
Rely-Guarantee References for Refinement
Types Over Aliased Mutable Data

Colin S. Gordon, Michael D. Ernst, and Dan Grossman
University of Washington

{csgordon,mernst,djg}@cs.washington.edu

Abstract
Reasoning about side effects and aliasing is the heart of verifying
imperative programs. Unrestricted side effects through one refer-
ence can invalidate assumptions about an alias. We present a new
type system approach to reasoning about safe assumptions in the
presence of aliasing and side effects, unifying ideas from reference
immutability type systems and rely-guarantee program logics. Our
approach, rely-guarantee references, treats multiple references to
shared objects similarly to multiple threads in rely-guarantee pro-
gram logics. We propose statically associating rely and guarantee
conditions with individual references to shared objects. Multiple
aliases to a given object may coexist only if the guarantee condition
of each alias implies the rely condition for all other aliases. We
demonstrate that existing reference immutability type systems are
special cases of rely-guarantee references.

In addition to allowing precise control over state modification,
rely-guarantee references allow types to depend on mutable data
while still permitting flexible aliasing. Dependent types whose
denotation is stable over the actions of the rely and guarantee
conditions for a reference and its data will not be invalidated by
any action through any alias. We demonstrate this with refinement
(subset) types that may depend on mutable data. As a special
case, we derive the first reference immutability type system with
dependent types over immutable data.

We show soundness for our approach and describe experience
using rely-guarantee references in a dependently-typed monadic
DSL in COQ.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness Proofs; F.3.2 [Semantics of Programming
Languages]: Program Analysis

Keywords reference immutability, rely-guarantee, refinement
types

1. Introduction
A common way to reason about side effects in imperative languages
is to restrict (disable) mutating some state in some code sections.
This is seen most clearly in reference immutability [22, 44, 49, 50],
but also in ownership [14] and region-based type systems [6].
The common approach is to attach permission/ownership/region

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

information to references, where certain operations (mainly writes to
the heap) through references with certain permissions are prohibited.

The program logic literature includes work ensuring that actions
by one section of code do not interfere destructively with the
assumptions of another section of code. This appears most often in
the form of concurrent program logics, where the goal is to prevent
destructive interference between threads. This reaches at least as
far back as Owicki and Gries’s technique [37], which checks thread
non-interference by ensuring that no action would invalidate any
intermediate assumption of another thread. Jones abstracted cross-
thread interactions to a rely relation bounding interference by other
threads, and a guarantee relation bounding actions of the current
thread [27]. Each thread’s local proof then requires all local actions
to fall within its guarantee, and that all of its intermediate assertions
are stable with respect to (that is, not invalidated by) any possible
action permitted by the rely. Parallel composition of threads is then
safe if each thread’s guarantee implies each other thread’s rely.

Our central idea is to treat aliases to objects similarly to threads
of control in rely-guarantee program logics. Each reference’s type
carries a rely and a guarantee, bounding actions on an object through
other references (rely) and bounding actions through the reference
itself (guarantee). We call these augmented reference types rely-
guarantee references. The type system maintains the invariant that
the guarantee of any reference implies the rely of any alias. The type
system checks these constraints when a program duplicates an alias.
This raises the issue that some references cannot soundly coexist: no
two references to the same object can each guarantee nothing (the
reference permits arbitrary actions) and rely on restricted behavior
through aliases. This presents us with a logical account of aliasing:
some references may not be aliased without weakening the rely
or guarantee of the source, and a reference with an empty rely
necessarily has no aliases.

Rely-guarantee references generalize reference immutability [22,
44, 49, 50] to finer-grained control over interference through aliases.
The traditional reference immutability qualifiers correspond to
simple rely and guarantee conditions. For ref τ[R,G] as a reference
to data of type τ with rely R and guarantee G:

• readable τ ≡ ref τ[any interference, no writes]
• writable τ ≡ ref τ[any interference, any writes]
• immutable τ ≡ ref τ[no interference, no writes]

Rely-guarantee references let us reason about some refinements
of referents. Let a stable predicate over a reference be one that is
preserved by its rely. Then a stable predicate cannot be invalidated
by actions through an alias, and any new predicate that is stable and
ensured by a guarantee-permitted action (on an object satisfying the
old predicate) is true after the action, providing a form of strong
update on arbitrarily aliased mutable data. (An action allowed by
the guarantee that preserves the current predicate is a special case.)

1.1 Contributions
Refinement Types Over Mutable Data Rely-guarantee references
permit refinement types [21] that depend on mutable data, without
requiring any aliasing restrictions to support strong updates. We
leverage the notion of a stable assertion from rely-guarantee pro-
gram logics, allowing any refinements that are not invalidated by
actions performed through other references. We prove that our type
system is sound.

Generalizing Reference Immutability We generalize reference
immutability by combining it with rely-guarantee techniques. This
is of independent interest, but also outlines an effort/precision
spectrum from unrestricted references to reference immutability
to rely-guarantee references.

A Prototype Implementation We prototype an implementation
as a shallow monadic embedding in COQ. We have used it to
verify the examples in the paper, including implementing reference
immutability as a special case. We briefly discuss our experience
implementing a language as a COQ DSL and the manual proof
burden for our technique versus purely functional versions. The
implementation is available at
https://github.com/csgordon/rgref/.

We believe rely-guarantee references make a compelling argu-
ment that rely-guarantee reasoning is a promising way to statically
reason about aliasing. Further, any technique traditionally used to
reason about thread interference can be adapted to modularly reason
about effects in the presence of aliasing (we present rely-guarantee
references as a type system, but our ideas could be implemented
in other ways, such as a program logic). Ultimately we believe the
proper way to support unknown aliases in program verification is by
treating aliases as different threads of control.

2. Rely-Guarantee References
A rely-guarantee reference is a reference to a heap structure of a
given type, as in ML’s ref τ, with three additional type components:

• A refinement predicate P over the τ and a heap h that can enforce
local properties and/or data-structure well-formedness.
• A guarantee relation G over pairs of τs and heaps, restricting

the effects to the referent (and state heap-reachable from that
referent) that may be performed through this reference or those
produced by dereferencing it.
• A rely relation R specifying the actions permitted by (the

guarantees of) other aliases to the referent.

We use the form ref{τ | P}[R,G] for a rely-guarantee reference.
Predicates and relations are defined not only over the τ a reference
refers to, but also over heaps, to refine data reachable from the
immediate referent. For a rely-guarantee reference type to be well-
formed, the predicate P must be stable with respect to the rely R:
for all values and heaps for which the predicate holds, if the rely R
allows another value and heap to be produced by actions on another
alias, then the predicate holds for the new value and heap as well:
P v h∧R v v ′ h h ′ =⇒ P v ′ h ′. This ensures that actions through
aliases do not invalidate the refinement, and that all actions that may
invalidate the refinement are local, so reasoning about such changes
allows strong updates to the refinement. These issues are formally
treated in Section 4.

A simple example of rely-guarantee references is a monotoni-
cally increasing counter, which we can represent as a value of type

ref{nat | any}[increasing, increasing]
where any is the trivial (always true) refinement, and increasing
(Section 3.1) is a relation on natural numbers and heaps that requires

the second nat to be greater than or equal to the first. Given a
variable x with the type above, x← !x+1 type-checks (! is ML’s
dereference operator). By contrast, incorrect code that decrements
the counter cannot satisfy the guarantee relation increasing.

A read-only alias to an increasing counter can be expressed as:

ref{nat | any}[increasing,≈]
where ≈ is a relation permitting no change.

We might wish to know more about a counter value, for example
that it is greater than 0 so it is safe as a divisor to compute an average.
Any write to the counter via any reference will increase its value, and
may therefore conclude the result is greater than 0.1 Furthermore,
it is safe to continue assuming the value is greater than 0 because
the reference’s rely ensures no alias can decrease the value. We say
λx : nat.λh : heap.x > 0 is stable with respect to the rely increasing.
When a write establishes a new stable predicate over the data, strong
updates to the reference’s predicate (changing the predicate in the
type) are sound. (Similarly, when a write invalidates a reference’s
predicate, a strong update is required, to a new predicate stable over
the rely.)

