AssignsFields, ReadOnly/I]T′

((Modifier /∈ typeparams∆(T′) ∨ e0 = this ∨ I∆(T′) = Immutable)⇒ T = T′

∆ ` e0.m < O, I, V >(e) : T

Figure 2.15: FOIGJ Expression Typing 2 of 2

11

FOIGJ Method Definition (FOIGJ-Method):
∆ = Y <: P, X <: N

CT (C) = class C < O′ / World, I′ / ReadOnly, X / N > / N {. . .}
∆ ` T, P, T OK ∆, x : T, this : C < O′, I, X > ; C ` e0 : S

∆ ` S <: T I (S) <: I
∆ ` < O / World, I / ReadOnly, Y / P > T m(T x){ return e0; } OK

FOIGJ Class Definition (FOIGJ-Class):
∆ = {X <: N, O <: World, I <: ReadOnly, Dominator <: O}∪

placeholderowners∆(N) ∪ (
⋃

X′∈X O <:O∆(X
′)})

∀N′ ∈ N : ∆ ` N′ OK ∨∆ ` O∆(N′) <: World ∨∆ ` O∆(N′) <: ReadOnly
∆ = X <: N ∆ ` N, T OK ∆ ` M OK IN C

N = D < O, I, T′ > T <: T′

class C < O / World, I / ReadOnly, X / N > / N {T f; M} OK

Figure 2.16: FOIGJ Method and Class Rules

Placeholder Owners Function:
placeholderowners∆(C < O, I, T >) = {O <: World} ∪

{I <: ReadOnly} ∪
placeholderowners∆(T)
if O∆(C < O, I, T >) /∈ dom(∆)

placeholderowners∆(C < O, I, T >) = placeholderowners∆(T)
otherwise

placeholderowners∆(X) = {}

Figure 2.17: FOIGJ Placeholder Owners Function

Note that immutability of this is changed based on the method’s immutability
parameter.

Figure 2.17 gives the auxiliary function called placeholderowners used in the class
definition rule.

12

2.9 Store

Figure 2.18 gives the FOIGJ Store Well-Formedness and Typing rules.

Store Well-Formedness:
∀l ∈ dom(∆) : ∆ ` ∆(l) OK

∆ OK

Store Typing:
∆ OK doml(∆)† = dom(S)

S[l] = N(v) =⇒ ∆(l) = N ∆(l) = N =⇒ ∃v : S[l] = N(v)
(S[l, i] = l′) ∧ (fields(∆(l)) = T f)

=⇒ ∆ ` ∆(l′) <: [Dominatorl/Dominator, Modifierl/Modifier]Ti

(S[l, i] = l′) =⇒ ∆ ` ∆(l′) OK
∆ ` S OK

† doml(∆) refers to the domain of ∆ that is restricted to locations only.

Figure 2.18: FOIGJ Store

2.10 Reduction Rules

Figure 2.19 shows the context reduction rules and Figure 2.20 shows the rest of the
reduction rules.

Note that ¬ is used for simplicity in the R-Bad-Cast rule.

Reduction Context Expression:
E ::= []

E.f
E.f = e

l.f = E
E.m < T >(e)

l.m < T >(l, E, e′)
(N)E
l >E

Context Reduction Rule:
e, S → e′, S ′

E[e], S → E[e′], S ′

Figure 2.19: FOIGJ Context Reduction Rule

13

(R-New):
l /∈ dom(S) S ′ = S[l 7→ N(null)] |null| = |fields(N)|

new N(), S → l, S ′

(R-Field):
S[l] = N(v) fields(N) = T f

l.fi, S → vi, S
(R-Field-Set):

S[l] = N(v) fields(N) = T f S ′ = S[l 7→ N(v0, ..., vi−1, v, vi+1, ..., v|f|)]

l.fi = v, S → v, S ′

(R-Method):
S[l] = N(vl) mbody(m < V >, N) = x.e0

l.m < V >(v), S → l > [v/x,l/this, Dominatorl/Dominator, Modifierl/Modifier]e0, S

(R-*-Null):
null.m < V >(v), S → error, S

null.fi, S → error, S null.fi = v, S → error, S

S[l] = N(v) ∆ ` N <: P
(P)l, S → l, S

(R-Cast)
S[l] = N(v) ¬(∆ ` N <: P)

(P)l, S → error, S
(R-Bad-Cast)

l > v, S → v, S
(R-Context)

Figure 2.20: FOIGJ Reduction Rules

14

Chapter 3

Theorems and Proofs

This chapter states and proves four theorems: type preservation, progress, immutability
invariant, and ownership invariant.

