
ReCrash
Making crashes reproducible

by preserving object states

Shay Artzi, Sunghun Kim*, Michael D. Ernst

MIT * now at HKUST

Eclipse bug 30280:
2 days to reproduce, 4 minutes to fix

2003-01-27 08:01 User: Eclipse crashed… I have no idea
why... Here is the stack trace.

2003-01-27 08:26 Developer: What build are you using?
Do you have a testcase to reproduce?

2003-01-27 08:39 Developer: Which JDK are you using?

2003-01-28 13:06 User: I’m running Eclipse 2.1, …
I was not able to reproduce the crash.

2003-01-29 04:33 Developer: Reproduced.

2003-01-29 04:37 Developer: Fixed.

Reproducing crashes

• If a crash can’t be reproduced:

– Hard to fix

– Hard to validate a solution

• Reproducing a crash is hard!

– Nondeterminism

– Configuration and system information

– Steps to reproduce may be complex or long

– In-field detection

– Users rarely provide reproducible bug reports

Approach 1: Postmortem analysis

Examples: stack trace, core dump

Problems:

• Fault (bug) may be far from failure (exception)
– Faulty method may not be in stack trace

• Too much information
– Core dump: big; hard to interpret

• Not enough information
– Shows effects (final values), not causes

– Need initial values to reproduce the failure

Approach 2: Record & replay

• Logging: record interactions with environment

• Replay: use log to reproduce the execution

• Checkpoint: replay skips part of the execution

Problems:

• Unrealistic overhead

• Invasive changes to HW/OS/application

Record & replay for OO programs

• Object-oriented style uses only nearby state

– Unit testing depends on this property

• ReCrash reproduces this nearby state

– Does not replay an execution

– Static and dynamic analyses reduce the size

• Lightweight: efficient, no harness, usable in-
field

• Not guaranteed to reproduce every failure

ReCrash technique

Goal: Convert a crash into a set of unit tests

1. Monitoring: maintain a shadow stack
– Contains a copy of each method argument

– On program crash, write the shadow stack to a file

2. Test generation: create many unit tests
– For each stack frame, create one unit test:

• Invoke the method using arguments from the shadow
stack

• If the test does not reproduce the crash, discard the
test

Maintaining the shadow stack

• On method entry:

– Push a new shadow stack frame

– Copy the actual arguments to the shadow stack

• On non-exceptional method exit:

– Pop the shadow stack frame

• On program failure (top-level exception):

– Write the shadow stack to a file

• Serializes all state referenced by the shadow stack

Create one JUnit test per stack frame

public void test_resolveType() {

AllocExpr rec = (AllocExpr) shadowStack.getArg(0);

BlockScope arg = (BlockScope) shadowStack.getArg(1);

rec.resolveType(arg);

}

We expect the method to fail as it did at run time

Test case for Eclipse bug 30280

Read arguments from the saved shadow stack

Invoke the method from the stack frame

Evaluating unit tests

• Run each generated unit test

• Discard the test if it does not reproduce the
run-time exception

How a developer uses the tests

• In a debugger, step through execution and
examine fields

• Experiment by modifying the tests

• Verify a fix

• Create a regression test

– Replace deserialized objects by real objects or
mock objects

– More readable and robust

Why create multiple tests?

• Not all tests may reproduce the failure

– Due to state not captured on the shadow stack

• Sockets, files, nondeterminism, distant program state

• Does capture all values that are passed as arguments

• Some tests may not be useful for debugging

Not every test is useful

Stack trace:
NullPointerException

at Class1.toString

at Class2.myMethod

...

Tests:
void test_toString() {

Class1 receiver = null;

receiver.toString();

}

void test_myMethod() {

Class2 receiver = (Class2)

shadowStack.getArg(0);

receiver.myMethod();

}

Other features of ReCrash

• Non-crashing failures

– Add a ReCrash annotation

• Caught exceptions that lead to later failures

• Adding extra information to test cases

– Version number, configuration information

• Reducing the serialized stack

– Size, privacy

Cost of monitoring

Key cost: copying arguments to shadow stack

Tradeoff: less information in shadow stack
lower chance of reproducing failures

1. Depth of copy
– Deep, reference, or a hybrid

2. Save less information about each argument
– Focus on important fields

3. Monitor fewer methods
– Ignore methods not likely to crash or to be useful

Original program execution

Real stack

Original program execution

Real stack

R: 17

Original program execution

Real stack

R: 17

Original program execution

Real stack

R: 18

Original program execution

Real stack

R:

R:

A1:

18

Original program execution

Real stack

R:

R:

A1:

R:

A1:

A2:

18

1. Depth of copying

Deep copy

Real stack Shadow stack

Deep copy

Real stack

R: 17 R: 17

Shadow stack

Deep copy

Real stack

R: 18 R: 17

Shadow stack

Deep copy

Real stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Shadow stack

Deep copy

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Real stack Shadow stack

Deep copy

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Real stack

Multiple copies quadratic cost

Unusable in practice

Shadow stack

Reference copy

Real stack Shadow stack

Reference copy

Real stack

R: 17 R:

Shadow stack

Reference copy

Real stack

R: 18 R:

Shadow stack

Reference copy

Real stack

R:

R:

A1:

18 R:

R:

A1:

Shadow stack

Reference copy

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

Shadow stack

Depth-1 copy

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Shadow stack

2. Ignoring some fields

Depth-1 copy

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Shadow stack

Used fields

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Shadow stack

Analysis results

Depth1 + used fields
(= Depth2 – unused fields)

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Shadow stack

Pure methods

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Shadow stack

Analysis results

Pure methods

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

A2:

17

18

A1:

R:

Shadow stack

Immutable objects

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

A2:

17

18

A1:

R:

Shadow stack

Analysis results

Immutable objects

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

Shadow stack

3. Ignoring some methods

Ignored methods

Real stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

A2:

17

R:

A1:
18

Shadow stack

Analysis results

Ignored methods

Real stack

R:

R:

A1:

R:

A1:

A2:

R:

R:

A1:

A2:

1718

Shadow stack

Methods that are unlikely to be useful

• Trivial methods

• Private methods

• Library methods

• Methods that are unlikely to crash

Second chance mode

Idea: monitor only methods that are likely to crash

• Initially, monitor no methods

• After a crash, add monitoring for methods in the
stack trace

– Can update all clients, not just the one that crashed

• Tradeoffs:

+ Very low overhead (no overhead until a crash)

– Requires a failure to occur twice

Experimental study

1. Can ReCrash reproduce failures?

2. Are the ReCrash-generated tests useful?

3. How large are the test cases?

4. What is the overhead of running ReCrash?

Subject programs

Investigated 11 real crashes from:

– BST: .2 KLOC

– SVNKit: 22 KLOC

– Eclipse compiler: 83 KLOC

– Javac-jsr308: 86 KLOC

Q1: Can ReCrash reproduce failures?
Program Failure Candidate

tests
Reproducible tests

reference
copy

depth 1 +
used-fields

deep
copy

BST Class cast 3 3 3 3

Class cast 3 3 3 3

Unsupported 3 3 3 3

SVNKit Index bounds 3 3 3 3

Null pointer 2 2 2 2

Null pointer 2 2 2 2

Eclipsec Null pointer 13 0 1 8

Javac-
jsr308

Null pointer 17 5 5 5

Illegal arg 23 11 11 11

Null pointer 8 1 1 1

Index bounds 28 11 11 11

Q1: Can ReCrash reproduce failures?
Program Failure Candidate

tests
Reproducible tests

reference
copy

depth 1 +
used-fields

deep
copy

BST Class cast 3 3 3 3

Class cast 3 3 3 3

Unsupported 3 3 3 3

SVNKit Index bounds 3 3 3 3

Null pointer 2 2 2 2

Null pointer 2 2 2 2

Eclipsec Null pointer 13 0 1 8

Javac-
jsr308

Null pointer 17 5 5 5

Illegal arg 23 11 11 11

Null pointer 8 1 1 1

Index bounds 28 11 11 11

Q2: Are the ReCrash tests useful?

• Developers found the tests useful

– Developer 1: “You don’t have to wait for the crash
to occur again”; also liked multiple tests

– Developer 2: “Using ReCrash, I was able to jump
(almost directly) to the necessary breakpoint”

• Developers found the stack trace insufficient

– Unable to reproduce

– The failure may be far removed from the fault

Q3: How large are the test cases?

• The JUnit test suite uses the shadow stack

• Serializes all reachable parts of the heap

Program Average
shadow stack

size (KB)

BST 12

SVNKit 34

Eclipsec 62

Javac-jsr308 422

Q4: Time overhead of ReCrash

0 0.5 1 1.5 2

Eclipsec

SVNKit

Original

Reference

Depth 1 + used-fields

Second chance

Overhead of instrumented program in the field

Q4: Memory overhead of ReCrash

Absolute memory overhead: .2M – 4.7 M

Generating unit tests from system runs

• Test factoring [Saff 2005, Elbaum 2006]

– Developer selects a portion of the program

– System logs interactions with the environment

– Unit test replays execution in a test harness

• Contract-driven development [Leitner 2007]

– Reference copying, intended for durable tests

• Backward-in-time debuggers [Lienhard 2008]

– Heavier-weight logging and checkpoints

Future work

• Capture more state

– Concurrency, timing, external resources

• Other implementation tradeoffs

– Copy-on-write

– Existing VM hooks

– Logging/debugging techniques

– These are probably orthogonal to ReCrash

ReCrash converts failures into tests

• ReCrash effectively reproduces failures
• Replicates program states

• Generates multiple unit tests

• The unit tests are useful

• Low overhead
• Records only relevant parts of an execution

• 4 program analyses; second chance mode

• Can deploy instrumented programs in the field

• Download: http://pag.csail.mit.edu/ReCrash/

ReCrash converts failures into tests

• ReCrash effectively reproduces failures
• Replicates program states

• Generates multiple unit tests

• The unit tests are useful

• Low overhead
• Records only relevant parts of an execution

• 4 program analyses; second chance mode

• Can deploy instrumented programs in the field

• Download: http://pag.csail.mit.edu/ReCrash/

Maintaining the shadow stack

Real stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Shadow stack

Maintaining the shadow stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

17

18

Real stack Shadow stack

On method entry

Maintaining the shadow stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

Real stack Shadow stack

On method entry:

1. Push a new shadow stack frame

Maintaining the shadow stack

R:

R:

A1:

R:

A1:

A2:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Real stack Shadow stack

On method entry:

1. Push a new shadow stack frame

2. Copy the actual arguments to the

shadow stack

Maintaining the shadow stack

R:

R:

A1:

18 R:

R:

A1:

R:

A1:

A2:

17

18

18

Real stack Shadow stack

On method exit

Maintaining the shadow stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Real stack Shadow stack

On method exit:

1. Pop shadow stack frame

Maintaining the shadow stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Real stack Shadow stack

On program failure (top-level exception):

Shadow stack

Maintaining the shadow stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Real stack

On program failure (top-level exception):

1. Write the shadow stack to a file

Shadow stack

Maintaining the shadow stack

R:

R:

A1:

18 R:

R:

A1:

17

18

Real stack

On program failure (top-level exception):

1. Write the shadow stack to a file

Serializes all referenced state