Many verification techniques for imperative programs struggle to
verify examples of this kind. Reference immutability and fractional
permissions [7, 28] can only allow or outright prevent mutation, not
control it. Separation logic cannot concisely specify the counter’s in-
tended semantics, only code’s behavior. Rely-guarantee and related
systems can express the semantics among threads [18, 27, 45], but
only coarsely [46] among different program sections. Most program
logics can constrain the actions of a function on an argument, but
the specification must deal with aliasing, either by giving linear
semantics to knowledge of the counter (as in separation logic), or by
explicitly treating aliasing (as in more traditional Hoare logics [24]).

With rely-guarantee references, functions are written without
concern for aliasing among their arguments. A function cannot be
called with unsafe aliasing among arguments: since each alias’s
guarantee must imply each other’s rely, each function explicitly
accounts for its possible actions. If two arguments of the same type
have conflicting rely/guarantee conditions, they cannot be aliased.

2.1 Subtleties of Rely-Guarantee References
While the intuition behind rely-guarantee references is straightfor-
ward, this section overviews some more subtle features of our system
that avoid problems.

Non-duplicable References A reference may be freely duplicated
if its guarantee implies its own rely, as with the monotonically
increasing counter. But consider a reference

y : ref{nat | any}[decreasing, increasing]
Making an alias to y where the the alias has the same type as y
violates soundness, because the guarantee of the duplicate does
not imply the rely of y! Instead, aliasing y requires splitting it into
two aliases with weaker rely/guarantee conditions. We support such
splitting via a novel substructural resource semantics (Section 4).

Reference to References We need a reference’s guarantee to re-
strict all actions performed using that reference, which must include
actions performed via references acquired by dereferencing the first
reference. Otherwise, reading a reference out of the heap and writing
through it could violate the original reference’s guarantee, violating
the “capability to perform effects in the guarantee” intuition, and
potentially invalidating a predicate. So reading from the heap must
somehow transform the type of the referent to restrict resulting ref-
erences. Reference immutability systems can give a simple binary
function on permissions [22], to capture the transitive meaning of

1 Because the type nat of natural numbers contains no negative numbers.

https://github.com/csgordon/rgref/

qualifiers. For example, dereferencing a readable reference to a
writable reference returns a readable reference (assuming a deep
interpretation of reference immutability, where permissions apply
transitively). By contrast, our type system combines arbitrary rela-
tions (Section 3.2). Furthermore, if one reference points to another,
how should the rely of the “inner” reference be related to the outer
one? It is unsound if it permits more interference than the outer rely,
so our type system prevents this.2

Footprint How much of the heap may a rely-guarantee reference’s
predicate or conditions mention? It is not productive or sound to let a
reference constrain unrelated heap data: letting a reference arbitrarily
constrain the heap could lead to allocating a new heap cell whose
rely is not implied by existing references. The type system restricts
the expressiveness of these predicates to ensure sound and tractable
reasoning: predicates and relations may depend only on the heap
reachable from the reference.

Cycles Many useful data structures contain cycles, so we wish to
reason effectively about them. The solution turns out to be simple
(propositions describing cycles require finite proofs, and recursion
based on heap structure is not permitted in predicates), but was not
immediately obvious to us.

3. Examples
We present examples using rely-guarantee references to verify pro-
grams. The examples are small, but highlight distinct capabilities
of rely-guarantee references. Rather than writing examples in our
core language RGREF (Section 4), we present them using a slight
simplification of our shallow embedding in COQ [12]. The embed-
ding is largely in the style of YNOT [11, 34], using axioms for heap
interactions.

Reading COQ Source COQ’s language for defining functions and
types is based strongly on ML, though many keywords are differ-
ent: Definition and Fixpoint for non- and recursive definitions,
Inductive for defining inductive variant datatypes by specifying
constructors. Parameter declares assumptions, external functions,
or abstract elements in a module signature. Functions and parameter-
ized type definitions can put some arguments in braces rather than
parentheses; these arguments are implicit, and inferred when pos-
sible from later arguments. Another notable syntactic change from
ML is that = is an operator for propositional equality, not a boolean
decision procedure for structural equality. Therefore, := is often
used where ML would use = in definitions. The set of types is much
richer than ML, not only due to dependent types but because there
are universes (types of types): Prop is the type of propositional types
(erasable during extraction, such as proof terms with conjunction,
implications, etc.), and Set is the type of normal (computationally
relevant) data types. COQ also includes a notation feature that allows
users to extend the grammar with additional parsing rules, allowing
programs to use syntax closer to mathematical definitions (such as
ref{T | P}[R,G]). Our notation uses ML’s dereference operator (!)
and uses r← e for writing e to the location referenced by r. We
introduce further notations as they arise.

The PROGRAM extension [42] (used via definitions prefixed with
Program) allows the omission of explicit proof terms in programs.
Omitted terms are either solved automatically via a (customizable)
proof search tactic, or set aside for subsequent manual interactive
solving, improving readability.

2 This is actually a design decision that simplifies checking stability. An
alternative design could check a predicate for stability over any change
permitted by any reference reachable from the predicate’s target referent.

3.1 Monotonic Counter
Consider again our running example of a monotonically increasing
counter. Generally, rely and guarantee conditions must be defined
over pre- and post-heaps as well as values, to describe the interfer-
ence they tolerate on reachable substructures. For a simple counter,
there is no other reachable data, so the pre- and post-heaps may be
ignored. Thus the relation for increasing over time is defined as:

Definition increasing (n n’:nat) (h h’:heap) : Prop :=
n’ ≥ n.

Code to allocate a counter is straightforward:

Program Definition mkCounter (_:unit)
: ref{nat|any}[increasing,increasing] :=
alloc 0.

The allocation function mkCounter generates well-formedness
proof obligations for the resulting type:

• that any is stable with respect to increasing

• that any and increasing are precise: they access only the (empty)
heap segment reachable from the natural number they apply to
• that any is true of 0

In our prototype implementation (Section 5), most of these obliga-
tions are proven automatically by lightly-guided automatic proof
search. Type errors for actions that fall outside the guarantee (or
ill-formed rely/guarantee relations, or predicates that are not precise,
etc.) manifest as unsolvable proof obligations.

Using a monotonic counter is also straightforward:

Program Definition example (_:unit) :=
let x = mkCounter () in x ← !x + 1;

An assignment typechecks only if the change implied by the write
is permitted by the reference’s guarantee relation, for any pre-heap
and pre-value satisfying the reference’s refinement. In this case, the
assignment generates a proof obligation of the form

∀x,h.any (!x) h =⇒ increasing (!x) (!x+1) h h[x 7→ h[x]+1].

which is easily solved, with little effort beyond what is required
to verify a pure-functional increment function (see Section 5.3).
Each read also generates a proof obligation that the guarantee
increasing is “reflexive”: it allows a reference to be used without
modifying the heap (∀n,h. increasing n n h h). By contrast, an empty
guarantee relation would disallow using a reference.

The monotonically increasing counter was proposed by Pilkiewicz
and Pottier [40] as a challenging goal for program verification. Un-
like their solution and another in fictional separation logic [26], we
can state the monotonicity property plainly and require no abstrac-
tion to prevent unchecked interference. On the other hand, their
solutions verify that the increment occurs, while ours ensures that
increment is the only permitted action.

3.2 Monotonic List
We can define a monotonically growing (prepend-only) list, either
using a mutable reference to a pure-functional list, or using mutable
nodes. The former approach is similar to the monotonic counter, so
to show the power of rely-guarantee references for recursive data
structures, Figure 1 shows the latter.3

We first define hpred and hrel, type-level functions that allow
shorter type declarations. We use them throughout this paper. Next
we define a linked list structure, with restricted references to the

3 The most natural design uses mutual inductive types where one indexes
the other, which we assume here. COQ does not support this, so we use an
encoding, discussed further in Section 5 and our technical report [23].

Definition hpred (A:Set) := A -> heap -> Prop.
Definition hrel (A:Set) := A -> A -> heap -> heap -> Prop.
Inductive list : Set :=
| nil : list
| cons : forall (n:nat),

ref{list|any}[list_imm,list_imm] -> list
with (* list tails are immutable (_imm) *)
list_imm : list -> list -> heap -> heap -> Prop :=
| imm_nil : forall h h’, list_imm nil nil h h’
| imm_cons: forall n tl h h’,

list_imm h[tl] h’[tl] h h’ ->
list_imm (cons n tl) (cons n tl) h h’.