3.1 Preservation

The type preservation theorem says that if any FOIGJ expression reduces to another
FOIGJ expression then the latter is always a subtype of the former. Before stating the
theorem, let’s define a shorthand for a well typed expression in a well typed store.

Definition 1. ∆ ` e, S : T ≡ (∆ ` e : T) ∧ (∆ ` S)

Theorem 1. (Type Preservation) If ∆ ` e, S : T and e, S → e′, S ′, then ∃∆′ ⊇ ∆
and ∃T′ <: T such that ∆′ ` e′, S ′ : T′.

The following is the proof of the Type Preservation theorem.

R-Field

Proof. Assume the following:

(i) S[l] = N(v0, ..., vi−1, v, vi+1, ..., v|f|))

(ii) fields(N) = T f

(iii) ∆ ` l.fi, S : Ti

(iv) l.fi, S → vi, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: Let e = l.fi : Ti and T = [Dominatorl/Dominator, Modifierl/Modifier]Ti
by T-Field. Now let e′ be the expression reduced from e, so e′ = vi, also T′ = ∆′(vi) by
T-Loc, hence e′ : T′. There are two cases for e′.

15

If e′ = null then ∆′ ` null <: Ti by T-Null, therefore T′ = T.
If e′ 6= null then ∆′ = ∆ because we have not performed any store update, so by
S-Dominator ∆′ ` ∆(vi) <:[Dominatorl/Dominator, Modifierl/Modifier]Ti. Therefore
∆′ ` T′ <: T will always hold true for R-Field.

R-Field-Set

Proof. Assume the following:

(i) S[l] = N(v)

(i) fields(N) = T f

(i) S ′ = S[l 7→ N(v0, ..., vi−1, v, vi+1, ..., v|f|)]

(i) l.fi = v, S → v, S ′

Store: The only change to S is an update on the ith field of the object at location l. The
field is now pointing at v instead of vi. T-Field-Set guarantees that ∆ ` ∆(v) <:∆(vi)
and no new l is added into ∆, allowing us to define ∆′ = ∆.

Expression: Let e = (l.fi = v) : T then by the definition of ∆ and T-Field-Set we
can conclude that e = v : T and T = ∆(v). Let e′ = v : T′ where T′ = ∆′(v). Finally by
the definition of ∆′ above, ∆′ = ∆ thus ∆′(v) = ∆(v), then T′ = ∆′(v) = ∆(v) = T hence
∆′ ` T′ <: T hold by S-REFL.

R-Method

Proof. Assume the following:

(i) S[l] = N(vl)

(i) mbody(m < V >, N) = x.e0

(i) l.m < V >(v), S → l > [v/x, l/this, Dominatorl/Dominator, Modifierl/Modifier]e0, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: Let e = l.m < V >(v) : T , T = [V/Y]U by MT-Class mtype(m, bound∆(∆(l)) =
< Y / P > U→ U and [l/this] ⇒ [Dominatorl/Dominator] by T-METHOD. Now let e′ =
l > [v/x, l/this, Dominatorl/Dominator, Modifierl/Modifier]e0 : Ti, by T-METHOD
and T-CONTEXT T′ = Q. Lastly by MB-CLASS we can show that T′ = [V/Y]Q and by
T-METHOD Q <: U, therefore ∆ ` T′ <: T

16

R-New

Proof. Assume the following:

(i) l /∈ dom(S)

(ii) S ′ = S[l 7→ N(null)]

(iii) |null| = |fields(N)|

(iv) new N(), S → l, S ′

Store: To proof the preservation of the store we will proof by structural induction on
each of the type inference rule of the store in Store Typing, hence proof ∆′ ` S ′. Our
induction hypothesis is ∆′ = ∆ ∪ {l→ N}. There are six case to consider.

