
Adequate Models for

Recursive Program Schemes

by

Michael D. Ernst

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

c

 Michael D. Ernst, 1989

The author hereby grants to MIT permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author :

Department of Electrical Engineering and Computer Science

May 22, 1989

Certi�ed by :

Albert R. Meyer

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by :

Leonard A. Gould

Chairman, Departmental Committee on Undergraduate Theses

Adequate Models for

Recursive Program Schemes

by

Michael D. Ernst

Submitted to the Department of Electrical Engineering and Computer Science

on May 22, 1989, in partial ful�llment of the

requirements for the degree of

Bachelor of Science in Computer Science and Engineering

Abstract

This thesis is a pedagogical exposition of adequacy for recursive program schemes in the

monotone frame. Adequacy relates the operational and denotational meanings of a term;

it states that for any term of base type, the operational and denotational meanings are

identical. Adequacy is typically proved in the continuous frame. This is a pedagogically

questionable step; in order to prove adequacy (or some other property) of a pair of semantics,

it would be desirable to show the property directly, without introducing super
uous notions.

This di�culty is particularly acute for this thesis because, in general, not all monotone

functions are continuous.

This thesis attempts to work out the concept of adequacy for a class of monotone

�rst-order recursive program schemes, using Vuillemin and Manna's method of \safe" com-

putation rules. The attempt is very nearly successful, but at a crucial point the fact that

the scheme-de�nable functions are, in fact, continuous as well as monotone must be used.

Thesis Supervisor: Albert R. Meyer

Title: Professor of Computer Science and Engineering

2

Contents

Abstract 2

List of Symbols 4

1 Introduction 5

1.1 Why adequacy? : 5

1.2 Work of others : 6

2 Syntax and Operational Semantics 8

2.1 Syntax : 8

2.2 Operational semantics : 12

2.3 Substitution and simpli�cation : 17

3 Computation Rules 20

3.1 De�nition and meaning of computation rules : : : : : : : : : : : : : : : : : 20

3.2 Examples of computation rules : 21

3.3 A new domain : 22

3.4 Monotonic �xed points : 24

3.5 Incorrect computation rules : 27

3.6 Syntactic properties of computation rules : : : : : : : : : : : : : : : : : : : 28

3.7 Semantic properties of computation rules : : : : : : : : : : : : : : : : : : : 32

3.8 Adequacy for the full-substitution computation rule : : : : : : : : : : : : : 32

4 Semantical Connections 35

4.1 Safety for computation rules : 35

4.2 Safety implies �xpoint computation : 38

4.3 Adequacy : 40

Acknowledgments 41

Bibliography 42

3

List of Symbols

Many of the symbols used in this thesis are listed here; some which are used in a standard

way (such as \i�" for \if and only if" and � !
 for the type of a function from type � to

type
) are not listed. The page is the page on which the symbol is de�ned or explained,

which is usually its �rst occurrence.

F, 8

ar(F), 8

f , 8

(, 9

R, 9

F

m

, 9

~x

ar(F

i

)

, 9

F , 9

�

i

[F

1

; F

2

; : : : ; F

n

], 10

D

F

i

, 10

D

�

, 10

F

1:::n

, 10

� , 11

I;I

0

, 12

=)

I;R

, 12

D;D

I

, 12

b

d, 12

(�), 12

(t

i

)

~s

k

~x

k

, 14

=)

�

I;R

, 15

7!, 16

I

, 16

F

, 16

[[t]]

op

, 16

M

I

(R), 16

sub

=)

I;R

, 18

S

C;R

; S

C;I;R

, 20

C

R

; C

I;R

, 20

[[C

R

]], 21

LI; PI; L; PO; FA; FS, 21

v;<, 22

?, 23

D

?

, 23

?

D

, 23

F

, 23

D; (D

I

)

?

, 24

, 24

bDc, 24

jDj, 24

H(g; �), 25

�, 25

D

F

i

, 26

D

�

, 26

[[�

i

]], 26

[[�]], 26

f

R

, 27

�

C

fF

1:::i

; F

i+1:::j

g, 28

S

i

C;R

, 28

l

1:::i

, 29

v

t

, 29

O, 30

[[�

C

]]fF

1:::i

;F

i+1:::j

g, 35

f

k

, 35

S

C

0

;R

; [[�

C

0

]]

sem

, 37

4

Chapter 1

Introduction

When we write a program or a procedure in any programming language, we usually know

what function we intend it to compute on its input. We would also like to know what

function it actually computes on its input.

1

The meaning of a program is the function that

its main procedure denotes.

There are several ways that the meaning of a program can be de�ned; chief among these

are the operational and denotational meanings. The operational meaning of a program is the

function which is computed if some particular interpreter is run on the program applied to

inputs. The denotational meaning, on the other hand, is computed in a more mathematical

fashion: it is the least �xed point of the de�ning equations of a program. Thus, the meaning

of a program of the form

2

F(x)(if x � 1 then 1 else x� F(x� 1) �

can be determined to be the factorial function for nonnegative inputs either by running the

program on various inputs (that is, evaluating the term F(y) for various values of y) or by

determining that the least �xed point of F considered as a function over the nonnegative

integers is the factorial function. We will not address the issue of which is the right point

of view about the meaning of a program or term; either side can be plausibly argued.

For \reasonable" (or \correct") interpreters the operational meaning is the same as the

denotational meaning for \accurate" models of the functions and function spaces, so there

is no need for such disputes. It is the goal of this thesis to determine for a particular, but

quite general, class of recursive program schemes when the operational and denotational

meanings coincide.

1.1 Why adequacy?

In particular, this thesis is a pedagogical exposition of adequacy for recursive program

schemes in the monotone frame. Adequacy is a condition on models which relates the

operational and denotational meanings of term; it guarantees that for any term of base

1

The correspondence between the two functions, which matters a great deal to programmers, will not

concern us in this thesis.

2

The syntax of recursive program schemes will be explained in detail in section 2.1, page 8.

5

type, the operational and denotational meanings are identical. The stronger condition

which guarantees equivalence of operational and denotational meanings at any type is known

as full abstraction. Full abstraction will not be directly considered in this thesis for two

reasons. First, full abstraction does not hold in the monotone frame, which is our arena

of interest. While both the continuous and monotone semantic spaces are adequate, only

the continuous one is fully abstract as well. We will brie
y defer discussion of that point

in favor of the second: full abstraction does not nontrivially apply in the program schemes

that we will consider, because their syntax allows only �rst-order terms to be constructed.

Thus, adequacy is a strong enough condition on these models.

Although they are simple enough to facilitate reasonably easy proofs, the program

schemes that this thesis considers are anything but trivial. Their simplicity makes the

results stronger since most programming languages are a superset of the one considered

here.

In fact, many people are only interested in �rst-order functions and �rst-order terms

anyway. Most programmers restrict their scope of attention to a subset of the programs

which they could be writing. The higher-order procedures that they do use are usually

second- or third-order at very most. It is too hard to think about functions of type higher

than that anyway.

This argument also helps to explain why the monotone frame was chosen. Most expo-

sitions of adequacy consider the continuous frame, which is in many respects easier to deal

with. For one thing, the least upper bound (lub) operator can be used to determine least

�xed points. This use of continuity, however, is usually poorly-motivated. Why should this

new notion be used in proofs when most people are perfectly content to remain in the realm

of monotone models? The examples that are used to illustrate the need for adequacy, too,

can usually be handled in the monotone frame: they demonstrate a need for adequacy in

monotone models, not necessarily in the continuous ones.

This thesis represents an attempt to close that pedagogical gap by presenting a proof

of adequacy for monotone models without resorting to continuity. It is the case that the

monotone functions we will study also happen to be continuous, so use of continuity would

not be wrong; it would just be overstepping the bounds of good taste in exposition, for in

general not all monotone functions are continuous. The attempt, unfortunately, fails. With

a single exception the proofs and explanations are able to strictly con�ne themselves to the

self-imposed boundaries, but the proof of a crucial theorem fails for in�nite values unless

the fact of continuity is used. Although the theorem is true for the monotone case, it cannot

be proved (by the method chosen in this thesis, at least) without the use of continuity.

1.2 Work of others

It is generally agreed that adequacy is an essential property of a reasonable link between the

two semantics; there is less consensus on whether full abstraction and similar properties are

so important. Because it is such a basic and important property, adequacy has been often

shown for various interpreters (operational semantics) and denotational semantics [Vui73,

Man74, Tai75, LS87]; the classic statement is found in [Plo77]. All of these expositions use

the continuous model, which we reject for reasons outlined above. The proof methods of

these references are, in general, valid even when their proofs do not apply to the monotone

6

case. Because of this fact, the results shown in this thesis in many cases follow from the

proofs, though not from the theorems, of other published work. Meyer [Mey88] presents

the case for the use of monotone models and questions the gratuitous use of adequacy; it

was such issues that inspired this thesis.

Plotkin [Plo77] proves adequacy very elegantly by Tait's method of computability, which

requires a proof by structural induction on terms of a property de�ned by induction on

types. This method is much more general than required here (it applies to a wider class of

programs), and it demands continuity.

Loeckx and Sieber [LS87] present a fairly straightforward proof of adequacy based on the

de�nitions of substitution and interpretation; however, the proof only works for interpreters

which simultaneously evaluate all subexpressions of an expression. This isn't the case for

many real interpreters, and we have no wish to so restrict ourselves in this thesis.

The method which seems to have the best promise for extension to the monotone case

is that of \safe" computation rules [Man74, Vui73]; this thesis follows that method. A safe

computation rule is one for which adequacy is guaranteed to hold; the formal de�nition

will appear later. This proof works only in the presence of �rst-order terms; no functional

abstraction is permitted. However, it is much simpler than the other proofs, and it can be

disentangled from the issue of monotonicity vs. continuity.

7

Chapter 2

Syntax and Operational Semantics

2.1 Syntax

Recursive program schemes will be constructed from the symbols (,),(, and ,, a countable

set of variables V = fx; y; : : :g, and a countable set of function variables W = fF;G; : : :g.

Each function variable F has an associated arity ar(F).

A basis for a language of recursive program schemes is a pair B of sets of function and

predicate symbols; these are speci�ed, respectively, as funsym(B) and predsym(B). Each

symbol in the basis has a non-negative arity; symbols of arity 0 are constants.