(* Convenient allocation functions *)
Program Definition Nil {P:hpred list}
: ref{list|P}[list_imm,list_imm] := alloc nil.

Program Definition Cons {P P’:hpred list}
(n:nat)(tl:ref{list|P}[list_imm,list_imm])

: ref{list|P’∩(λ l h=>l=cons n tl)}[list_imm,list_imm]
:= alloc (cons n tl).

(* A prepend-only list container *)
Record list_container (P:hpred list) :=
mkList { head : ref{list|P}[list_imm,list_imm] }.

Inductive prepend : hrel (list_container P) :=
| prepended : forall c c’ h h’ n,

h’[head c’]=cons n (head c) -> prepend c c’ h h’
| prepend_nop : forall c h h’, prepend c c h h’.

Program Definition newList (P:hpred list)
: ref{list_container|any}[prepend,prepend] :=
let x = Nil in alloc (mkList P x).

Program Definition doPrepend {P:hpred list}(n:nat)
(l:ref{list_container|any}[prepend,prepend]) : unit :=
let x = Cons n (head l) in

l ← mkList P x.

Figure 1. RGREF code for a prepend-only linked list.

tail. list imm constrains the tail to be immutable. For the reader
unfamiliar with COQ, list imm is a GADT [48] constructing a
proposition on different constructions of lists. The first constructor
declares that an empty list must remain empty, regardless of heaps.
The second constructor accepts a nat, a tail, two heaps, and a proof
that list imm holds over the tail of the list in those heaps, returning
a declaration that a cons cell must remain constant. The immutability
requirement is not essential to this example (we could, for example,
permit the numbers to change but require the length to increase),
but is included for completeness. We then define convenient helper
functions for heap-allocating nil or cons cells.

We enforce the prepend-only behavior through reference
to a list container structure, which holds a reference to a
list parameterized by some predicate. The prepend relation on
list containers allows prepending and no-ops (required for read-
ing the reference). Finally we have helper functions to allocate a new
list and to prepend the list with a new cell. prepend is essentially
the specification of what doPrepend is permitted to do with the list.

Note the predicate conjunction (∩) in the return type of Cons.
This, along with the predicate conversion rule, is how flow-sensitive
assumptions can be handled (notice that the equality is stable
with respect to list imm). This is important in doPrepend, where
information from the result of one write (inside Cons) must be
carried into another (the assignment through l), because it is
otherwise unavailable in the expression stored.

Not shown in Figure 1 are implicit obligations such as ∀h.P nil h
in Nil. Other such obligations include:

• ∀tl,h.P tl h =⇒ P′ (cons n tl) h in Cons

• That prepend permits the write in doPrepend (under the trivial
assumption that any holds of the initial list container and heap).

This obligation requires a richer type for the allocation result,
because mkList must know x is a cons cell whose tail is the old
list. This information is not available locally (within the write
statement itself). Other systems propagate hypotheses separately,
but we only need to track variables: the required equality is
present in x’s predicate because of Cons’s return type.
• The stability and precision properties that must hold for various

predicates and list imm.
• Propagations of these obligations to indirect polymorphic callers,

such as newList and prepend.

Also omitted in Figure 1 are obligations related to folding and
containment. Folding is the restriction of read result types to ensure
that for any reference r with guarantee G, references produced via
reads of r do not allow actions exceeding those permitted by G on
r’s referent. This ensures actions via a reference read from inside a
data structure cannot invalidate predicates over the whole structure.
Containment is a check that the rely R for a reference r captures all
interference allowed by the interference summaries of references
reachable from r. This ensures that any predicate preserved by R is
also preserved by actions on aliases to internal structures.

Both operations require projecting a given relation component-
wise onto a datatype’s members. For our prepend-only list, project-
ing prepend is trivial (it does not constrain the list cells’ values),
and the result of projecting list imm is logically equivalent to
list imm itself.

3.3 Reference Immutability as a Special Case
Reference immutability [22, 44, 49, 50] adds permissions (type
qualifiers) to references to permit or disallow side effects through a
particular reference. Multiple aliases at different permissions may
coexist if compatible: for example, there may be write-permitting
and read-only aliases to an object. We can define the permissions of
reference immutability like this:

Definition havoc {A:Set} : hrel A :=
fun x => fun x’ => fun h => fun h’ => True.

Definition readable (T:Set) := ref{T|any}[havoc,≈].
Definition writable (T:Set) := ref{T|any}[havoc,havoc].
Definition immutable (T:Set) := ref{T|any}[≈,≈].

Our definitions encode the standard semantics for reference im-
mutability qualifiers: only immutable assumes limited interference
via other aliases, and readable and immutable disallow muta-
tion through a reference. Restrictions on aliasing among reference
immutability permissions are reflected in the rely and guarantee
relations: no heap cell may have writable and immutable aliases
simultaneously, as the guarantee of the writable reference (havoc)
is not a subrelation of the immutable rely (≈). The “containment”
requirement (Section 3.2) for rely conditions on nested datatypes is
satisfied by the rely for readable and writable, and for immutable
the rely prevents it from (transitively) referencing mutable data.

Reading through one of these references requires considering
how the rely and guarantee affect the read’s result. In reference
immutability, result types are adapted using a simple binary func-
tion on permissions (Figure 2). Our rely-guarantee reference type
system must combine arbitrary relations (folding), using the type
of the referent. Intuitively, folding is projection of the reference’s
guarantee onto the referent type. Any projection of havoc and≈ cor-
respond with the simplified version in Figure 2. Projecting havoc is
equivalent to reading through a writable reference, which simply
produces the inner type. Projecting ≈ is equivalent to the weak-
ening that occurs when reading through readable or immutable
references.

We can also give a reference immutability system with limited
dependent types by a small extension:

B immutable = immutable
immutable B = immutable
readable B = readable
writable B q = q

Figure 2. Combining reference immutability permissions, from
[22]. Using a p reference to read a q T field produces a (pBq) T .

Definition refined (T:Set) (P:hpred T) := ref{T|P}[≈,≈].

At first glance this is weaker than proposed systems that let mutable
data’s type depend on arbitrary immutable data, because we require
any reference predicate to access only heap state reachable from
its referent. At the cost of some space the referent could maintain
its own extra reference to relevant immutable data. Careful code
extraction work can improve the space overhead in executables.

Another benefit of implementing reference immutability via
rely-guarantee references is interoperability between reference
immutability and richer rely-guarantee references. For example,
a function accepting a readable reference to a natural number
can be passed a read-only monotonically-increasing counter from
Section 3.1. This offers a natural path for gradually adding stronger
verification guarantees to code using reference immutability (which
itself is a gradual refinement of unrestricted references [22]).

3.4 RCC/Java with Reference Immutability
The core of RCC/Java [20] is also implementable as a small
library using our COQ DSL, and we present a translation of an
early version [19]. The key idea in these type systems and related
systems is to parameterize the type of a reference by the identity
of a particular lock. The type system tracks the set of held locks
and permits reads and writes through a reference only when the
reference’s lock parameter is statically known to be held.

A COQ module wraps standard acquire and release primitives
and exposes a new reference type that quantifies over a lock. The
RCC reference type can be abstracted with a module signature, but
can be concretely represented by a RGREF ref type:

(* Signature *)
Parameter rccref : forall (A:Set),

hpred A -> hrel A -> hrel A -> lock -> Set.
...
(* Implementation *)
Definition rccref A P R G (l:lock) := ref A P R G.

The module then exposes its own read and write primitives, and
external ways of proving goals like guarantee satisfaction that do
not expose the internal rccref representation. This mostly consists
of re-exporting existing axioms using new names. Then an explicit
lock witness (since the type system is not specialized to track lock
witnesses) can be abstracted using:

Parameter lockwitness : lock -> Set.
Parameter locked : forall {l:lock}, hpred (lockwitness l).
Parameter unlocked : forall {l:lock}, hpred (lockwitness l).