First case: ∆OK

Proof.
∀l′ ∈ dom(∆) : ∆ ` ∆(l′) OK ∆ ∪ {l 7→ N} ` ∆ ∪ {l 7→ N}(l) OK

∆ ∪ {l 7→ N} OK

∀l′ ∈ dom(∆ ∪ {l 7→ N}) : ∆ ∪ {l 7→ N} ` ∆ ∪ {l 7→ N}(l′) OK
∆ ∪ {l 7→ N} OK

By induction hyp.

∀l′ ∈ dom(∆′) : ∆′ ` ∆′(l′) OK
∆′ OK

Second case: doml(∆)† = dom(S)

Proof. doml(∆ ∪ {l 7→ N})† = dom(S ∪ {l 7→ N}), then by (ii) and induction hyp
doml(∆

′)† = dom(S ′)

Third case: S[l] = N(v) =⇒ ∆(l) = N

Proof. Let S ′[l] = N(v) and by the second case l ∈ ∆′ as doml(∆
′)† = dom(S ′). Then by

the first case ∆′(l)OK and T-NEW we ensure ∆′ contain only well-formed types and that
∆ ` N OK. Finally by the induction hyp ∆′(l) = N because there exist a mapping from
{l 7→ N} in the induction hyp.

Fourth case: ∆(l) = N =⇒ ∃v : S[l] = N(v)

Proof. Let ∆′(l) = N then l ∈ S ′ by the second case. Now by (ii) we know that S ′ contain
a mapping of {l 7→ N}, therefore S ′[l] = N(v) and v = null initially.

Fifth case:(S[l, i] = l′) ∧ (fields(∆(l)) = T f) =⇒
∆ `

∆(l′) <: [Dominatorl/Dominator, Modifierl/Modifier]Ti

17

Proof. Let (S[l, i] = l′) and (fields(∆(l)) = T f), so l′ is the location of the ith field
in ∆(l). By (iii) fields(∆(l′)) = null, then ∆(l′) = T and by T-NULL T can be any
well-formed type. Now let T = Ti by the first case, since Ti is well-formed. Finally
by S-Dominatorl ∆ ` Ti <: [Dominatorl/Dominator, Modifierl/Modifier]Ti therefore
∆ ` ∆(l′) <: [Dominatorl/Dominator, Modifierl/Modifier]Ti .

Sixth case: (S[l, i] = l′) =⇒ ∆ ` ∆(l′) OK

Proof. Let (S[l, i] = l′). By the second case l′ ∈ ∆. By the first case ∆(l′)OK.

These six cases proofs that the store is preserved when a new type is created.

Expression: Let e = new N() : T where T = N by T-New. Also let e′ = l : T′ and by
T-Loc T′ = ∆′(l). By definition of the new store ∆′, ∆′(l) = N, therefore T′ = N. Finally
∆′ ` T′ <: T by S-REFL on T′ = N = T.

R-Context

Proof. Assume the following:

(i) l > v, S → v, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: Let e = l > v : T then by T-CONTEXT ∆; l ` v : T, therefore T = ∆v.
Now let e′ = v : T′ where T′ = ∆′v. Finally by the definition of ∆′ above, ∆′ = ∆ thus
∆′(v) = ∆(v), then T′ = ∆′(v) = ∆(v) = T hence ∆′ ` T′ <: T hold by S-REFL.

R-Cast

Proof. Assume the following:

(i) S[l] = N(v)

(ii) N <: P

(iii) (P)l, S → l, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: Let e = (P)l : T where T = P by T-CAST. Let e′ = l : T′ and T′ = ∆(l) then
by (i) T′ = N. Finally by (ii) and the definition of ∆′ , where ∆′ = ∆, ∆′ ` T′ <: T.

18

R-Bad-Cast

Proof. Assume the following:

(i) S[l] = N(v)

(ii) N <: P

(iii) (P)l, S → error, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: Let e = (P)l : T where T = P by T-CAST. Let e′ = error : T′ and by
T-ERROR let T′ = P as error can have the type of any well-formed type. Then by the
definition of ∆′ , where ∆′ = ∆, and S-REFL on T = P = T′, ∆′ ` T′ <: T hold.