Recursive program schemes are constructed from extended �rst-order terms, henceforth

called just terms, which are de�ned by the following BNF grammar. There are two kinds

of terms: Boolean terms (b-terms) and domain terms (t-terms). b-terms denote elements of

Bool and will be used in the construction of conditional (if-then-else) expressions; t-terms

denote elements of the domain of the program. The domain is for now a set, often the

integers. The domain will be more carefully de�ned on page 12.

t ::= x (variable)

j f(t

1

; t

2

; : : : ; t

ar(f)

) (function symbol application; f 2 funsym(B))

j F(t

1

; t

2

; : : : ; t

ar(F)

) (function variable application)

j if b then t

1

else t

2

� (conditional)

b ::= true j false (constants)

j :b (negation)

j b ^ b (conjunction)

j t

1

= t

2

(equality test)

j p(t

1

; t

2

; : : : ; t

ar(p)

) (predicate symbol application; p 2 predsym(B))

Equality connects t-terms to b-terms, and the conditional expression connects b-terms to

t-terms. Constants in B are not explicitly mentioned in the grammar because function and

predicate constants are just applications of function and predicate symbols to zero argu-

ments. The constants true and false , on the other hand, are explicitly mentioned because

the rules of the operational semantics will depend on them. Of the Boolean connectives,

8

only : and ^ are included since all other connectives are de�nable from these two.

De�nition 1. A recursive program scheme R over a basis B is de�ned to be a set of n

recursive equations (n � 1), of the form

F

1

(x

1

; x

2

; : : : ; x

ar(F

1

)

) (t

1

F

2

(x

1

; x

2

; : : : ; x

ar(F

2

)

) (t

2

.

.

.

F

n

(x

1

; x

2

; : : : ; x

ar(F

n

)

) (t

n

and a numberm � n. F

m

is designated as the main function variable; this function variable

determines the starting point of the recursive program.

The function variables F

1

;F

2

; : : : ;F

n

must be distinct and are called the function vari-

ables declared in R. When F is used without a subscript, any F

i

can be used for the F;

di�erent F

i

may be used for di�erent instances or occurrences (we will formally de�ne an

occurrence in section 11 on page 17) of unsubscripted F which appear in an expression. The

t-term t

i

in the i

th

recursive equation is called the body of the declaration of F

i

; the only

variables of base type that may occur in t

i

are ~x

ar(F

i

)

(i.e., x

1

; x

2

; : : : ; x

ar(F

i

)

). The only

function variables allowed in the t

i

terms are those declared in R.

Now that the syntax has been laid out, we can talk about the functions to which the

recursive equations are intended to correspond. Since all terms are of base type (there is no

abstraction mechanism provided in the syntax of terms or of recursive equations), all such

functions are �rst-order.

The conditional operator is unique in the language because it is the only built-in operator

which is not strict in all of its arguments: it is strict only in its �rst argument.

1

The equality test is just a predicate symbol which is part of every interpretation, and

the Boolean operators : and ^ can be thought of as predicate symbols which are applied

to Boolean instead of domain terms. Because these are straightforward generalizations, in

what follows only function symbols and function variables will be explicitly considered. The

comments directed toward function symbols will also apply to predicate symbols and to =,

:, and ^, which will be known as built-in symbols. Note that the conditional expression is

not a constant like = and :; rather, it is a phrase constructor. Nevertheless, the comments

on built-in constants will often apply; when they don't, if-then-else will be treated as a

separate case.

F

i

is not itself a semantic object or a function that takes terms (or domain elements) to

terms (or domain elements); it is simply a piece of notation. F

i

: Term

ar(F

i

)

! Term is the

function which, applied to terms s

1

; s

2

; : : : ; s

ar(F

i

)

, returns the term F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

).

(Note the italics.) Such a function will be known as a term constructor. It is obvious how to

write this function, and since F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

) is an expression which means (evaluates

to) the term F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

), this expression (which is a function application) can be

used in place of the piece of syntax (the term). This gives us two ways to express a given

1

Actually, the \conditional operator" is a term constructor, not an operator, but that is just a matter of

taste; we could just as easily have de�ned constants which performed the if-then-else operation. The point

is that the conditional is di�erent from anything else in the language.

9

term; we can write the term itself, or we can write an expression which, when evaluated,

produces the term. We have introduced a meta-syntactic level in the expression level. There

are several other natural functions relating to a program scheme's function variables that

we will want to specify. Immediately below we will de�ne a notation for the other syntactic

transformation from terms to terms (that is, the transformation from F

i

(x

1

; x

2

; : : : ; x

ar(F

i

)

)

to t

i

). The function from domain elements to domain elements that the program calculates

will be speci�ed in several ways that will turn out to be identical.

An equivalent form for the equations of a recursive program scheme, which we shall

prefer, is:

F

1

(x

1

; x

2

; : : : ; x

ar(F

1

)

) (�

1

[F

1

; F

2

; : : : ; F

n

](x

1

; x

2

; : : : ; x

ar(F

1

)

)

F

2

(x

1

; x

2

; : : : ; x

ar(F

2

)

) (�

2

[F

1

; F

2

; : : : ; F

n

](x

1

; x

2

; : : : ; x

ar(F

2

)

)

.

.

.

F

n

(x

1

; x

2

; : : : ; x

ar(F

n

)

) (�

n

[F

1

; F

2

; : : : ; F

n

](x

1

; x

2

; : : : ; x

ar(F

n

)

)

The type of �

i

[F

1

; F

2

; : : : ; F

n

], like that of F

i

, is Term

ar(F

i

)

! Term; this denotes the syn-

tactic operation from ~x

ar(F

i

)

to t

i

suggested by the recursive equation for F

i

. F

i

takes

ar(F

i

) terms as arguments and returns another term which is the result of substituting its

arguments into t

i

, the body of the i

th

recursive function de�nition, in place of the formal

parameters of F

i

(the x

i

's). Providing other arguments to � will result in di�erent functions

on terms.

Enclosing the function variable arguments to �

i

(the F's) in square brackets is a syntactic

convention which abbreviates �

i

(hF

1

; F

2

; : : : ; F

n

i); �

i

takes an n-tuple of functions from

terms to terms as its arguments and returns the same sort of function as its result. That each

�

i

takes only a single argument (not a vector of functions) is required for the construction of

the functional � below. It is required that all functions be called on the proper number of

arguments of the proper type; no currying is done, and the results of an improper application

are unspeci�ed.

This notation speci�es precisely the same recursive program as the previous formula-

tion, but it makes di�erent information explicit. Each recursive program scheme R has a

corresponding � , and vice versa, so a recursive program scheme can be speci�ed by either

its R or its � (along with speci�cation of its main function variable). We will use each

convention as convenient.

We will use the abbreviations D

F

i

= Term

ar(F

i

)

! Term for the type of F

i

, D

�

=

D

F

1

�D

F

2

� : : :�D

F

n

for the type of the domain of each �

i

, and F

1:::n

for F

1

; F

2

; : : : ; F

n

.

Let G

i

be of type D

F

i

. �

i

[G

1

; G

2

; : : : ; G

n

](s

1

; s

2

; : : : ; s

ar(F

i

)

) represents expansion of t

i

by replacing in t

i

each x

j

by s

j

and each application of a function variable F

k

to ar(F

i

)

arguments by the result of applying G

k

to the corresponding terms. That is, each term

F

j

(:::) is replaced by the result of the application G

j

(:::); this result is also a term.

Each �

i

expands an application of one of the recursive program's function variables;

when �

i

is applied to hF

1

; F

2

; : : : ; F

n

i, the expansion is the replacement of the application

by t

i

. These coordinate functionals are components of

� [F

1

; F

2

; : : : ; F

n

] = h�

1

[F

1

; F

2

; : : : ; F

n

]; �

2

[F

1

; F

2

; : : : ; F

n

]; : : : ; �

n

[F

1

; F

2

; : : : ; F

n

]i :

10

� : D

�

! D

�

is a functional which, given (a tuple of) n functions on terms, returns another

tuple of functions on terms. �

m

i

[: : :] denotes the i

th

element of �

m

[: : :]. � varies from

program to program; the particular one intended will be indicated by context.

We can now see why the meta-syntactic level of expressions was introduced: operation

on the expressions that make up that level is a powerful idea, and it allows us an easy way to

change a term by changing the expression that refers to it. If we think of the expression as

the primary method for representing a term, then making simple changes to the expression

(such as substituting one term constructor for another) will change the term in question.

An even more powerful idea is that of a function over term constructors such as �

i

: if we

apply it to di�erent term constructors, then it returns a di�erent term constructor as well.

By applying such a function to di�erent a term constructors, we can specify substitution (or

simultaneous substitution, or several sequential applications of substitution, among others)

in the �nal term. An example of this is the application of a function over term constructors

to F

i

and to �

i

[F

1:::n

]; relative to the �rst one, the second has had some number of instances

of F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

) expanded to t

i

with ~x

ar(F

i

)

(the formal variables) replaced by ~x

ar(F

i

)

(the actual arguments). This expansion is di�cult to formally specify without (at least) a

formal de�nition of an occurrence of an element in a term; we can specify an expansion of

(part of) a term by doing a simple substitution on the expression that refers to the term or

by applying a higher-level function to a di�erent set of arguments. It makes no sense to say,

\substitute for F

i

" in a term unless it is another function variable that is being substituted;

expansion cannot be speci�ed by substitution on the term level. The notions of application,

substitution, and expansion are successively more complicated and di�cult to formalize, so

the �rst will be used in this thesis. The price of using higher-order functions in expressions

is a small one to pay for this convenience.

As an example, consider this recursive program scheme for exponentiation:

F(x; y) (if p

ev

(y) then G(x; y) else H(x; y) �

G(x; y) (if p

z

(y) then 1 else f

sq

(F(x; y=2)) �

H(x; y) (x� F(x; y � 1)

We have taken the liberty of writing arithmetic operators in in�x form. p

ev

test for even-

ness and p

z

for the zero value; f

sq

is the squaring function. In the following examples of

expressions and the terms to which they evaluate, t

1

and t

2

are arbitrary terms.

F (t

1

; t

2

) is F(t

1

; t

2

)

�

F

[F;G;H](t

1

; t

2

) is if p

ev

(t

2

) then G(t

1

; t

2

) else H(t

1

; t

2

) �

�

F

[G;F; �

H

[G;H;F]](t

1

; t

2

) is if p

ev

(t

2

) then F(t

1

; t

2

) else t

1

�G(t

1

; t

2

� 1) �

The language in which the �

i

's are written is not speci�ed. The terms on the right hand

side of the examples are to be taken verbatim, not evaluated in any fashion (though they

could be later on). No arbitrary restrictions are placed on the functional arguments to � ;

any tuple may be passed in, so long as it is of the right type (i.e., it has the correct length

and each of its elements is of the right type).