The acquire and release operations must respectively produce and
consume a witness that a lock is held, that permits release. Using a
binary operator --> on predicates that produces a relation allowing
changes from states where the first predicate holds to states where
the second holds (a limited encoding of protocols), a witness may
have type ref{lockwitness | locked}[empty, locked-->unlocked].
Using an empty rely implies uniqueness, and requiring such a
witness to release the lock prevents splitting the witness, which
would requiring weakening the rely of both resulting references.
The read and write for rccrefs would need to also require some
witness that the lock was held:

Expressions e ::= x Variable
| e e Application
| !e Dereference
| e[e] Heap Select
| alloc e Allocation
| (λx : τ.e) Pure Function
| (λM (x : τ).e) Procedure
| τ Types
| x← e Store
| swap(x,e) Atomic swap

Types τ ::= = Propositional equality
| Prop Propositions
| ref{τ | e}[e,e] Reference
| Type Type of Prop
| Πx : τ→ τ′ Dep. Product (pure)

| τ
M→ τ′ Impure Function

| heap Heaps
| e Expressions

Figure 3. Syntax, omitting booleans (b : bool), unary natural num-
bers (n : nat), unit, pairs, propositional True and False, and standard
recursors. The expression/type division is presentational; the lan-
guage is a single syntactic category of PTS-style [2] pseudoterms.

Program Definition rcc_read ...{l:lock}
(w:ref{lockwitness l | locked}[empty,locked-->unlocked])
(r:rccref A P R G l)... := (!r,w).(* return the witness *)

This encoding of RCC/Java using dependent types is not novel, but
note the rely, guarantee, and predicate of the underlying reference are
exposed, yielding the first combination of race-free lock acquisition
and reference immutability we are aware of, in addition to exposing
the full power of rely-guarantee references over lock-guarded data.

4. A Type System for Rely-Guarantee References
Figure 3 gives the syntax for a core language RGREF with rely-
guarantee references. The expressions combine features from the
ML-family (e.g., references) and dependently typed languages (e.g.,
dependent product), specifically from the Calculus of Construc-
tions [2, 13]. We include a few basic datatypes (natural numbers,
booleans, pairs, unit), a type for propositional equality, and their stan-
dard recursors [25]. We also distinguish effectful functions through
the term former λM and the effectful non-dependent function type

former τ
M→ τ′ (M for mutation).

The language supports reasoning about heaps: not only is there a
standard form of dereference, but there is a term for dereferencing
a reference in a particular heap, used to specify predicates and
rely/guarantee relations using the propositions-as-types principle.
The language is designed to use propositions-as-types to specify
predicates and relations, and to use the pure sublanguage as a
computational language amenable to rich reasoning, but to use
external means for discharging obligations like a write satisfying
a guarantee. The presence of current-heap-dereference makes the
pure term language itself unsound as a logic, internally offering
assurances similar to Cayenne [1]. In general, the language for
predicates and relations can be distinct from the term language, and
the term language does not require advanced types; our design is
motivated by our implementation as a COQ DSL (Section 5).

Figure 4 presents the primary typing rules for the core language.
There are two key judgments: Γ ` e : τ for pure terms (useful for
proofs), and Γ ` e : τ⇒ Γ′ for impure and substructural computation.
Those pure rules omitted here (recursors for the assumed inductive
types, typing the primitive types in Prop, etc.) are standard for a
pure type system.

The imperative typing judgment Γ ` e : τ⇒ Γ′ is flow-sensitive
to allow reasoning about when references are duplicated. Crucially,
it allows reasoning about when a reference must not be duplicated

because its guarantee does not imply its own rely. For this reason,
we have two impure variable rules: one consumes the variable (V- /0),
and the other uses an auxiliary relation Γ ` τ≺ τ> τ to split a type
(V->). Primitive types (nat, bool, unit) freely split into two copies
of themselves. We require that any variable captured by a closure
has a self-splitting type (Π-I and FUN), and thus functions may
be duplicated freely. We require that only values of self-splitting
types are captured by dependent type constructors (Π-F and the not-
shown propositional equality rule), so types are also self-splitting.
Variables read in pure computation must also be self-splitting (V).

References (and structures that may contain them, like pairs)
are the only types with non-trivial splitting. Reference types split
into reference types that may coexist (each guarantee implies the
other rely, both relies are no stronger than the original rely, stable
predicates, etc.), and pairs split into pairs of the component-wise
split results. For example, the problematic reference from Section
2.1 has non-trivial splitting behavior, mediated by REF->:

y : ref{nat | any}[decreasing, increasing]

Splitting this reference requires consuming the original and produc-
ing two “weaker” references: each guarantee may permit at most
what the original guarantee allowed, and each rely must assume at
least as much interference as the original. For example,

ε ` ref{nat | any}[decreasing, increasing]
≺ ref{nat | any}[havoc, increasing]
> ref{nat | any}[havoc, increasing]

The natural use of simply duplicating a reference whose guarantee
implies its own rely (as in the monotonic counter) is a degenerate
case of the very general rule REF->.

The conversion relation Γ ` τ τ is a directed call-by-value β-
conversion (so for example β-reduction is not used with arguments
containing dereferences) plus reducing abstractions whose bound
variable is free in the result, and what amounts to subtyping
by converting predicates and relations to weaker versions: P-⇒
weakens the predicate; R-⊂ assumes more interference may occur;
and G-⊂ sacrifices some permissions; P and R changes may affect
stability.

Mutation The most interesting rules are those for mutation, partic-
ularly for writing to the heap (WRITE). This rule requires (beyond
basic type safety) that the effects fall within the guarantee, assuming
the reference’s predicate holds in the current heap.4 It also allows
the option of a strong update to the reference’s predicate, if the
change establishes some new stable predicate. For example,

x : ref{nat | λx.λh.x = 3}[empty,havoc] `
x← 4 : unit

⇒ x : ref{nat | λx.λh.x = 4}[empty,havoc]

Thus RGREF naturally supports strong updates on unique references
as a degenerate case. The atomic swap operation (which permits
modifying substructural fields) leverages the heap-write rule’s
premises. Allocation simply requires a well-formed type as a
result and establishing the predicate over the value in any heap.
The imperative part of the language also includes non-dependent
function types, application, and the use of pure expressions.

Dereference uses the relation folding function [R,G]� τ (Figure
5) to reason about the rely and guarantee in result types. It has no
effect for non-reference types. For types containing references, the
result type is rewritten by intersecting the projection of the guarantee
onto each component with the stated guarantee for the component
itself. This can cause some precision loss. The effect of folding
on the rely has no impact: because the rely for any well-formed

4 The reflexivity goals DEREF generates could also assume the predicate (i.e.,
reflexive on states satisfying the predicate), but we haven’t needed this.

reference type has to contain / admit the effects allowed by the
rely of any reachable reference type, the intersection on the rely
component would produce a relation semantically equivalent to the
syntactically present rely on the inner reference (the same type of
relation projection is used to check rely containment as is used in
folding the guarantee). In general, relation folding and checking
containment are straightforward for types whose members are al-
ways reflected in a type index (e.g., pairs, references). Folding for
richer types, such as full inductive types [39] is left to future work.
The Deref rule also checks that the source type is self-splitting. This
ensures that the (possibly weaker) guarantee of the result implies
the original location’s rely, and the original value’s guarantee(s) will
imply the (unaltered) rely relations of the result.

The rule for typing reference types themselves (WF-REF) im-
poses several additional requirements on predicates and relations.
First, the predicate P must be stable with respect to R. Second, the
relations and predicates must be precise: all depend only on heap
state reachable from the referent. This prevents code from rendering
the system unsound by allocating a new cell whose rely condition
requires the heap to be invariant: that rely would be undesirable if
enforced as it prevents all mutation and allocation, but unsound if
ignored because all predicates are stable over such a rely. Finally,
the rely must be closed (contained): any changes permitted by relies
of references reachable from the referent are also permitted by the
checked rely. This ensures that checking stable P R is sufficient
to ensure P is not violated (otherwise P could depend on other
references reachable from the referent, whose rely relations might
permit P to be invalidated). Figure 5 defines these notions precisely.
WF-REF also requires as a side condition that P, R, and G are free
of dereference expressions (!e), since implicitly heap-dependent
predicates are not sensible.