R-METHOD/FIELD/FIELD-SET-Null

Proof. Assume the following:

(i) null.m < V >(v), S → error, S

(ii) null.fi, S → error, S

(iii) null.fi = v, S → error, S

Store: The reduction for this expression only retrieve information in location l, therefore
store is not updated S ′ = S and hence ∆′ = ∆ by Store Typing.

Expression: For each of the reduction rule on null e = null : T, because the loca-
tion null does not contain any fields or methods. By T-NULL T is any well-formed type,
for the sake of convenience let T = T′′ where T′′ ∈ ∆ and ∆ ` T′′ OK. Then for each rule we
have e′ = error : T′, similar to T-NULL, T-ERROR allow us to have T′ = T′′. Then by
the definition of ∆′ , where ∆′ = ∆, and S-REFL on T = T′′ = T′, ∆′ ` T′ <: T hold.

Context Reduction Rules

Proof. The context reduction rules trivially do not change either the store or the type of
the expression.

3.2 Progress

The progress theorem shows that FOIGJ programs do not get “stuck” and that any well
typed FOIGJ expression that does not contain free variables (closed) can be reduced to
some value or FOIGJ’s error (the latter includes failed downcasts due to R-Bad-Cast
reducing them to error).

19

Theorem 2. (Progress) Suppose e is a closed well-typed FOIGJ expression. Then either
e is a value (or error) or there is an applicable reduction rule that contains e on the left
hand side.

Proof. In order to proof the Progress Theorem we must go through each expression
and show that progress is achieved. There are seven cases, six expressions and a set of
expressions.

First case: When e is an error, null, variable x or location l then e is a closed
expression that can not be reduced by any reduction rule. e becomes a value of the closed
expression it represents.

Second case: When e = l > e′ by R-CONTEXT rule e will be reduced to be e′ and
there are no additional requirements on e.

Third case: When e = (N)e′, e can be reduced by two reduction rules. If the type of
e′ is subtype of N then e reduces to e′ by R-CAST. Otherwise e will reduce to error by
R-BAD-CAST, which is a value of the system.

Fourth case: When e = e′.fi T-FIELD and R-FIELD ensures the type(N) of e′ is
well-formed and the field fi is in the class bounded by N. e will reduce into the value that
is contained in fi by R-FIELD.

Fifth case: When e = (e′.fi = e′′) similar to the fourth case, T-FIELD-SET AND
R-FIELD-SET will ensure the type(N) of e′ is well-formed and the field fi is in the
class bounded by N. Furthermore R-FIELD-SET guarantee the ith field in N will be di-
rected at the value reduced from e′′. e will reduce into the expression e′′ by R-FIELD-SET.

Sixth case: When e = e′.m(e′′) the reduction rule R-METHOD will apply. R-
METHOD retrieve the expression(e′′′) in the body of the method(m) consequently ensuring
the types in m are correct. R-CONTEXT will also be called upon to ensure a value
produced on reduction of e. e will be reduced to the expression(e′′′) R-METHOD.

Seventh case: When e = new N(e′) R-NEW will reduce e to become the allocated
location(l) in the store(S) that contains the instances of the type(N). R-NEW will also
ensure the fields of N are initialized with null and T-NEW ensures N is well-formed as
are the type of the fields in N.

3.3 Immutability and Ownership

The central ownership and immutability guarantees are just a combination of the normal
invariants: (1, IGJ) an (im)mutable reference always points to an (im)mutable objectl
and (2, OGJ) for mutable references if one object refers to another, then the owner of the
latter will be inside the owner of the former.

20

Since OIGJ combines dominator and modifier kinds of ownership, we define the
following OIGJ-specific guarantees:

Theorem 3. Consider two objects o1 and o2.
Dominator-property: Object o1 can point to o2 iff o1 �D D(o2). Method can point

to o (meaning it can have a pointer to o on its stack) iff there exists oi such that oi �D D(o).
Modifier-property: Object o1 can modify o2 (meaning the modification occurs in a

method call whose receiver is o1) iff o1 �O O(o2). Method can modify o iff there exists oi
such that oi �O O(o).