11

2.2 Operational semantics

The operational semantics of a recursive program scheme R over a basis B is de�ned by

�xing an interpretation I for B, de�ning a transition relation =)

I;R

that \does one step"

of \evaluation" of terms with respect to I and R, and then de�ning the meaning M

I

(R)

by repeating evaluation steps until a constant is reached.

De�nition 2. An interpretation I = hD; I

0

i of a recursive program scheme R consists of:

1. A nonempty set of elements D called the domain of the interpretation and sometimes

referred to as the domain of the program scheme. D

I

will be used for the domain of a

recursive program scheme; D will be used when an arbitrary domain is intended.

2. I

0

, which de�nes the meanings of the constants of R. To each function symbol f

i

corre-

sponds a total function mapping D

n

into D. To each predicate symbol p

i

corresponds

a total predicate (i.e., a total function mapping D

n

into the true or the false Boolean

value).

An interpretation is a partial function I : Term ! Env ! D

I

; that is, given a term

as input, it returns a function from environments to domain elements which speci�es the

interpretation of the term in the environment. An environment provides assignments of

variables x

i

and F

i

to elements of type D

I

and D

ar(F

i

)

I

! D

I

, respectively. The type of an

environment is Var ! (D

ar(F

i

)

I

! D

I

); given a symbol, it returns a function over domain

elements. There are no variables of base type bound in the environment.

The interpretation of a term is de�ned inductively by

1. I(c)(
) = I

0

(c) if c is a constant.

2. I(f(t

1

; t

2

; : : : ; t

ar(f)

)) = I

0

(f)(I(t

1

)(
);I(t

2

)(
); : : : ;I(t

ar(f)

)(
)) if f is a function,

predicate, or built-in constant and each t

i

is any term.

3. I(F(t

1

; t

2

; : : : ; t

ar(F)

)) =
(F)(I(t

1

)(
);I(t

2

)(
); : : : ;I(t

ar(f)

)(
)) if F is a function vari-

able.

If none of the cases work or if the interpretation of a subterm cannot be determined, then

the term has no interpretation. This will be the case when a term is nonsyntactic or an

illegal variable or symbol is used, for instance. Note that there is no interpretation for

ordinary (base) variables; we will always do substitution of base constants for ordinary

variables before interpreting or evaluating the body of a function de�nition. This de�nition

is closely mirrored by the operational semantics.

To simplify the technical development below, we require that there be a unique constant

symbol for every element of the domain and that these be the only constant symbols. In

other words, we assume that all constant symbols denote distinct values and that for every

d 2 D

I

there is a constant symbol

b

d 2 F such that I

0

(

b

d) = d. Here ^ denotes a meta-

mathematical function that maps an element of the domain D

I

to the appropriate constant

symbol. We will also assume that given

b

d we can determine d and vice-versa.

The empty environment, represented by a centered dot (�), has no bindings whatever;

it is used when the actual value of the argument is irrelevant. We write I(t)(�) rather than

12

I(t)(�) for the meaning of t with respect to I and any �. The use of the empty environment

does not a�ect the interpretation of constants such as

b

d and f ; they are handled by I

0

, which

is part of the interpretation.

Axioms and inference rules will be used to inductively de�ne the transition relation

=)

I;R

. There are no soundness or completeness properties to be considered for the opera-

tional semantics, for it is by de�nition correct; it is what it is. One question we could ask is

whether it is what we intended it to be (it is). For now, we are taking the value computed

by the operational semantics as the de�nition the meaning of a term. Another question

about the operational semantics, then, is whether its de�nition of the meaning of a term

coincides with other de�nitions of meaning. Other de�nitions are possible; one natural one

will be introduced in section 3.4. We will show in section 4.3 that the two notions coincide;

they compute the same values for any program and input.

Given a recursive program scheme R = hfF

i

(~x

ar(F

i

)

)(t

i

g;mi and an interpretation I,

the transition relation =)

I;R

between terms is de�ned by the axioms and inference rules

below. In each axiom, =) will possibly be subscripted by R or I to indicate that it

depends upon the recursive program scheme R or the interpretation I. If no subscript is

given, then the axiom describes the evaluation of constructs common to every recursive

program scheme (for instance, the conditional and boolean operators). In the axioms and

rules below, c stands for a b- or t-constant; in what follows them, c

j

is usually a t-constant.

First, we introduce axioms for the \primitives" of R, namely the function, predicate,

and built-in symbols of the basis B. Function and predicate symbols from the basis are

given meaning by the interpretation I, so we have the axioms

f(c

1

; : : : ; c

k

) =)

I

b

d (when I

0

(f)(I

0

(c

1

); : : : ;I

0

(c

k

)) = d) ,

p(c

1

; : : : ; c

k

) =)

I

b

d (when I

0

(p)(I

0

(c

1

); : : : ;I

0

(c

k

)) = d) .

Note that =) does not relate constant symbols to anything, since constant symbols are

\answers" or \values" and do not require further evaluation.

The axioms for the conditional and the equality test are:

if true then s

1

else s

2

� =) s

1

;

if false then s

1

else s

2

� =) s

2

;

c = c =) true ;

c = c

0

=) false (c 6� c

0

) :

The axioms for ^ and : are:

true ^ true =) true ;

true ^ false =) false ;

false ^ true =) false ;

false ^ false =) false ;

:true =) false ;

:false =) true :

13

The above axioms require that certain subterms of the term being evaluated be constant

symbols. In general this is not the case, so we need some inference rules that will allow

subterms of a term to be simpli�ed. To evaluate the application of a function symbol f to

its arguments, we must �rst evaluate its arguments one at a time in left-to-right order.

s

i

=) s

0

i

f(c

1

; : : : ; c

i�1

; s

i

; s

i+1

; : : : ; s

ar(f)

) =) f(c

1

; : : : ; c

i�1

; s

0

i

; s

i+1

; : : : ; s

ar(f)

)

:

There is a similar inference rule for the application of a predicate symbol p:

s

i

=) s

0

i

p(c

1

; : : : ; c

i�1

; s

i

; s

i+1

; : : : ; s

ar(p)

) =) p(c

1

; : : : ; c

i�1

; s

0

i

; s

i+1

; : : : ; s

ar(p)

)

:

To evaluate a conditional term if b then s

1

else s

2

� , the subterm b must be evaluated to

either true or false :

b =) b

0

if b then s

1

else s

2

� =) if b

0

then s

1

else s

2

�

:

To evaluate an equality term s

1

= s

2

, the subterms s

1

and s

2

must �rst be evaluated to

constants:

s

1

=) s

0

1

s

1

= s

2

=) s

0

1

= s

2

;

s

2

=) s

0

2

c = s

2

=) c = s

0

2

:

As with function and predicate symbol application, the rules for computing = enforce a

left-to-right evaluation.

To evaluate a Boolean term b

1

^ b

2

, the subterms b

1

and b

2

must be evaluated �rst:

b

1

=) b

0

1

b

1

^ b

2

=) b

0

1

^ b

2

;

b

2

=) b

0

2

c ^ b

2

=) c ^ b

0

2

:

Again, the rules for computing ^ enforce a left-to-right evaluation. The inference rule for

:b is:

b =) b

0

:b =) :b

0

:

Finally, to evaluate the application of a function variable F

i

to k = ar(F

i

) arguments,

we substitute the arguments for the parameter variables in the body t

i

of the declaration

of the function variable.

F

i

(~s

k

) =)

R

(t

i

)

~s

k

~x

k

(copy rule)

This expansion of a function variable into its body with the substitution of arguments for

parameter variables is called the copy rule. We can see that �

i

[F

1:::n

](~s

k

) = (t

i

)

~s

k

~x

k

.

14

The transition relation =)

I;R

is symbolic. It relates terms to terms in a syntactic,

symbol-pushing way without regard for the meanings of the symbols being manipulated.

The choice of constants and meanings in the interpretation could lead to the impression

that it is meaning, not syntax, that is being manipulated here; after all, the interpreter will

replace 1+1 by 2 and if true then t

1

else t

2

� by t

1

, so it might seem that while the copy

rule does symbol-pushing on function variables and their arguments, simpli�cations treat

symbols semantically. All that's really happening, however, when a symbol application is

\evaluated" is a table lookup of its arguments and replacement of the original expression

by the result of the lookup. When we set up the interpretation, we had a speci�c semantics

in mind, but the relations are computed without knowledge of what that intended meaning

was.

De�nition 3. A binary relation �! is Church-Rosser if for all M , M

1

, and M

2

,

M �!

�

M

1

and M �!

�

M

1

implies 9M

3

:M

1

�!

�

M

3

and M

2

�!

�

M

3

:

(�!

�

is the transitive, re
exive closure of �!.)

A binary relation �! is determinate ifM �!M

1

andM �!M

2

implies thatM

1

=M

2

.

Another way to state this is to say that there is a deterministic algorithm to compute �!.

Obviously any determinate relation is Church-Rosser.

Fact 4. =) is determinate. It follows that if a term evaluates to a constant, then the

constant is unique; i.e., if t =)

�

I;R

c

1

and t =)

�

I;R

c

2

, then c

1

� c

2

. The relation =)

I;R

is in fact a partial function for any recursive program scheme R (it is partial because it is

unde�ned for constants and variables).

Having de�ned a mechanism for symbolically evaluating terms, we verify that it works

as expected for the primitives that are shared by predicate logic and recursive program

schemes.

Lemma 5. If t is a closed, �rst-order term (i.e., t contains no free variables, function

variables, or conditional expressions), then t =)

�

I

b

d i� I(t)(�) = d.

Proof. ()) By induction on computation length and the de�nition of =)

I

, verifying that

each computation step is sound with respect to I.

(() By structural induction on t.

Lemma 6. If b is a closed, �rst-order b-term, then b =)

�

I

true i� I(b)(�) = true. Naturally

enough, this also hold for false.

Proof. As for lemma 5.

 is the function which never returns, regardless of its argument; it is more formally

de�ned in section 3.3. Its syntactic analog F

is a function variable which never gets replaced

in a computation, regardless of the computation rule in e�ect, or, alternatively, gets replaced

by itself. The latter formulation, which is the one we will use, is identical to the former

because F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

) is replaced in any substitution step by F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

);

15

that is, by itself. Thus, it does not matter whether the term is substituted or not, for the

output is the same in either case. Our choice of F

will be justi�ed in section 3.6, page 31.