We foresee no technical difficulty in building the system directly
atop stronger calculi such as the Calculus of Inductive Construc-
tions [4] (CIC) beyond richer treatment of folding for the full spec-
trum of inductive types (Section 5.2). There are a few essential
qualities required for soundness. First, effectful terms and abstrac-
tions are encapsulated in a separate judgment (which corresponds to
a monadic treatment of effects in translation to a pure system). Any
term in the pure fragment must be reflexively splittable, to avoid
introducing resource semantics into the pure sublanguage. Captured
variables have reflexively splittable types (Γ ` τ≺ τ> τ). In princi-
ple this could be weakened, but we prefer the simplicity of allowing
function terms to be arbitrarily duplicated. We build upon CC for
simpler presentation.

4.1 Soundness Sketch
Soundness follows a preservation-like structure. Evaluation must
preserve a couple invariants beyond standard heap soundness:

• For each reference r : ref{T | P}[R,G] in the stack, heap, or
expression under reduction, there exists a proof of P (h[r]) h for
the current heap h.
• For each pair of references p : ref{T | P}[R,G] and q : ref{T |

P′}[R′,G′] in the stack, heap, or expression under reduction, if
p and q alias (point to the same heap cell) then /0⊂ G′ ⊆ R and
/0⊂ G⊆ R′.

Initially there are no references, so these hold trivially. On allocation,
the predicate for the new object is true in all heaps by inversion on
the allocation typing, so the result is immediate. On any action
through a reference, the type system ensures the action falls within
the guarantee. The action either preserves the predicate or produces a
new (stable) one, and the proof for that reference’s new refinement is
easy to construct from the typing derivation results. For aliases, the
used reference’s guarantee must imply the rely of any alias, and the
alias’s predicate is stable over its rely, and therefore preserved by the

Γ ` τ≺ τ> τ
τ ∈ {nat,bool,unit,Prop,Type,heap, = ,Πx : τ→ τ

′,τ
M→ τ

′}
Γ ` τ≺ τ> τ

Γ ` τ≺ τa > τb Γ ` σ≺ σa >σb

Γ ` (τ,σ)≺ (τa,σa)> (τb,σb)

REF-> Γ ` ref{b | φ′}[R′,G′] Γ ` ref{b | φ′′}[R′′,G′′] /0⊂ JG′K⊆ JR′′K /0⊂ JG′′K⊆ JRK′ JG′K∪JG′′K⊆ JGK JRK⊆ JR′K JRK⊆ JR′′K
Γ ` ref{b | φ}[R,G]≺ ref{b | φ′}[R′,G′]> ref{b | φ′′}[R′′,G′′]

Γ ` e : τ Γ ` n : nat Γ ` b : bool Γ ` tt : unit
AXIOM

Γ ` Prop : Type
V

Γ ` τ≺ τ> τ

Γ,x : τ ` x : τ

Π-I
Γ ` τ≺ τ> τ ∀τ ∈ Γ.` τ≺ τ> τ Γ ` (Πx : τ→ τ

′) : σ σ ∈ {Type,Prop} Γ,x : τ ` e : τ
′

Γ ` (λx : τ.e) : Πx : τ→ τ
′ Π-E

Γ ` e1 : Πx : τ→ τ
′

Γ ` e2 : τ

Γ ` e1 e2 : τ
′[x/e2]

ε ` τ ε ` τ
′

x : τ ` e : τ
′⇒ Γ

′

Γ ` (λM x : τ.e) : τ
M→ τ

′

DEREF
Γ ` e : ref{τ | P}[R,G] τ

′ = [R,G]� τ

Γ ` τ≺ τ> τ G reflexive

Γ `!e : τ
′

Π-F
Γ ` τ : γ Γ ` τ≺ τ> τ

Γ,x : τ ` τ
′ : σ γ,σ ∈ {Type,Prop}
Γ `Πx : τ→ τ

′ : σ

CONV
Γ ` e : τ Γ ` τ τ

′

Γ ` e : τ
′

Γ ` τ τ

P-⇒
∀v,h.P v h→ P′ v h stable P′ R

Γ ` ref{τ | P}[R,G] ref{τ | P′}[R,G]

R-⊂
JRK⊆ JR′K stable P R′

Γ ` ref{τ | P}[R,G] ref{τ | P}[R′,G]

G-⊂
JG′K⊆ JGK

Γ ` ref{τ | P}[R,G] ref{τ | P}[R,G′]

Γ ` e : τ⇒ Γ
V- /0

Γ,x : τ ` x : τ⇒ Γ
V-> Γ ` τ≺ τ

′> τ
′′

Γ,x : τ ` x : τ
′⇒ Γ,x : τ

′′
M -I

∀τ ∈ Γ.` τ≺ τ> τ

Γ,x : τ ` e : τ
′⇒ Γ

′

Γ ` (λM (x : τ).e) : τ
M→ τ

′⇒ Γ
M -E

Γ ` e1 : τ
M→ τ

′⇒ Γ1
Γ1 ` e2 : τ⇒ Γ2

Γ ` e1 e2 : τ
′⇒ Γ2

WRITE
Γ ` e : τ⇒ Γ

′,x : ref{τ | P}[R,G] ∀h,h′ : heap.h′ = JeK(h)→ P (!x) h′→ P′ JeK h′[x 7→ JeK]
stable P′ R ∀h,h′ : heap.h′ = JeK(h)→ P (!x) h′→ G (!x) e h′ h′[x 7→ JeK]

Γ ` x← e : unit⇒ Γ
′,x : ref{τ | P′}[R,G]

IDEREF
Γ ` e : ref{τ | P}[R,G] τ

′ = [R,G]� τ

Γ ` τ≺ τ> τ G reflexive

Γ `!e : τ
′⇒ Γ

′

ALLOC
Γ ` e : τ⇒ Γ

′
/0⊂ G stable P R ∀h : heap.P e h

Γ ` alloc e : ref{τ | P}[R,G]⇒ Γ
′ SWAP

Γ ` x← e : unit⇒ Γ
′,x : ref{τ | P′}[R,G]

Γ ` swap(x,e) : τ⇒ Γ
′,x : ref{τ | P′}[R,G]

PURE
ε ` e : τ ε ` τ : Prop

Γ ` e : τ⇒ Γ

IΠ-E
Γ ` e1 : Πx : τ→ τ

′⇒ Γ
′

Γ
′ ` e2 : τ⇒ Γ

′′ x 6∈ FV(τ′)

Γ ` e1 e2 : τ
′⇒ Γ

′′
Γ ` τ : σ

WF-REF

ε ` R : hrel(τ) ε ` G : hrel(τ) ε ` P : hprop(τ) closed R
precise R precise G precise P stable P R ε ` τ : Prop

Γ ` ref{τ | P}[R,G] : Prop

with metafunctions hrel(τ) def
= τ→ τ→ heap→ heap→ Prop and hprop(τ) def

= τ→ heap→ Prop

Figure 4. Typing. Not shown: standard recursors for naturals, booleans, pairs, identity types [25]. Also not shown: standard well-formed
contexts, most of (pure) expression/type conversion (Γ ` τ τ) (see our technical report [23]).

action within the used reference’s guarantee. For other references,
the action will fall within its rely (by containment) and thus a
similar use of a stability proof suffices, or the changed cell is not
reachable from the reference in question, in which case the predicate
is preserved by precision.

This proof is simplified by slightly nonstandard operational se-
mantics. First, we execute an elaborated language where conver-
sions, strong updates, and substructural reads of variables are ex-
plicit (translation from a typed source program is straightforward).
To prove soundness of substructural manipulation, impure code ma-
nipulates a mutable stack, and references are “fat pointers” of the
underlying pointer, rely, guarantee, and predicate. Variable capture
in imperative closures occurs via a rule that inlines all free variables
when reducing to a value. Folding has a runtime representation, since
folded types sometimes occur as part of runtime values. Finally, the
semantics sometimes reduce multiple dereferences at once inside
pure expressions, when type equivalence requires the dereference
expressions to be definitionally equal. This avoids trouble where
the naı̈ve reduction might reduce definitionally equal dereferences
in different heaps (with different values). We have yet to conceive
of desirable computational code that observes this behavior. Our
technical report provides more details [23].