In the statement above, D is defined as follows: D(o) = [World/Modifier]O(o), so
that any modifier edge is replaced by a global World owner. Since we do not model Stack
owner for simplicity, World owner will suffice.

Proof. For the objects (i.e. fields), given o1 and o2 at locations l1 and l2 respectively, by the
store typing and well-formedness rules, ∆ ` ∆(l1) <: [Dominatorl1/Dominator, Modifierl

/Modifier]∆(l2). If the owner of o2 is Modifier, then by definition of D it will be
replaced by World which is going to be outside by the definition of the inside relationship.
If the owner of o2 is not Modifier or World, then well-formedness preserves owner class
nesting and we have defined the nesting to be Dominatorl1 <: Owner <: O where Owner

is the owner of o2 and O is any of the owners of the type parameters of the class of o2.
Hence, o1 �D D(o2) as required. Furthermore, for the modifier property will hold for the
same reasons since we preserve the nesting of both dominator owners and modifier owners
in the same way.

For the methods, the only additional requirement is that the owners involved in the
method via methods’ type parameters are only allowed to keep mutable annotations when
the owner is not Modifier, so by construction of the T-Method rule, both dominator and
modifier property will hold for methods.

Theorem 4. (Immutability Invariant) Let ∆, S ` e : T, and e, S→∗l, S′, where S′[l] =
N(l). Then ∆ ` I∆N <: I∆T.

Proof. From preservation theorem, ∆ ` N <: T. Thus ∆ ` I∆(N) <: I∆(T).

Theorem 5. (Dominator Invariant) l refers to l’ only if Dominatorl ≺ O∆(l′) or
I(∆(l′)) = ReadOnly or I(∆(l′)) = Immutable.

Proof. For read-only and immutable references the proof is immediate. For fields by
FGO-Store, ∆ ` ∆(l′) <:[Dominatorl/Dominator, Modifierl/Modifier] Ti. If owner
is World or Dominator, then the theorem holds by the definition of ≺. If owner is
anything else then since well-formedness preserves owner class nesting for fields and
Dominator <: Owner <: O (where O is the set of owners of type parameters) holds, one has
∆ ` Dominatorl <: Dominatorl ′ .

21

Chapter 4

Additional Discussion

This section contains the material that didn’t make it into the full paper for space reasons.

4.1 Related Work

Huang et al. [1] propose an extension of Java (called cJ) that allows methods to be
provided only under some static subtyping condition. For instance, a cJ generic class,
Date<I>, can define

< IextendsMutable >? voidsetDate(. . .)

which will be provided only when the type provided for parameter I is a subtype of
Mutable.

It is possible to use cJ syntax, instead of OIGJ’s method-annotation, which makes
thisI-rule redundant. Then, an iterator can use two mutability immutability parameters:
one for the iterator (I) and one for the collection (CI).

interface Iterator<I extends ReadOnly, O extends World, CI extends ReadOnly, E>

{

boolean hasNext();

<I extends Mutable> E next();

<CI extends Mutable> void remove();

}

The inner class will now have its own immutability and ownership, and therefore it
will have several different ”this” instances.

4.2 Refactoring of the Clone Method

Ownership and method clone

Method clone is very tricky to implement correctly, and we believe its design is poor for
the following reasons:

Code duplication All the collections implement clone first by calling super.clone.
From the documentation:

22

“By convention, the returned object should be obtained by calling super.clone.
If a class and all of its superclasses (except Object) obey this convention,
it will be the case that

x.clone().getClass()==x.getClass()”

An unaware programmer might implement clone, e.g., in LinkedList, by: return

new LinkedList(this);

Furthermore, after calling super.clone whose return type is Object, there is always
a downcast, which is another source for mistakes.

Accessibility clone is protected in Object, but it is usually made public in subclasses.
For example, you can clone an ArrayList but not a List.

Copy constructor Cloning constructs a new object (similarly to copy-constructors in
C++), however they do not have the privileges of constructors. For instance, final
fields of the clone cannot be assigned. Therefore, header in LinkedList cannot be
made final (also due to method readObject, which implements deserialization and
is also a form of constructor). Note that in Java5 memory model (JSR 133 [3]),
final fields allow safe multi-threaded access of immutable objects without the
overhead of synchronization using a process called final field freeze at the end of a
constructor.