F

is the F

i

such that �

i

[F

1:::n

] = F

i

; we will assume that we can use it, whether or not it

is one of the function variables explicitly de�ned in R.

I

is the interpretation in which all function variables are given the value
; that is,

I

(t)(�) = I(t)(�[F

i

7!
]). �[F

i

7!
] is an environment which is the same as � (has the

same bindings of variables to values as �) except that F

i

is bound to
, whether or not F

i

was bound to anything in �. The free variable i in the substitution notation indicates that

the substitution should be done for all appropriate values of the variable (in this case, for

1 � i � n). Since the environment passed to I

is immaterial, I

, like I

0

, will be annotated

without the environment argument.

De�nition 7 (Operational meaning of terms). [[t]]

op

= d whenever t =)

�

I

b

d; that is,

the operational meaning of a term is the value of the base constant to which it simpli�es

under the operational semantics without the copy rule. If the operational semantics does

not halt or does not get to a constant

b

d while computing on t, then [[t]]

op

is unde�ned. By

lemma 5, [[t]]

op

= I

(t).

In general, [[A]] will be used to denote the semantic object to which the syntactic object

A corresponds. This semantic object will not always be speci�ed operationally, however.

De�nition 8. The operational meaning M

I

(R) : D

ar(F

m

)

I

! D

I

of a recursive program

scheme R is a partial function determined by:

M

I

(R)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = d i� F

m

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) =)

�

I;R

b

d :

By fact 4 above,

b

d is unique, so M

I

(R) is well-de�ned. Note that d

1

; d

2

; : : : ; d

ar(F

m

)

is

in the domain of M

I

(R) i� the sequence of terms (known as the computation sequence of

R on (

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

); see page 18)

F

m

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) =)

I;R

u

1

=)

I;R

u

2

=)

I;R

� � �

is �nite, i.e., the evaluation of F(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) terminates.

Lemma 9. t 6=) i� t =

b

d for some d; in other words, if the operational semantics gets

\stuck" on a term (can take no =) step), then the term is a base constant.

Proof. We can imagine an operational semantics that gets stuck on terms which are not

base constants. We prove that this is impossible for =) by induction on terms.

As noted before, there are only the following forms for a term t.

1. Base constant: t =

b

d.

No rule applies. This �ts the desired conclusion.

2. Function variable application: t = F(t

1

; t

2

; : : : ; t

ar(F)

).

The copy rule applies.

16

Figure 2-1: The tree representation of the term F(x; 3) + if :true then 4 else 5 � .

3. Function, predicate, or built-in symbol application: t = f(t

1

; t

2

; : : : ; t

ar(f)

).

If each t

i

is a base constant, then the application can be substituted by the value

assigned it by the interpretation. If some t

i

is not a base constant, then by induction,

that term can move under the operational semantics.

4. Conditional statement: t = if b then t

1

else t

2

� .

This case is analogous to the previous one: if b is a Boolean constant, then this term

reduces to t

1

or t

2

. Otherwise b reduces, by induction.

2.3 Substitution and simpli�cation

De�nition 10. Suppose s

i

=)

I;R

s

i+1

. If s

i+1

was obtained from s

i

by use of the copy

rule (i.e., s

i

=)

R

s

i+1

), then we call this step a substitution step. If s

i+1

was obtained from

s

i

by use of some other rule (i.e., s

i

=)

I

s

i+1

), then we call this step a simpli�cation step.

A simpli�cation step always removes an occurrence of a function, predicate, or built-in

symbol from a term. A substitution step removes an occurrence of a function variable F

i

by replacing the function variable application with the expansion of t

i

. A substitution step

may also introduce other occurrences of function variables, either by copying occurrences

which appear in the arguments to F

i

or by creating new ones (those which explicitly appear

in t

i

).

To make the above a bit more formal, we will de�ne what we mean by an occurrence.

Consider a term to be a tree which has function variables and function, predicate, and

built-in symbols at the nodes and base constants [and variables] at the leaves. For instance,

the tree representation of the term F(x; 3)+ if :true then 4 else 5 � is shown in �gure 2-1.

De�nition 11. An occurrence in a term is a speci�cation of the path from the term's root

to a node or leaf.

The representation of the occurrence does not concern us here; the one that we will use

is a sequence of numbers (separated by � and terminated by 0 for notational convenience)

which specify which branch to take at each node. For instance, the occurrence of F in

the above term would then be just 1�0; the occurrence of true would be 2�1�1�0. The path

0 speci�es the root of the tree. We can speak of the term rooted at an occurrence or of

the value (the symbol f or function variable F

i

, or the term constructor F

i

, depending on

whether a term or an expression is being represented as a tree) at an occurrence. We will

need a concrete representation for an occurrence later, when we formally specify operations

17

on them. For now, when we say \remove an occurrence" or \substitute for an occurrence"

we (usually) mean to substitute for or expand the term rooted at that occurrence if we are

using the direct representation for terms and to substitute for the term constructor F

i

or to

apply the function �

j

to a di�erent term constructor than F

i

if we are taking the expression

view.

[Fix bungled de�nition.]

We will describe a family of transition relations

sub

=)

I;R

in terms of substitution and

simpli�cation steps; this will specify a new operational semantics sub which we will �nd

easier to work with. The subscripts I and R will be omitted when they are clear from

context. The transition relation depends on a computation rule (see page 20) which speci�es

how much work is to be done at each step; we will usually not mention which of the

sub

=) rules

in particular we are considering (i.e., which computation rule is operating). Informally,

s

j

sub

=) s

k

if s

k

can be derived from s

j

by simultaneously using the copy rule on some

occurrences of F

i

in s

j

and then simplifying wherever possible. Let

u

0

sub

=) u

1

sub

=) u

2

sub

=) : : :

be a computation of the new operational semantics, where u

0

is F

m

(d

1

; d

2

; : : : ; d

ar(F

m

)

). This

will be called the computation sequence of R on (

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

). (In fact, we will also

want to consider computation sequences which start at arbitrary terms; that case is handled

identically.) Each u

i+1

is obtained from u

i

by �rst simultaneously replacing in u

i

some

occurrences of F by � [F

1:::n

] (doing some substitution steps) and then removing, whenever

possible, occurrences of function, predicate, and built-in symbols via the simpli�cation

rules (doing simpli�cation steps until no more can be done). The formal de�nition of

\simultaneous substitution" is technically cumbersome, so we omit it; the intention should

be clear.

Sub simply speci�es a particular order for the operations of the original operational

semantics and groups many steps of =) as a single step of

sub

=). The speci�cation of sub

can be formalized by giving an algorithm which speci�es how a

sub

=) operation is done.

Initially all F's in u, the term upon which a step of

sub

=) is to be performed, are untagged.

First perform zero or more sequential substitutions on untagged instances of F in u; there

is no obligation to perform substitution for an F simply because such a substitution is

permissible. Each time that a substitution step is done, all F's in the substituting term are

tagged; that is, if �

i

[F

1:::n

](~s

ar(F

i

)

) replaces F

i

(~s

ar(F

m

)

), then all F's in the replacing term are

tagged (unsubstitutable), even if there were untagged F's in one or more of the s's. When

there are no remaining untagged terms or it is decided that no more substitutions will be

done (this decision is made by the computation rule), the resulting term is fully simpli�ed

by applying simpli�cation rules to every subterm to which they apply, until no more apply.

No tagging information is retained from step to step. This constitutes a single

sub

=) step.

These rules enforce the restriction that only F's that appeared in u can ever be substituted

for, and simultaneous substitution of F's in u is faithfully simulated.

This algorithm provides a speci�cation or sample implementation for

sub

=); this is not

necessarily the way that sub works. For instance, each step of

sub

=) is atomic, though

here several steps of =) were required in order to achieve the e�ect of a single step of

sub

=). Actually, the substeps used by this method were not really =)

R

and =)

I

steps,

for internal expressions could be substituted for or simpli�ed. We cannot show that

sub

=)

18

is precisely equivalent to =), then, for it is not: for the trivial recursive program scheme

F(x)(F(x+ 1) and for any

sub

=) relation, the respective computation sequences are

F(0) =)

R

F(0 + 1) =)

R

F(0 + 1 + 1) =)

R

� � �

F(0)

sub

=) F(1)

sub

=) F(2)

sub

=) � � �

It is the case, however, that some members of the

sub

=) family are equivalent to =) in

an important way: they compute to the same value for any term. We will show this for

some such

sub

=) rules; in particular, it is true for the one which always does every possible

substitution.

19

Chapter 3

Computation Rules

This chapter introduces computation rules, which control the evaluation of terms by speci-

fying the order in which steps of the operational semantics are taken, or, alternatively, by

specifying on which term the operational semantics acts at a particular step. Computation

rules were referred to in the previous chapter as something that speci�ed which

sub

=) rule was

being used. The syntactic and semantic properties of computation rules will be examined

in preparation for the connections made in the next chapter between the operational and

denotational meanings of a recursive program scheme.

3.1 De�nition and meaning of computation rules

We will �rst introduce computation rules in a less formal, more intuitive way; shortly we

will formalize and sharpen the notion.

From now on the interpretation I will be left implicit; where it is not mentioned, the

usual one is used. For instance, the two symbols C

R

and S

C;R

de�ned here should really be

C

I;R

and S

C;I;R

since they depend on the interpretation as well as on the program scheme,

but we reject that more unwieldy notation.

De�nition 12. A computation rule C is an algorithm for selecting in a term some occur-

rences of F

i

to be simultaneously replaced by �

i

[F

1:::n

] in the next step of the sub opera-

tional semantics. The substitution S

C;R

is a mapping from terms to terms in which some

occurrences of F

i

in the input term are simultaneously replaced by �

i

[F

1:::n

] (alternatively,

occurrences of F

i

(~s

ar(F

i

)

) in the input term are simultaneously expanded into t

i

with occur-

rences of x

j

replaced by s

j

) to produce the output term. C

R

: term ! term computes a

sub

=) relation (which particular one is computed depends on C); that is, given a term in a

computation sequence, C

R

produces the next term.

[Does this make sense? I need to sharpen the distinction between F

i

and F

i

above.] Note

that the term-constructor (F

i

) view of function variables is being taken here.

More formally, a computation rule C is a function which takes as input a term and

produces as output an ordered set of occurrences of function variables in that term; this

choice is used by S

C;R

and by C

R

, which should not be confused with C, which refers to the

rule itself (the function that chooses occurrences), not a function that does substitutions.