5. Implementation
To understand RGREF’s effect on data structure design and the effort
required for verification, we have implemented RGREF as a shallow

embedding in COQ, and used it to implement Section 3’s examples.
This includes implementing reference immutability, meaning our
RGREF implementation can be used to write programs using refer-
ence immutability, and to gradually refine parts of those programs to
use more fine-grained rely and guarantee conditions and predicates.
Overall, we found that RGREF required careful choice of type refine-
ments, but did not affect algorithm design and had reasonable proof
burden (commensurate with the complexity of the code verified).

The implementation is done largely in the style of YNOT [11, 34],
with axioms for heap interaction, and using COQ’s notation facilities
to elaborate source terms to COQ terms with proof holes, which are
then elaborated and semi-automatically solved by Sozeau’s PRO-
GRAM extension [42]. Each structure typically requires its own
slightly customized PROGRAM tactic for effectively solving most
goals, but we find that following the tactic development style Chli-
pala recommends [10] tends to work well, as each module typi-
cally handles its own family of predicates and relations. Proofs
involving heaps are carried out using a small set of axioms reflect-
ing invariants maintained by the semantics. The most useful ax-
iom is heap lookup : ∀h,A,P,R,G.∀r : ref{A | P}[R,G].P (h[r]) h
which means that in any heap, the type system ensures there is a
proof of the refinement for every valid reference. The implementa-
tion also relaxes some restrictions present in the formal language,
such as allowing values to be projected into predicates (as in Section
3.2); predicates, rely and guarantee relations must simply abstain
from dereference.

stableτ (P : hprop(τ)) (R : hrel(τ)) def
= ∀x : τ.∀h,h′ : heap.P x h→ R x h h′→ P x h′

preciseτ (P : hpred(τ)) def
= ∀x,h,h′.(∀l,ReachFromIn l x h→ h[l] = h′[l])→ P x h→ P x h′

preciseτ (R : hrel(τ)) def
= ∀x,x′,h,h′,h,h′.(∀l,ReachFromIn l x h→ h[l] = h′[l])→ (∀l,ReachFromIn l x′ h→ h[l] = h′[l])→ R x x′ h h→ R x x′ h′ h′

closedτ (R : hrel(τ)) def
=

 True if τ ∈ {nat,bool,unit,Πx : τ′→ τ′′,τ
M→ τ′,True,False,heap, = }

closed R.1∧closed R.2 if τ = (σ∗σ′)
closed R′ ∧∀l,h,h′.R′ h[l] h′[l] h h′→ R l l h h′ if τ = ref{τ′ | P′}[R′,G′]

[R,G]� τ
def
=


τ if τ ∈ {nat,bool,unit,Πx : τ′→ τ′′,τ

M→ τ′,True,False,heap, = }
([R.1,G.1]� σ∗ [R.2,G.2]� γ) if τ = (σ∗ γ)

ref{σ | P}[R′, (λa,a′,h,h′.G′ a a′ h h′∧
(∀l,h[l] = a→ h′[l] = a′→ G l l h h′))] if τ = ref{σ | P}[R′,G′]

where for R : hrel(σ∗σ′): R.1 def
= λx,x′ : σ.λh,h′ : heap.∀y : σ′.R (x,y) (x′,y) h h′ and R.2 def

= λy,y′ : σ.λh,h′ : heap.∀x : σ′.R (x,y) (x,y′) h h′

Figure 5. Selected auxiliary judgments and predicates

We made compromises to fit into COQ. Notably, COQ lacks
support for mutual inductive types where one indexes the other
(e.g., a datatype simultaneously defined with an inductive predicate
on that type). Our implementation adapts a standard encoding [8]
of induction-recursion [17] outlined in our technical report [23]
to support examples like the list in Section 3.2. Any use of this
encoding somewhat complicates generated proof obligations and
data structure designs. Thus our current implementation is best-
suited to “functional-first” designs that make only light use of
references, as is common in OCaml, Scala, and F# code. We stress
that this is a limitation of our implementation by embedding in COQ,
not a fundamental limitation of rely-guarantee references.

To use COQ’s rich support for inductive types, we require trusted
user-provided definitions of relation folding, immediate reachability
(without heap access) of references from a pure datatype, and
relation containment. These are provided as typeclass instances.
The definitions are fairly mechanical, and can be synthesized
automatically for simple types if we extend COQ’s support for
inductive datatypes.

We also move some proof obligations such as stability, precision,
and containment from type formation to allocation. This allows the
definition of functions over ill-formed types, but such functions are
unusable: only well-formed types may actually be constructed. This
avoids some redundant proof obligations.

Our implementation is publicly available at
https://github.com/csgordon/rgref/.

5.1 Proving Obligations with Dependent Types
RGREF contains as a sublanguage the full Calculus of Constructions
(CC). Specifically, it contains a full Pure Type System (PTS)
with sorts S = {Prop,Type}, axioms A = {Prop : Type}, and
product formation rules R = {(s1,s2) | s1,s2 ∈ S} as formulated by
Barendregt [2]. This sublanguage is part of the pure (Γ ` e : τ) subset
of RGREF. Thus the language is amenable to embedding directly
into CC with a few extensions (natural numbers, etc.) and RGREF-
specific axioms. Our technical report details the translation [23].

This provides us with an approach to proving predicate and guar-
antee obligations in a way well-integrated with the source language,
justifying the use of proof terms in RGREF’s implementation. This
also allows straightforward translation of proof goals from our typ-
ing derivations into COQ, where we can use tactic-based theorem
proving to solve proof obligations.

The only subtleties arise from the fact that our embedding treats
dereference as an uninterpreted function, allowing two potential
inconsistencies. First, we permit recursion through the store, so
applying a function read (via dereference) from the heap could
result in an infinite loop; by treating dereference as an uninterpreted
function in the embedding, this potential recursion is lost. The
prototype may accept proofs about non-terminating terms. Second,

there is a potential to equate dereference expressions that will be
evaluated in different heaps (e.g., when a returned pure closure
dereferences some reference). Our implementation only uses full
equational reasoning for cases where all dereferences occur in the
same heap, and otherwise abstracts terms with only their type.

5.2 Data Structure Design
We were able to use natural data structures for the examples in
Section 3, but the types require careful consideration for propagating
information through data flow. For example, the return type of Cons
in Figure 1 must carry the additional refinement that the reference
points to a cons cell whose tail is the tl argument, or the obligation
to prove that the write prepends a cell in doPrepend is unprovable.

From Simple Types to Inductive Types For the types whose split-
ting, folding, and containment we have examined formally (first-
order data types, pairs, and references), the structure of the types is
simple enough to provide a straightforward structural projection for
each type. Much imperative code (e.g. in C, Java, etc.) heap-allocates
similarly-simple structures. We have not worked out the theory for
full inductive types. For types whose constructor arguments are not
reflected as type indices, splitting and the like depend on the values
passed to constructors, complicating the definitions for splitting
because they then depend not only on type indices, but the actual
value being potentially-split. This is an issue even though we expect
to only require support for small inductive types. For self-referential
datatypes, such as the list, we have only used guarantees for which
folding is idempotent. In general, folding a restricted guarantee
when dereferencing an datatype defined with concrete relations on
“recursive” references is not expressible in the current system; if
the guarantee on the recursive member changes, the result may
not match a constructor of the type! Supporting this would require
some sort of datatype-generic support, or a hybrid dereference-and-
pattern-match to avoid directly representing not-quite-typed read
results. We leave full support for inductive types to future work.

5.3 Proof Burden
RGREF imposes proof obligations for precision, folding, contain-
ment, and guarantee satisfaction. For verifying the examples in
Sections 3.1, 3.2, and 3.3, the proof burden is not substantially dif-
ferent from verifying the analogous pure-functional version. This
section will call out which parts were particularly straightforward,
as well as the few challenging aspects.

Precision obligations are typically easy to prove when they are
true, as are the reflexive relation goals generated when references
are used for reading: most are discharged by a simple induction, use
of constructors for the relevant relation, and/or first order reasoning
(e.g., COQ’s firstorder tactic). When the goals are not true (e.g.,
a relation or predicate is not precise), the goal is simply not provable,

https://github.com/csgordon/rgref/

and it is up to the developer to recognize this. In this respect, RGREF
is similar to verifying a functional program in COQ: a developer can
waste time on unsolvable (false) proof goals.