Ownership Aliases are tricky to control and understand. Cloning creates a shallow
copy, i.e., only immediate fields were copied. An inexperienced programmer might
implement clone in LinkedList as follows:

LinkedList result = (LinkedList) super.clone();

result.clear();

result.addAll(this);

return result;

Because cloning creates a shallow copy, calling clear also clears the content of this,
and the final result is an empty linked list.

Finally, Sun’s implementation assigns to result.header which is a this-owned
field. This violates Field assignment O-rule that only permits assignment to
this.header.

A partial solution to the above problems uses the idea of inversion of control : instead
of initializing the cloned result from this, we refactor the code into a constructFrom

method that initializes thisfrom a parameter.
Fig. 4.1 shows the refactoring done on the clone method of LinkedList. Originally,

clone directly assigned to the this-owned fields of result (line 3), which is illegal in
OIGJ. Therefore, we had to refactor these assignments into a newly created constructFrom

method (line 16), where such assignments are legal (line 18).
The clone method on lines 7–14 is automatically generated by the compiler in order

to enforce ownership and immutability properties. After calling super.clone on line 8,
the compiler sets all the reference fields to null, and then calls constructFrom. Auto-
generating the clone method solves most of the afore-mentioned problems: a programmer

23

1: public Object clone() { {Original code}
2: LinkedList result =(LinkedList) super.clone();

3: result.header = new Entry(); {Would be illegal in OIGJ!}
4: return result;

5: }

6: {Auto-generated clone method}
7: public @OI Object clone() @OReadOnly {

8: @OI LinkedList result =

9: (@OI LinkedList) super.clone();

10: {The next two lines are safe but illegal in OIGJ.}
11: result.header = null; {nullify pointers to preserve ownership}
12: result.constructFrom(this); {construct the result}
13: return result;

14: }

15: {User-generated constructFrom method}
16: protected void constructFrom(

17: @WildCardReadOnly LinkedList l) @OAssignsFields {

18: this.header= new @DominatorI Entry(); {Legal}
19: }

Figure 4.1: Refactoring of method clone in class LinkedList.

would only override constructFrom and therefore cannot forget to call super.clone, the
cast on line 2 is fail-safe, and subtle aliasing issues are avoided by nullifying the reference
fields.

We note that lines 11–12 are safe but illegal in OIGJ. Line 11 assigns null into a
this-owned field not via this, which is illegal according to Field assignment O-rules.
However, it is safe because we assign a null value and not another reference. Line 12 calls
constructFrom whose immutability is AssignsFields on a reference whose immutability
is I, which is illegal according to Method invocation I-rule. However, because result

was just created on line 8 and did not escape the method (yet), it is safe to continue
its construction. Furthermore, a compiler can give constructFrom all the privileges of
a constructor, e.g., assigning to final fields. Therefore, field header could be declared
final.

24

Bibliography

[1] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing Java with safe type
conditions. In AOSD, pages 185–198. ACM Press, Mar. 2007.

[2] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. (TOPLAS), 23(3):396–450, May 2001.

[3] W. Pugh. JSR 133: Java memory model and thread specification revision. http:

//jcp.org/en/jsr/detail?id=133, Sept. 30, 2004.

25

http://jcp.org/en/jsr/detail?id=133
http://jcp.org/en/jsr/detail?id=133

	1 Introduction
	2 Type Rules
	2.1 FOIGJ Program
	2.2 Syntax
	2.3 Type Judgements and Auxiliary Functions
	2.4 Lookup Functions
	2.5 Well-formed Types and Subtyping
	2.6 NoVariant Definition
	2.6.1 NoVariant Rule

	2.7 Expressions
	2.7.1 T-Field Rule
	2.7.2 T-Field-Set Rule
	2.7.3 T-Method Rule

	2.8 Class and Method Definitions
	2.9 Store
	2.10 Reduction Rules

	3 Theorems and Proofs
	3.1 Preservation
	3.2 Progress
	3.3 Immutability and Ownership

	4 Additional Discussion
	4.1 Related Work
	4.2 Refactoring of the Clone Method