The choice of occurrences chosen by the computation rule to be substituted depends only on

20

the structure of the term, not on the program R. The order of occurrences does not matter

so long as it is chosen deterministically; for convenience, we will assume that lexicographic

ordering is used. C

R

is the function from terms to terms whose output is the simpli�cation

of the input term after �

i

[F

1:::n

] has replaced F

i

at each occurrence.

C

R

produces a term which is fully simpli�ed, while S

C;R

only does substitution. For

any term A, S

C;R

(A)

con

=)

�

I

C

R

(A). S

C;R

is introduced here (and used, among other places,

in the proof of theorem 34) because its syntactic properties are simpler than those of C

R

.

Actually, S

C

could be considered without a particular recursive program scheme R in mind:

given a term, it would choose the function variables to substitute for, but it cannot do the

substitution (or produce a term as output) since it does not know what to substitute for

the selected function variables. We do not consider S

C

in that light.

We will only consider \interesting," nonempty substitutions; that is, a substitution must

expand some F in the term to which it is applied. Thus, no substitution can be performed on

a term which is free of F's. These restrictions prevent a particular case of the operational

semantics getting stuck when a substitution meets a term on which it chooses to do no

substitutions. The next step would try to do a substitution step on the same term and

would also perform the empty substitution. Since this sort of in�nite loop is not of interest

to us here, we shall avoid it by �at. It is consolation that, in practice, no one would ever

choose to use such a rule. The substituted function may, however, be F

(see page 16),

in which case the substitution occurs but does not change the term to which it is applied.

Although the e�ect is similar to that described earlier, this is a di�erent case: if F

is

being substituted in, then we want no progress to be made on a particular term, for any

computation rule. The computation rules that we prohibit here might not make progress

on terms that we considered interesting. We will see later that such a rule is not safe (see

section 4.1); that is, it would not have been guaranteed to produce the value we wanted for

a particular recursive program scheme.

[[C

R

]] will denote the semantic function computed by the computation rule C for the

recursive program scheme R; it is a partial function that maps ar(F

m

) domain elements to

a single domain element. If the computation sequence of C on (

b

d

1

;

b

d

2

; : : : ;

b

d

k

) terminates

with

b

d, then [[C

R

]](d

1

; d

2

; : : : ; d

k

) = d; if the computation sequence does not terminate, then

[[C

R

]](d

1

; d

2

; : : : ; d

k

) is unde�ned.

3.2 Examples of computation rules

Some examples of computation rules are provided here. Similar rules are given in [Man74,

p. 375] and [Vui73, p. 33].

Leftmost-innermost (\call-by-value") rule LI: Substitute for only the leftmost-inner-

most occurrence of F (that is, the leftmost occurrence of F which has all its arguments

free of F's).

Parallel-innermost rule PI: Simultaneously substitute for all the innermost occurrences

of F (that is, all occurrences of F whose arguments are all free of F's).

Leftmost (\call-by-name") rule L: Substitute for only the leftmost occurrence of F.

21

Parallel-outermost rule PO: Simultaneously substitute for all the outermost occurrences

of F (that is, all occurrences of F which do not occur as arguments of other F's).

Free-argument rule FA: Simultaneously substitute for all occurrences of F which have

at least one argument free of F's.

Full-substitution rule FS: Simultaneously substitute for all occurrences of F.

When the above computation rules act on the term F(0,F(1,1))+F(F(2,2),F(3,3)), the

underlined occurrences of F will be replaced:

LI F(0,F(1,1))+F(F(2,2),F(3,3))

PI F(0,F(1,1))+F(F(2,2),F(3,3))

L F(0,F(1,1))+F(F(2,2),F(3,3))

PO F(0,F(1,1))+F(F(2,2),F(3,3))

FA F(0,F(1,1))+F(F(2,2),F(3,3))

FS F(0,F(1,1))+F(F(2,2),F(3,3))

The full-substitution computation rule can be formally speci�ed as

FS(t) = fo j 9i:SymbolAt(o; t) = F

i

g :

FS returns the set of all occurrences o in the input term t such that the symbol at o is a

function variable (i.e., the term rooted at o is an application of a function variable). The

speci�cation of the rule which acts on expressions which refer to terms is exactly analogous.

A slightly less trivial example is that of the parallel-outermost computation rule.

PO(c) = fg ;

PO(f(s

1

; s

2

; : : : ; s

ar(f)

)) = fi � o j o 2 PO(s

i

)g

=

[

i�ar(f)

fi � o j o 2 PO(s

i

)g ;

PO(F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

)) = f0g :

3.3 A new domain

In this section we introduce a new domain which will be used for the remainder of the

thesis. Our previous domain was simply an unordered set of values; the new domain will

have more structure and will better model the values that can result from computations;

viz., an element which stands for nontermination is added and related to each of the existing

terms (none of which are domain-theoretically comparable). We also introduce notation to

support this domain and the ideas that appear later.

[This needs work.]

De�nition 13 (Ordering of domain elements). v is a relation between two elements

of the same type which denotes \is no more de�ned than" or \approximates." v is a partial

order; that is, it is re
exive, antisymmetric, and transitive. It is not a total partial order

since it is not the case that for any two elements a and b, either a v b or b v a. In fact, in

22

D

I

, no pair of elements is comparable via v; i.e., for no d 6= d

0

is it the case that d v d

0

or

d

0

v d. Concretely, the domain element 3 cannot be said to be any more de�ned than 2 or

than 4. This ordering of domain elements is called the discrete ordering. The antisymmetry

condition states that for any partial order v over domain D and any d; d

0

2 D, d v d

0

and

d

0

v d implies that d = d

0

.

Functions are compared elementwise: f v g i� for all a in the (common) domain of f

and g, f(a) v g(a). < is just like v, but it is not re
exive; it can be thought of as denoting

\is less de�ned than." w and = are de�ned in the obvious way.

D

?

denotes a domain which is identical to D except that a new element ? (bottom) has

been added which is < all elements of D. D

?

is called a lifted domain. When a discrete

domain is lifted, the resulting domain is called a
at domain. In a
at domain, all pairs

of elements are incomparable to each other except that each non-? element is = the new

domain element ?. ?

D

is de�ned to be the least element of D (if one exists); that is, ?

D

is already an element of D; it is the element such that for all d 2 D, ?

D

v d; if no such d

exists, then it is not meaningful to use the notation ?

D

. The subscript on ? will be omitted

when it can be determined from context.

A chain is a nonempty set of values x

1

; x

2

; : : : ; x

n

such that for all i < n, x

i

v x

i+1

.

A chain may be in�nite or �nite. An example of an in�nite chain is the family of func-

tions I

n

(y) = if y < n then y else ? � , where I

n

is the identity function for arguments

(numerically) less than n and does not terminate for arguments greater than or equal to n.

For X � D,

F

X (the least upper bound or lub of X) denotes the element of D (if it

exists) such that for all x 2 X, x v

F

X and for all d 2 D, if x v d then

F

X v d. For a

�nite chain X,

F

X is the greatest element of the chain. For some chains (such as the chain

of I

n

's above), the lub is not in the chain.

F

fI

n

jn 2 Integersg = I, the identity function.

[Is this also true for monotone in�nite-size chains?]

De�nition 14. A function f is monotonic or monotone if for all a, b in its domain, a v b

implies f(a) v f(b). In other words, if f is provided with more information (a better-de�ned

input), then its output will not be worse-de�ned than the output was when the input was

less de�ned. A monotonic function f is continuous if for all chains X in the domain of f ,

f(

F

X) =

F

ff(x) jx 2 Xg.

More complicated orderings than the discrete and
at ones can be imagined for base

domains, but this thesis will consider only discrete and
at domains. Most orderings on

nonbase domains (for instance, the ordering on D

I

! D

I

, which contains in�nite chains,

as shown above) are more complicated. The technical complications of dealing with more

complicated base domains are considerable, and many of the theorems in this thesis do not

hold for interpretations with such domains. In any event,
at domains model the domains

of computation values accurately, as we shall see.

The notions of lifting and comparison of de�nedness present a natural framework for

talking about the meaning of nontermination. In (D

I

)

?

, the least element will stand for

nontermination or unde�nedness and the other domain elements will stand for themselves

as they appear in D

I

. Partial functions with range D

I

(such as M

I

(R) and [[C

R

]]) can be

considered to be total functions whose value is ?

(D

I

)

?

, the least element of (D

I

)

?

, when

the partial version of the function would have been unde�ned. Functions with domain

23

D

I

can likewise be extended so that their input domains are also (D

I

)

?

; whenever any

argument is ?

(D

I

)

?

, the result is ?

(D

I

)

?

. The resulting total functions are strict in all of

their arguments; such functions are called naturally extended. From now on we will use the

domain D = (D

I

)

?

in preference to D

I

and take this extended view of the symbols. ? will

refer to ?

D

unless otherwise speci�ed. (This use of ? is sometimes annotated !; in this

thesis, ! is reserved for the least trans�nite number.)

The intuitive motivation for v remains valid: the meaning of a term that is unde�ned

over D

I

is v the meaning of one that means a base constant, but we cannot say that the

meaning of the term 3 (that is, the number 3) is any more or less de�ned than the number

2.

It is an important technical detail that no constant denotes ?;; ? is the value of a

nonterminating computation of base type, and while we can specify terms that mean ?,

there is no

b

?. For every k > 0 there is an

k

: D

k

! D, the least function of its type.

k

(x

1

; x

2

; : : : ; x

k

) = ? independent of the values of the x

i

's. The subscript of
 will

typically be omitted. It was
 that motivated the name of F

.

3.4 Monotonic �xed points

The following section shows that the least �xed point of a monotonic functional can be

determined without the use of the least upper bound operator, which is not necessarily

valid for in�nite chains in monotone models.

We will require several de�nitions and notations for the proof.

First, we will de�ne the ordinals in the following manner:

0 = fg (the empty set)

n = fk j k < ng

! = fn jn an integerg

In general, � +1 = � [f�g; this holds for � = ! as well. There are three types of ordinals,

then: zero, successor ordinals � = � + 1 for some �, and limit ordinals which are neither of

these. Limit ordinals are typically gotten to by use of the least upper bound operator.

The ordinal of a set is the largest cardinal such that there is a bijection between the set

and the cardinal (considered as a set, as above). Another way to state this is that for any

set A, ord(A;�) = the unique � such that (A;�) � (�;2).

The depth of a domain D is the ordinal of the longest chain in D and is denoted bDc.

(We cannot de�ne the depth of D to be just the length of the longest chain in D because

that is not well-de�ned for in�nitely long chains.) jDj, the cardinality of D, is an upper

bound on bDc. The depth of a discrete domain (such as D

I

) is 1 and the depth of a
at

domain (such as D) is 2.