In cases where relation folding is a no-op (e.g., [R,G]� τ = τ

as in the monotonic counter) folding goals are a simple matter of
reduction and basic equality. In cases where relation folding is not a
no-op (e.g., for references to references where the outer reference’s
guarantee bounds effects on other reachable objects), the folding
obligations’ complexity depends on the relations involved.

The most difficult proof obligations generated are those checking
that heap writes satisfy the guarantee.5 This is partly because these
goals sometimes require reasoning about reads from an updated
heap, in particular proving non-aliasing between references to dif-
ferent base types. Some goals are also complicated by non-identity
folding results in types. In the formal system, we abstract away
the mechanism for checking guarantee satisfaction through a de-
notational semantics for writes. Our implementation uses COQ’s
notation facilities for a sort of “punning,” to duplicate expressions
into two contexts with different semantics for dereference.

The normal program’s use of the dereference expression chooses
the appropriate relation folding type class instance, while the
duplicated version used to check guarantee satisfaction is placed
inside a context where a no-op fold instance overrides all others.
This way the guarantee and predicates, which are specified as
predicates over a type A, can be applied directly to !x at type A
in the proofs instead of at a weakened type. The disadvantage of
this approach is that the expression duplication also duplicates proof
goals. Many of the smaller goals are automatically discharged when
using COQ’s PROGRAM extension, but because the generated goals
are formed in slightly different contexts, the solved lemmas’ proof
terms have different arities, and are therefore not interchangeable
in equalities. We encountered this twice, and solved it by using the
proof irrelevance axiom on applications of the equivalent lemmas.

Because stability, reflexivity, and satisfaction results tend to be
reused within a module and by clients, it should be considered
proper practice for modules exporting a given API to also export
most goals proven internally about properties of rely and guarantee
relations, and predicates, as lemmas registered in a module-specific
hint database. This is best practice for verifying purely functional
programs in COQ as well; in general most of the useful habits in
verifying functional programs can be reused in our implementation.

6. Future Work: Extensions and Adaptations
The type system we present in this paper has a few limitations (these
are orthogonal to the implementation-specific limitations described
in Section 5). We briefly mention a couple here, and discuss them in
more detail in our technical report [23].

One weakness is that every individual write must fall within a
guarantee relation. This means that a series of writes that individ-
ually violate a guarantee but in aggregate satisfy it are disallowed.
This is a common challenge for verification techniques [3, 5, 41],
and we expect related work to inspire sufficient solutions.

Also, as execution progresses, the actions permitted on an object
through all references strictly decreases, by weakening and splitting
guarantees. We have no way to strengthen guarantees based on addi-
tional information, as in the recovery technique [22] used to combine
reference immutability with uniqueness, allowing uniqueness to be
temporarily lost and then recovered. A resource-based approach to
splitting, as in deny-guarantee program logics [16], suggests one
promising approach to preserving possible actions.

5 Not all are difficult; Section 3.1’s guarantee obligation is discharged by
automatic proof search with arithmetic hints: auto with arith.

Finally, it would be useful to separate out a logically-consistent
fragment of the pure sublanguage (possibly using techniques like
F*’s kind system [43]).

7. Related Work
The most closely related work falls into three categories: restricting
mutation on a per-reference basis, techniques for reasoning about
interference among threads (which can be adapted to interference
among aliases), and dependent types for imperative languages.

Alias-based Mutation Control Many techniques exist to control
side effects by restricting actions through particular references. No-
table examples include reference immutability [22, 44, 49, 50],
and the owner-as-modifier interpretation of ownership and uni-
verse types [14]. Rely-guarantee references generalize reference
immutability permissions (Section 3.3), allowing precise control
over what modification is permitted through a given alias, not simply
a choice between arbitrary mutation and local immutability. The fact
that reference immutability is a special case of rely-guarantee refer-
ences suggests a natural transition path from reference immutability
to stronger verification guarantees. Developers could employ a “pay-
as-you-go” model for verification, where a code base first transitions
to using reference immutability (which need not be onerous [22]),
and then gradually enrich the types for some parts of the system
where more assurance is desired.

Typestate approaches typically use reference immutability like
access permissions to control sharing of objects in a certain type-
state, which is a weak form of refinement [5, 29, 31, 35]. Nistor
and Aldrich describe a program-logic style type system [35] using
abstract predicates [38] and connectives inspired by separation logic
to specify object propositions, essentially an enriched typestate
much closer to a full predicate logic; we believe object propositions
and RGREF have similar expressivity in terms of what predicates
they can verify. They pair access permissions with refinements
to let aliases share coinciding views of an object’s properties,
and handle non-atomic updates. However, propositions on aliased
objects cannot change over time and all aliases must have identical
capabilities (simply preserving the proposition if the object is
aliased), while RGREF allows asymmetric permissions and some
strong updates to refinements even with aliasing.

Militão and Aldrich present a system that splits objects into
substates that each carry their own typestate, and ways to merge par-
ticular substates into a typestate of the parent object [29]. Aliases to
an object may exist and allow modification provided each reference
is to a different substate, rather than to the full substate.

Concurrently with our work, they have proposed a rely-guarantee
typestate [30], where the rely is a typestate each alias assumes an
object may be in, and the guarantee is a typestate each alias is
required to produce when unpacked. The properties they can verify
are limited to those expressible as typestate (finite state partitioning)
and the system requires the programmer to add many dynamic
typestate checks to aid verification, but using their system is easier
than the theorem-proving RGREF requires. RGREF can express
stronger properties and forces no extra dynamic checks.

Reasoning About Thread Interference Generally, any technique
that can reason about interference among threads can be adapted
to reason about interference among references. The most closely
related system for reasoning about thread interference is rely-
guarantee reasoning [27] described in Section 1.

The original rely-guarantee approach focused on global rela-
tions and assertions, hampering modularity. Several adaptations
exist to treat interference over disjoint state separately. Vafeiadis
and Parkinson integrated rely-guarantee reasoning with separation
logic [45], allowing separation of state with linear resource seman-
tics from shared state with interference. Feng later generalized this

to add separating conjunction of rely and guarantee conditions [18].
The conditions split into separate relations over separated pieces of
shared state. Rely-guarantee references are heavily inspired by these
approaches. However, RGREF allows substantial overlap among
heap segments.

Dodds et al. adapted standard (non-separating) rely-guarantee
reasoning to give resource semantics to rely and guarantee relations
as assumptions in a context [16]. This allows the interference on
shared state to change over time as permission to modify disjoint
parts in particular ways is split, rejoined, and split again differently.
This style of strong changes to the rely and guarantee over time could
be adapted in a rely-guarantee reference system to allow the natural
rely-guarantee reference generalization of the recovery technique of
Gordon et al. [22], which allows recovering unique (or immutable)
references from writable (or readable) references in a flow-sensitive
type system given some constraints on the input context to a block
of code.

Wickerson et al. [46] apply a modularized rely-guarantee logic to
treat (non-)interference in the degenerate case of sequential access
to the UNIXv7 memory manager. Related systems [15, 18, 45]
could be applied similarly, but to our knowledge haven’t. Most have
only first-order treatment of interference. Only Concurrent Abstract
Predicates [15] can (with some effort) store capabilities into the heap,
while RGREF naturally supports this since mutation capabilities are
tied to data. Our design closely follows a technique already shown
successful in large-scale uses (reference-immutability [22]).

Dependent Types for Imperative Code Many others have worked
on integrating dependent types into imperative programming lan-
guages. Most take the approach of using refinement types [21, 43]
that restrict modification to mutable data, but the refinements them-
selves may depend only on immutable data. Examples include
DML [47], ATS [9], and X10’s constrained types [36]. The re-
finement language is often also restricted to some theory that can
be effectively decided by an SMT solver, as in Liquid Types [41].
RGREF allows refinements to depend on mutable heap data, and
does not artificially restrict the properties that can be verified (at the
cost of requiring manual guidance for proofs).