Because the following theorems are general, ?

D

is used in preference to ?, which is ?

D

.

De�nition 15. The notation g

�

(x) will be used to denote � applications of g to x.

g

�

(x) =

8

>

<

>

:

x if � = 0

g(g

�

(x)) if � = � + 1 for some

F

�<�

g

�

(x) if � is a limit ordinal

24

Fact 16. g

�

(x) =

F

fg(g

�

(x)) j � < �g for all �. Actually this de�nition of g

�

(x) has one

more application of g at limit ordinals than does the other de�nition, but that won't make

any di�erence in the proofs because a �xed point will have been reached by then anyway.

We will let H(g; �) denote fg(g

�

(x)) j � < �g.

Lemma 17. g

�

(x) is monotone in x; that is, for all � 2 ORD and all a v b, g

�

(a) v g

�

(b).

Proof. By easy trans�nite induction.

Fact 18. For function spaces from domains of �nite depth to any domains, monotonicity

coincides with continuity.

We see from this fact that in the domains which we address, monotonic functions are

also continuous. Thus, it would be valid to use the method outlined above for continuous

functions to get the least �xed point of one of the monotonic functions in which we are

interested. It is the goal of this thesis to show adequacy without resorting to continuity,

however; since the functions are speci�ed as monotonic, it is desirable to perform the proof

entirely in the monotone frame.

De�nition 19. A �xed point of g : D ! D is a d 2 D such that g(d) = d. �g denotes the

least �xed point of the function g; that is, for all �xed points d of g, �g v d.

Theorem 20. Every monotone function g : D ! D has a least �xed point �g = g

bDc

(?

D

)

To prove theorem 20, we need the following claim:

Claim 21. For all n, fg

i

(?

D

) j i 2 ORDg is a well-ordered chain of ordinal no greater than

bDc, where ORD is the class of ordinal numbers.

Proof of claim 21. First we will show that is monotone in �; i.e., if � � �

0

then g

�

(x) �

g

�

(x). � � �

0

implies that H(g; �) � H(g; �), where H(g; �) is as de�ned in fact 16. The

fact implies that

F

H(g; �) �

F

H(g; �), so fg

i

(?

D

) j i 2 ORDg is a chain; it is clearly

well-ordered.

The chain cannot have length greater than bDc because (by de�nition) no chain in D

has length greater than bDc.

The proof of claim 21 can also be done by induction on the cases of de�nition 15, but

that proof is longer and less elegant.

We can now describe how the least �xed point of a continuous function g is determined:

the least upper bound is taken some number of times. Let p be least upper bound of the

chain fg

i

(?

D

) j i 2 ORDg (from claim 21). If p is not a �xpoint of g, then compute p, the

least upper bound of the chain fg

i

(p) j i 2 ORDg. The least �xed point is the �xed point

reached by this method, and it is guaranteed to be reached.

Proof of theorem 20. First we will note that some g

�

(?

D

) is a �xed point of g; then we

will show that g

bDc

(?

D

) is such a �xed point; �nally we will prove that g

bDc

(?

D

) is the

least �xed point.

25

1. 9� 2 ORD:g

�

(?) = g

�+1

(?)

Suppose that this were not the case. Then all of the elements of fg

(?) j
 < �g are

distinct for any �. For � = a cardinal greater than jDj, fg

(?) j
 < �g has more

elements than jDj, which cannot be the case since all of its elements are also members

of jDj.

2. Let � be the least ordinal such that g

�

(?) = g

�+1

(?). g

�

(?) is a �xed point of g.

Obviously � � bDc. For all �

0

� �, g

�

(?) = g

�

0

(?) because, as noted in the proof of

claim 21, g

�

is monotonic in �.

3. �g = g

�

(?

D

)

Let p be a �xed point of g. ? v p. By lemma 17, g

�

(?) v g

�

(p). Since p was an

arbitrary �xed point of g, g

�

(?

D

) is the least �xed point of g.

Since bDc > �, g

bDc

(?

D

) = g

�

(?

D

). So g

bDc

(?

D

) is �g, the least �xed point of g.

Let D

F

i

= D

ar(F

i

)

! D and D

�

= hD

F

1

;D

F

2

; : : : ;D

F

n

i. These semantic domains roughly

correspond to the syntactic domains D

F

i

and D

�

.

De�nition 22 (Denotational meaning of �). [[�

i

]] : D

�

! D

F

i

is the semantic function

which corresponds to the syntactic function �

i

.

[[�

i

]][g

1

; g

2

; : : : ; g

n

](d

1

; d

2

; : : : ; d

ar(F

i

)

) = I((t

i

)

~

b

d

k

~x

k

)(�[F

j

7! g

j

])

where each g has type D

F

i

. The environment � is immaterial since the F

j

's are the only free

variables in (t

i

)

~

b

d

k

~x

k

.

[[�]] : D

�

! D

�

, the denotational meaning of � , is a tuple of the [[�

i

]]'s. [[�

m

i

]] is de�ned

similarly.

Corollary 23. The monotone functional [[�]] over D

�

has a least �xed point

�[[�]] = [[�]]

[
;
; : : : ;
]

for some su�ciently large ordinal
.

�[[�]] is h�

1

[[�]]; �

2

[[�]]; : : : ; �

n

[[�]]i, where �

i

[[�]] denotes i

th

element of �[[�]].

This corollary follows at once from theorem 20. It only remains to determine how large

 is; that is, how large bD

�

c is.

The number of elements of the domain over which � operates (D

�

or hD

F

1

;D

F

2

; : : : ;D

F

n

i)

is the product of the number of elements in the component domains.

While the theoretical limit for the size of D

F

i

is

jDj

(jDj

ar(F

i

)

)

elements (functions from D

ar(F

i

)

to D), its actual size is smaller. A theoretical upper bound

for
 is

n

Y

i=1

jDj

(jDj

ar(F

i

)

)

� jDj

n(jDj

maxfar(F

i

)g

)

26

This approximation is coarse because it does not make use of any information about the

structure of the domain or about the functions themselves. There are fewer total functions

than all (i.e., partial; every function is a partial function since every total function is also a

partial function) functions and no more continuous functions than monotone functions; we

are only interested in total monotone functions. However, this approximation is as close as

we need to get, for it gives us an upper bound of how many times � must be applied before

obtaining the least �xed point; it can never hurt to apply the functional too many times.

It is worth noting that this proof works even if the size of the domain is trans�nite, as will

usually be the case.
 will be a trans�nite number computed by trans�nite multiplication

and exponentiation; it is possible to create a chain made up of a trans�nite number of

elements, so the proof goes through similarly in the trans�nite case.

The consequence of the �nite depth of this domain is that fact 18 can be used to justify

the use of

F

in the de�nition of g

i

on page 24: since the domains in question are of �nite

depth, the least �xed point of any subset of the domain is in the subset.

De�nition 24. The denotational meaning f

R

of a recursive program scheme R is the m

th

element of the least �xed point of [[�]]; that is, it is �

m

[[�]]. Like M

I

(R), f

R

is a partial

function from D

ar(F

m

)

I

to D

I

(or a function from D

ar(F

m

)

I

to D which sometimes takes on

the value ?).

3.5 Incorrect computation rules

The major thrust of this thesis is to make connections between the operational and denota-

tional meanings of programs. Let us show by example that some of the computation rules

are incorrect in that they do not compute the �xed point. For these computation rules,

[[C

R

]] 6= f

R

.

Consider the following recursive program scheme [Mor71]:

F(x; y)(if x = 0 then 0 else F(x� 1;F(x; y)) �

Its least �xed point is the two-argument constant zero function, but if F(1,0) is computed

using the LI or PI rules, the computation runs forever.

The computation sequences for LI and PI happen to be the same; this sequence is

illustrated below. The function variables that are about to be expanded are underlined.

F(1; 0) =) F(0;F(1; 0)) =) F(0;F(0;F(1; 0))) =) � � �

This is not a reason for never using LI or PI; it just points out that the semantics that

we have chosen does not accurately model those computation rules (or, conversely, that the

computation rules are not successful at evaluating to the values which the semantics assigns

to some terms).

In section 4.1, page 35, we will present a condition called safety which, if true of a

computation rule, guarantees that the rule computes the least �xed point of a recursive

program scheme.

27

3.6 Syntactic properties of computation rules

This section proves a number of ancillary theorems about computation rules and their asso-

ciated substitutions. This all leads up to theorems which relate the operational meanings of

programs under various computation rules to each other and to their denotational meanings.

De�nition 25. A �xpoint computation rule is a computation rule which computes the least

�xed point of the function to which it is applied; that is, [[C

R

]] = f

R

.

Let u be an arbitrary term in the computation sequence of recursive program scheme

R on (c

1

; c

2

; : : : ; c

ar(F

m

)

); suppose it contains j occurrences F

1

; : : : ;F

j

of function variables.

The superscripts serve only to distinguish the individual occurrences of function variables

and do not necessarily indicate any ordering on the occurrences (for instance, their order

of appearance in u).

Let C be a computation rule, and suppose that it chooses to substitute for F

1

; : : : ;F

i

in u. Then u will be written �

C

(F

1:::i

; F

i+1:::j

)(c

1

; c

2

; : : : ; c

ar(F

m

)

) to distinguish the two

sorts of occurrences of F in its body: those which will be substituted in the next step and

those which will not. This notation will also be used to specify substitutions; for instance,

�

C

(G;H)(c

1

; c

2

; : : : ; c

ar(F

m

)

) is the term resulting when F

1

; : : : ; F

i

in u are replaced by G

and F

i+1

; : : : ; F

j

in u are replaced by H. The distinction between substitution for function

variables and expansion of applications has been blurred by the use of term constructing

functions for describing terms. The substitutions are of term constructors for term con-

structors; the e�ect on the term denoted by the expression is expansion. While the division

of F's into the two groups in �

C

is usually according to whether a substitution rule selects

them, it may be done arbitrarily as well, so that substitutions on some other basis can

be speci�ed. �

C

(F

1:::i

; F

i+1:::j

) is a function of type D

F

m

; the particular term to which

�

C

(F

1:::i

; F

i+1:::j

)(c

1

; c

2

; : : : ; c

ar(F

m

)

) corresponds will be speci�ed for each use of the �

C

notation and will sometimes be indicated by context. If no computation rule subscript

appears on �, that indicates that no computation rule was necessarily used to determine

the division of function variable arguments in the term.