A notable approach to dependent types in imperative code
is Hoare Type Theory (HTT) [32, 33] and its implementation
YNOT [11, 34]. HTT uses a monadic Hoare Triple to encode
effectful computation. It allows using effectful code in specifications:
it decides equality of effectful specification terms by using canonical
forms where traditional dependent type systems use β-conversion.
This approach could be adapted for rely-guarantee references as
well. YNOT implements the core ideas of HTT as a domain specific
language embedded in COQ. It supports traditional Hoare logic
specifications and, by embedding, separation logic specifications as
well. A later version [11] builds a family of targeted proof search
tactics that can automatically discharge most separation logic proof
goals generated while typechecking YNOT programs. We modeled
our implementation after YNOT, and are currently building a library
of combinators and transformers in hopes of supporting similarly
robust automatic proof discharge.

HTT (and separation logic in general) support proving functional
correctness rather than the somewhat weaker safety properties veri-
fied by rely-guarantee references (and most other stable-assertion-
based approaches [18, 27, 45]). But this comes at the cost of spec-
ifications explicitly specifying aliasing constraints through choice
of standard or separating conjunction. Separation logic specifies
the behavior of code, not the restrictions on data transformation.
Rely-guarantee reference types specify the possible evolution of
data in the description of data itself. This means that assumptions
and permission to modify state follow data-flow, rather than the
control-flow-centric passing of assertions in most program logics.

8. Conclusion
We have introduced rely-guarantee references, an adaptation of rely-
guarantee program logics to reasoning about interference among
aliases to shared objects. The technique generalizes reference
immutability, connecting two previously-separate lines of research
and addressing a fundamental problem in verifying imperative
programs. We have shown the technique’s usefulness by verifying
correctness for several small examples (which are difficult to specify
or verify with other approaches) in a prototype implementation.
Our experience suggests that at least for small examples, the proof
burden is reasonable. Rely-guarantee references demonstrate that
aliasing in program verification can be addressed by adapting ideas
from reasoning about thread interference.

Acknowledgments
This material is based on research sponsored by NSF grants CNS-
0855252 and CCF-1016701 and by DARPA under agreement
numbers FA8750-12-C-0174 and FA8750-12-2-0107. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. We thank the anonymous referees for their comments,
which helped improve the paper.

References
[1] L. Augustsson. Cayenne — A Language with Dependent Types. In

ICFP, 1998.
[2] H. Barendregt. Lambda Calculi with Types. 1991.
[3] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,

and H. Venter. Specification and Verification: The Spec# Experience.
Commun. ACM, 54(6):81–91, June 2011.

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development; Coq’Art: The Calculus of Inductive Constructions.
Springer Verlag, 2004.

[5] K. Bierhoff and J. Aldrich. Modular Typestate Checking of Aliased
Objects. In OOPSLA, 2007.

[6] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A
Type and Effect System for Deterministic Parallel Java. In OOPSLA,
2009.

[7] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
Accounting in Separation Logic. In POPL, 2005.

[8] V. Capretta. A Polymorphic Representation of Induction-Recursion.
Retrieved 9/12/12. URL: http://www.cs.ru.nl/˜venanzio
/publications/induction recursion.pdf, March 2004.

[9] C. Chen and H. Xi. Combining Programming with Theorem Proving.
In ICFP, 2005.

[10] A. Chlipala. Certified Programming with Dependent Types. http:
//adam.chlipala.net/cpdt/.

[11] A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.
Effective Interactive Proofs for Higher-order Imperative Programs. In
ICFP, 2009.

[12] Coq Development Team. The COQ Proof Assistant Reference Manual:
Version 8.4, 2012.

[13] T. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76, 1988.

[14] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In
ECOOP, 2007.

[15] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent Abstract Predicates. In ECOOP, 2010.

[16] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-Guarantee
Reasoning. In ESOP. 2009.

[17] P. Dybjer. Inductive Families. Formal Aspects of Computing, 6:440–
465, 1994.

[18] X. Feng. Local Rely-Guarantee Reasoning. In POPL, 2009.
[19] C. Flanagan and M. Abadi. Types for Safe Locking. In ESOP, 1999.
[20] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java. In

PLDI, 2000.
[21] T. Freeman and F. Pfenning. Refinement types for ml. In PLDI, 1991.

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

[22] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and J. Duffy.
Uniqueness and Reference Immutability for Safe Parallelism. In
OOPSLA, 2012.

[23] C. S. Gordon, M. D. Ernst, and D. Grossman. Rely-Guarantee Ref-
erences for Refinement Types Over Aliased Mutable Data (Extended
Version). Technical Report UW-CSE-13-03-02, University of Washing-
ton, March 2013.

[24] C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Commun. ACM, 12(10):576–580, Oct. 1969.

[25] M. Hofmann. Syntax and Semantics of Dependent Types, in Semantics
and Logics of Computation, chapter 3. 1997.

[26] J. B. Jensen and L. Birkedal. Fictional Separation Logic. In ESOP,
2012.

[27] C. B. Jones. Tentative Steps Toward a Development Method for
Interfering Programs. ACM TOPLAS, 5(4):596–619, Oct. 1983.

[28] K. R. Leino and P. Müller. A Basis for Verifying Multi-threaded
Programs. In ESOP, 2009.

[29] F. Militão, J. Aldrich, and L. Caires. Aliasing Control with View-based
Typestate. In FTfJP, 2010.

[30] F. Militão, J. Aldrich, and L. Caires. Rely-Guarantee View Types-
tate. Retrieved 8/24/12, July 2012. URL http://www.cs.cmu.edu/

˜foliveir/papers/rgviews.pdf.
[31] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A Type System

for Borrowing Permissions. In POPL, 2012.
[32] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and

Separation in Hoare Type Theory. In ICFP, 2006.
[33] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract

Predicates and Mutable ADTs in Hoare Type Theory. In ESOP. 2007.
[34] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.

Ynot: Dependent Types for Imperative Programs. In ICFP, 2008.
[35] L. Nistor and J. Aldrich. Verifying Object-Oriented Code Using Object

Propositions. In IWACO, 2011.
[36] N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff. Constrained

Types for Object-Oriented Languages. In OOPSLA, 2008.
[37] S. Owicki and D. Gries. An Axiomatic Proof Technique for Parallel

Programs I. Acta Informatica, pages 319–340, 1976.
[38] M. Parkinson and G. Bierman. Separation Logic and Abstraction. In

POPL, 2005.
[39] C. Paulin-Mohring. Inductive Definitions in the System Coq: Rules

and Properties. In Typed Lambda Calculi and Applications, 1993.
[40] A. Pilkiewicz and F. Pottier. The Essence of Monotonic State. In TLDI,

2011.
[41] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-Level Liquid Types.

In POPL, 2010.
[42] M. Sozeau. Program-ing Finger Trees in Coq. In ICFP, 2007.
[43] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure Distributed Programming with Value-dependent Types. In ICFP,
2011.

[44] M. S. Tschantz and M. D. Ernst. Javari: Adding Reference Immutability
to Java. In OOPSLA, 2005.

[45] V. Vafeiadis and M. Parkinson. A Marriage of Rely/Guarantee and
Separation Logic. In CONCUR. 2007.

[46] J. Wickerson, M. Dodds, and M. Parkinson. Explicit Stabilisation for
Modular Rely-Guarantee Reasoning. In ESOP, 2010.

[47] H. Xi and F. Pfenning. Dependent Types in Practical Programming. In
POPL, 1999.

[48] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype Constructors.
In POPL, 2003.

[49] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst.
Object and Reference Immutability Using Java Generics. In ESEC-
FSE, 2007.

[50] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst. Ownership and
Immutability in Generic Java. In OOPSLA, 2010.

http://www.cs.cmu.edu/~foliveir/papers/rgviews.pdf
http://www.cs.cmu.edu/~foliveir/papers/rgviews.pdf

	Introduction
	Contributions

	Rely-Guarantee References
	Subtleties of Rely-Guarantee References

	Examples
	Monotonic Counter
	Monotonic List
	Reference Immutability as a Special Case
	RCC/Java with Reference Immutability

	A Type System for Rely-Guarantee References
	Soundness Sketch

	Implementation
	Proving Obligations with Dependent Types
	Data Structure Design
	Proof Burden

	Future Work: Extensions and Adaptations
	Related Work
	Conclusion