Let us formalize �

C

by giving its type. It takes as inputs two ordered sets of term

constructors (a term constructor is a function from term

k

to term) and returns a term

constructor. When we specify only a single term constructor instead of a set of constructors,

we mean for that argument to �

C

to be the ordered set of the appropriate size all of whose

elements are the speci�ed constructor.

�

C

is specialized for a particular term and computation rule; we can think about a more

general function A which is an � constructor. A : C ! term ! (tcs

1

� tcs

1

) ! term is a

function which, given a computation rule, a term, and two sets of term constructors, returns

the original term with those instances of function variables chosen by C replaced by the

elements of tcs

1

and those which are not selected by C replaced by elements of tcs

2

. This

can be fairly simply implemented.

In the following de�nition (and elsewhere), � denotes functional composition; (f�g)(x) =

f(g(x)).

De�nition 26. The computation path for computation rule C on program R and input

(c

1

; c

2

; : : : ; c

ar(F

m

)

) is the series of terms S

i

C;R

(c

1

; c

2

; : : : ; c

ar(F

m

)

) where S

i

C;R

: term

ar(F

m

)

!

term is de�ned inductively: S

0

C;R

= F

m

and S

i+1

C;R

= S

C;R

� S

i

C;R

for all i � 0.

28

To get a better feel for what S

i

C;R

is, let us work through its de�nition. The �rst few

such functions are:

S

0

C;R

= F

m

= �

m

[F

1:::n

] = �

C

(F

1:::i

; F

i+1:::j

)

S

1

C;R

= S

C;R

� S

0

C;R

= �

C

(�

l

1:::i

[F

1:::n

]; F

i+1:::j

) = �

C

(�

C

(F

1:::i

0

k

; F

i

0

k

+1:::j

0

k

)

| {z }

for k = 1 to i

; F

i+1:::j

)

.

.

.

where l

1:::i

are the subscripts on F

1:::i

and �

l

k

has j

0

k

instances of function variables, i

0

k

of

which are substituted for by the second step of the computation of C on R.

In other words, each S

i

C;R

is the function which, given a vector of input terms ~c

ar(F

m

)

,

returns the term which would result after i instances of simultaneous application of the

substitution rule to F(~c

ar(F

m

)

) under the direction of computation rule C. At each step of the

computation path some occurrences of F

j

are replaced by �

j

[F

1:::n

]. S

i

C;R

(c

1

; c

2

; : : : ; c

ar(F

m

)

)

is not the same as the i

th

term in the computation sequence of (c

1

; c

2

; : : : ; c

ar(F

m

)

) because

S

C;R

does no simpli�cation; S

i

C;R

and C

i

R

have operationally and denotationally identical

meanings, however. This follows from the Church-Rosser property (fact 4): it does not

matter when simpli�cations are done, for the operational semantics will determine the

same meaning for a term regardless of the order in which its operations are performed. The

order in which steps of =) (substitution and simpli�cation steps) are taken may, however,

a�ect the number of them required in order to drive a term to base type. While S

i

C;R

is not

quite (S

C;R

)

i

, it is close: S

i

C;R

= (S

C;R

)

i

� S

0

C;R

.

De�nition 27 (ordering of terms). For terms A and B, A v

t

B if A and B are the

same except that wherever A contains a function variable applied to arguments, B may

contain some expansion of that application. Stated inductively, this de�nition says

� For all terms A, A v

t

A.

� For all function variables F

i

and terms s

j

, F

i

(~s

ar(F

i

)

) v

t

�

i

[F

1:::n

](~s

ar(F

i

)

).

� For all function variables and function, predicate, and built-in symbols �,

�(s

1

; s

2

; : : : ; s

ar(�)

) v

t

�(s

0

1

; s

0

2

; : : : ; s

0

ar(�)

) if for all i, s

i

v

t

s

0

i

.

v

t

is monotonic and transitive.

Fact 28. For any separation of function variables (that is, regardless of the criteria used

for separating the occurrences of function variables into the two ordered sets demanded

by �) in a term t = �(F

1:::i

; F

i+1:::j

)(c

1

; c

2

; : : : ; c

ar(F

m

)

), � is monotonic in each of its

occurrences of function variables; for instance, G v G

0

implies �(G;H) v �(G

0

;H) and

�(H;G) v �(H;G

0

) for all G, G

0

, and H of the appropriate type.

Lemma 29. Expanding a term (substituting for it) causes it to become strictly greater

under v

t

. Thus, the computation path for any computation rule C is a chain.

Proof. This follows from fact 28 and de�nitions 26 and 27:

i � j implies S

i

C;R

(c

1

; c

2

; : : : ; c

ar(F

m

)

) v

t

S

j

C;R

(c

1

; c

2

; : : : ; c

ar(F

m

)

) :

29

Lemma 30. If A v

t

B, then S

FS;R

(A) v

t

S

FS;R

(B).

Proof. We will consider the occurrences of F

i

's in A. We only need to consider such terms

because for every other sort of term (for constants and for function, predicate, and built-in

symbol applications), S

FS;R

is the identity function.

To each such occurrence there corresponds in B either a matching occurrence of F

i

or

an occurrence of �

i

[F

1:::n

], possibly with some of its F's expanded as well. There are two

cases, depending on what term in B an occurrence of F

i

(~s

ar(F

i

)

) in A corresponds to.

1. An occurrence of F

i

(~s

0

ar(F

i

)

) matches, where s

j

v s

0

j

. These subterms of A and B

will expand identically, and in the corresponding slots of the expanded terms will be

�

i

[F

1:::n

](~s

ar(F

i

)

) and �

i

[F

1:::n

](~s

0

ar(F

i

)

); these terms fall under the v

t

relation.

2. An expansion B

0

of F

i

(~s

0

ar(F

i

)

) matches. Let A

0

be the single expansion of F

i

(~s

0

ar(F

i

)

) in

A resulting from the application of S

FS;R

. A

0

v

t

B

0

, for B

0

is simply A

0

, perhaps with

further expansions. Let B

00

be the expansion of B

0

performed by one full substitution

step. B

0

v

t

B

00

, so by transitivity, A

0

v

t

B

00

.

It is not true in general that A v

t

B) S

C;R

(A) v

t

S

C;R

(B). Consider the computation

ruleO, which substitutes for the �rst, third, �fth, etc. occurrences (i.e., the odd occurrences)

of F in a term, acting on a recursive program scheme which includes the equation F(x; y)(

H(H(y)). Let A = F(F(c

1

; c

2

);F(c

1

; c

2

)) and B = F(H(H(c

1

));F(c

1

; c

2

)).

Then A v

t

B but S

O;R

(A) 6v

t

S

O;R

(B):

F(F(c

1

; c

2

);F(c

1

; c

2

)) v

t

F(H(H(c

1

));F(c

1

; c

2

))

H(H(H(H(c

2

)))) 6v

t

H(H(F(c

1

; c

2

)))

O seems odd since it uses global information in deciding which occurrences of F to

expand; this is something that none of the sample computation rules given on page 21 do.

Nevertheless, O is a valid computation rule. In fact, because it is a safe computation rule

(see section 4.1 on page 35), use of it computes the same value for any input as does the

denotational meaning of the program, which indicates that it is a reasonable rule to use.

The reason that this substitution failed to preserve the ordering on terms was that

while the same rule was being applied to the two terms, the substitution did not necessar-

ily a�ect corresponding subterms in the same way. \Corresponding subterms" are those

which occupy the same relative positions in their respective terms [i.e., are located by

the same occurrence]; if A v

t

B, then a subterm of A is v

t

the corresponding subterm

of B. Let us consider the case of two corresponding subterms A

0

= F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

)

and B

0

in A and B, respectively. [Why restriction on form of A

0

: well, this does not

work without it...] If they are not the same term (i.e., if A

0

<

t

B

0

), then regardless of

the substitutions performed on A and B, the terms replacing A

0

and B

0

fall under the v

t

relation: the former is F

i

(s

1

; s

2

; : : : ; s

ar(F

i

)

) or �

i

[F

1:::n

](s

1

; s

2

; : : : ; s

ar(F

i

)

) and the latter is

w

t

�

i

[F

1:::n

](s

1

; s

2

; : : : ; s

ar(F

i

)

) since B

0

w

t

�

i

[F

1:::n

](s

1

; s

2

; : : : ; s

ar(F

i

)

). If, on the other hand,

A

0

= B

0

, then di�culties may arise. No complications are encountered if both, neither, or

only B

0

is substituted for; the bad case is when A

0

= B

0

and only A

0

is expanded for; then

for these subterms the v

t

relation becomes w

t

and S

C;R

(A) v

t

S

C;R

(B) fails.

30

Why would a computation rule choose to substitute for an F in A but not the corre-

sponding one in B w

t

A? This can only be the case if the computation rule uses some

criterion other than the containing and contained expressions (the environment or context

of the F in question). [[Do I want to say this?] Of the computation rules introduced on

page 21, PO depends on the containing expressions and LI, PI, and FA depend on the

contained expressions. There is no nontrivial condition upon which the substitutions done

by rules FS and R depend, and L never makes the problematic substitution [say why].]

Since the expressions correspond, their containing expressions are identical, and because

A

0

= B

0

, their contained expressions are also the same. So some external factor (such as

the overall structure of the term) must be at work if F in A

0

is to be substituted for but

the F in B

0

is not.

A related topic is the appropriateness of our choice of F

, which always reduces to itself

(see page 16). We can now see why it was an appropriate choice for the nonterminating

function in our recursive program schemes; it was initially introduced without justi�cation.

We can imagine other syntactic analogs for
 which denote nontermination of a compu-

tation; for instance, we might use some other function such as F

r

(s) (F

r

(F

r

(s)), or we

might use a distinguished non-base constant that does not reduce to anything. Both of

these alternatives are unacceptable, however, not because of how they reduce (for neither

reduces to a base constant), but because of how they may cause other terms around them

to reduce. If the distinguished nontermination element did not reduce to anything under

=)

I;R

, then a substitution rule acting on a term containing it would have to choose some

other (non-nontermination) element to reduce; that might have an e�ect on the computa-

tion. (F

is like a nontermination element that does reduce, but to itself.) We could not use

F

r

or some other nontermination element that reduces to something besides itself (though a

pair of elements such that each reduced to the other would be acceptable) because that too

might change the behavior of the computation rule on other terms. The odd computation

rule O (page 30) is an example of a computation rule for which whether an F

i

is substituted

for depends on more than just the context (the ancestors and children) of the F

i

in question.

It is essential, then, that the syntactic analog to
 can get substituted for by computation

rules and that it does not a�ect what other function variables are expanded.

Theorem 31. For all terms A and B in the computation path of C on R, if A v

t

B, then

S

C;R

(A) v

t

S

C;R

(B).

Proof. Consider A

0

= S

C;R

(A). If A = B, then the result is obvious. If A 6= B, then

A

0

v

t

B. B v

t

S

C;R

(B), so A

0

v

t

S

C;R

(B).

This theorem is even stronger than its statement above; theorem 31 is true for any

A v

t

B where B is in a computation path which contains A (but which does not necessarily

start at F

m

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

)). This reformulation of the theorem allows \computation

sequences" which start at arbitrary terms (terms that might not be possible to compute

to from any input vector of base constants) rather than requiring the sequence to start at

F

n

(c

1

; c

2

; : : : ; c

ar(F

n

)

). This corresponds to the alternate de�nition of computation sequence

which allows computation sequences to start at arbitrary terms.

Lemma 32. Let A be a term, R be a recursive program scheme, C be a computation rule,

and FS be the full-substitution rule. S

C;R

(A) v

t

S

FS;R

(A).

31

Proof. S

C;R

(A) and S

FS;R

(A) will be identical except that in some places in which S

C;R

(A)

has F

i

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

i

)

), S

FS;R

(A) has � [F

1:::n

](

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

i

)

). These are precisely the

instances of F in A not expanded by S

C;R

. By the de�nition of v

t

, S

C;R

(A) v

t

S

FS;R

(A).

3.7 Semantic properties of computation rules

Lemma 33. A v

t

B implies [[A]]

op

v [[B]]

op

.

It is not the case that A v

t

B implies [[A]]

op

= [[B]]

op

because B can be an expansion

of A achieved through some expansion of the copy rule. For instance, consider the program

scheme F

1

(x

1

)(if x = 0 then 0 else F

1

(x

1

� 1) � . F

1

(0) v

t

if 0 = 0 then 0 else F(�1) �

and [[F

1

(0)]]

op

= ? v [[if 0 = 0 then 0 else F(�1) �]]

op

= 0.

Proof. Suppose that A v

t

B; we will show that [[A]]

op

v [[B]]

op

. If [[A]]

op

= ?, the result is

immediate.

We now consider the case of [[A]]

op

= d. Simpli�cation steps have no e�ect on F's;

on the other hand, function symbols whose arguments are free of F's (the only kind that

=)

I

can make progress on) are not a�ected by the copy rule. So the same simpli�cation

steps that took A to

b

d can take B to

b

d; simpli�cations of subterms not appearing in A are

immaterial. [Further, if we start doing simpli�cation steps on B, then since it is �nite size,

we are sure to eventually get around to doing the simpli�cation steps that reduced A to

b

d.]

Thus, [[A]]

op

= d implies that [[B]]

op

= d.

Theorem 34. For any program R, any computation rule C, and the full-substitution com-

putation rule FS, [[C

R

]] v [[FS

R

]].

Proof. We will show by induction on i that for every i, S

i

C;R

v S

i

FS;R

; that is, the

computation path for C is elementwise less de�ned than that of FS. This implies the

theorem via lemma 33.

Basis: S

0

C;R

v S

0

FS;R

because S

0

C;R

= S

0

FS;R

= F

m

.

Induction step: Assume S

i

C;R

v S

i

FS;R

and show that S

i+1

C;R

v S

i+1

FS;R

.

The F's substituted by S

C;R

may depend on its argument, while S

FS;R

always substitutes

for all F's in its argument. By lemma 32, S

C;R

�S

i

C;R

v S

FS;R

�S

i

C;R

. By lemmas 32 and 30,

S

FS;R

� S

i

C;R

v S

FS;R

� S

i

FS;R

. By transitivity of v, S

C;R

� S

i

C;R

v S

FS;R

� S

i

FS;R

. This

implies that S

i+1

C;R

v S

i+1

FS;R

.

3.8 Adequacy for the full-substitution computation rule

This section partially describes the relationship between [[C

R

]], the function computed by

computation rule C, and the �xpoint f

R

. We will show that [[C

R

]] v f

R

and, further, that

[[FS

R

]] = f

R

. [Also see section 4.3, Adequacy.]

[Complete this proof.]

Lemma 35. For all �nite j � 1, S

j

FS;R

= �

j

m

[F

1:::n

].

32

Proof. The proof is by induction.

Base case: j = 1.

FS

1

R

= F

m

�

1

m

[F

1:::n

] = F

m

Inductive case: assume FS

j

R

= �

j

m

[F

1:::n

]. �

j

[F

1:::n

] is a tuple of n functions, the i

th

of

which (�

j

i

[F

1:::n

]), given ~s

ar(F

i

)

as its arguments, returns a term corresponding to the j

th

expansion of the term F

i

(~s

ar(F

i

)

).

S

j+1

FS;R

(~s

ar(F

m

)

) = S

FS;R

(S

j

FS;R

(~s

ar(F

m

)

)) is the term resulting from expanding once each

function in S

j

FS;R

(~s

ar(F

m

)

), the j

th

expansion of F

m

(~s

ar(F

m

)

).

�

j+1

m

[F

1:::n

](~s

ar(F

m

)

) = �

m

(�

j

[F

1:::n

])(~s

ar(F

m

)

) is the term resulting from replacing each

instance of F

i

in �

m

[F

1:::n

] with �

j

i

[F

1:::n

], the j

th

expansion of F

i

. [cannot really have an

expansion of a variable, sorta]

If full expansion is done, then there is no di�erence between �rst expanding once, then

expanding j times and �rst expanding j times, then expanding once. In other words, at

this step S

FS;R

substitutes into an expression which has already been expanded j times,

while � substitutes j

th

generation expansion functions into a simple expression.

Say why only works for �nite j: cannot make a term of in�nite size, cannot run OS for

an in�nite number of steps.

Theorem 36. For all �nite j � 1,

[[�

j

m

[F

1:::n

](

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

)]]

op

= [[�

m

]]

j

[
;
; : : : ;
](d

1

; d

2

; : : : ; d

ar(F

m

)

)

Proof. We will prove this theorem by induction on j simultaneously for each m. Let

k = ar(F

m

).

Base case: j = 1.

[[�

m

[F

1:::n

](

b

d

1

;

b

d

2

; : : : ;

b

d

k

)]]

op

= [[(t

m

)

~

b

d

k

~x

k

]]

op

= I

((t

m

)

~

b

d

k

~x

k

)

[[�

m

]][
;
; : : : ;
](d

1

; d

2

; : : : ; d

k

) = I((t

m

)

~

b

d

k

~x

k

)(�[F

i

7!
])

= I

((t

m

)

~

b

d

k

~x

k

)

Inductive case: Assume [[�

j

i

[F

1:::n

](

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

i

)

)]]

op

= [[�

i

]]

j

[
;
; : : : ;
](d

1

; d

2

; : : : ; d

ar(F

i

)

)

and let g

i

= [[�

i

]][
;
; : : : ;
].

[[�

j+1

m

[F

1:::n

](

b

d

1

;

b

d

2

; : : : ;

b

d

k

)]]

op

= [[�

m

(�

j

[F

1:::n

])(

b

d

1

;

b

d

2

; : : : ;

b

d

k

)]]

op

= [[((t

m

)

F

i

(~s

k

)

�

j

i

[F

1:::n

](~s

k

)

)

~

b

d

k

~x

k

]]

op

= [[((t

m

)

~

b

d

k

~x

k

)

F

i

(~s

k

)

�

j

i

[F

1:::n

](~s

k

)

]]

op

33

= [[((t

m

)

~

b

d

k

~x

k

)

F

i

(~s

k

)

[[�

j

i

[F

1:::n

](~s

k

)]]

op

]]

op

= I((t

m

)

~

b

d

k

~x

k

)(�[F

i

7! g

j

i

])

[[�

m

]]

j+1

[
;
; : : : ;
](d

1

; d

2

; : : : ; d

k

) = [[�

m

]]([[�]]

j

[
;
; : : : ;
])(d

1

; d

2

; : : : ; d

k

)

= [[�

m

]][g

j

1

; : : : ; g

j

n

](d

1

; d

2

; : : : ; d

k

)

= I((t

m

)

~

b

d

k

~x

k

)(�[F

i

7! g

j

i

])

[Add lemma to justify the step above which nests ops.]

Theorem 37. The full-substitution computation rule is a �xpoint computation rule.

We would like to prove this theorem by making a connection between the operational and

denotational semantics for the full-substitution computation rule; this connection, known

as adequacy, will be described more generally in section 4.3. Unfortunately, the connection

is di�cult to make in the monotone case.

From corollary 23, the �xed point in question is �[[�]] = [[�]]

[
;
; : : : ;
] for some

su�ciently large ordinal
. From lemma 35 and theorem 36 we know that for �nite j � 1,

[[S

j

FS;R

(d

1

; d

2

; : : : ; d

ar(F

m

)

)]]

op

= [[�

m

]]

j

[
;
; : : : ;
](d

1

; d

2

; : : : ; d

ar(F

m

)

). All that remains is

to close the gap between the �nite j and the possibly trans�nite
.

It turns out that while
 is trans�nite, it is not very trans�nite; that is,
 = !, the

�rst trans�nite number. There is not any obvious a priori reason that this must be the

case. We can imagine monotone functions from D to D which we would have to apply

more than ! times to ?

D

in order to reach a �xed point [Give an example here; in fact, it

would be best if it had the type of � .], but no � that can be de�ned via a recursive program

scheme is one of them. Every such � is both monotone and continuous. � does not \fully

use" its type; the restricted rules for creating recursive program schemes ensure that all

functions computed by them are �rst-order. Since there is no functional abstraction and no

higher-order abstraction permitted, all arguments and results are of base type. That the

computed functions are also monotone is dependent upon the model used in interpreting

them. Another of these properties is that � [
;
; : : : ;
]'s �xed point is reached after only

! applications of it to ?.

34

Chapter 4

Semantical Connections

This chapter investigates the relation between operational and denotational semantics which

has already been alluded to. We will show that for a certain class of computation rules, the

computed function is the same as the least �xed point of � ; that is, the denotational and

operational meanings are the same.

4.1 Safety for computation rules

Safety is a condition on computation rules which implies that the rule is a �xpoint compu-

tation rule. First, however, let us note that no computation rule is more de�ned than the

least �xed point of the program's � . Since safety will imply the converse, it will follow that

a safe computation rule computes the �xed point.

Corollary 38. Every computation rule yields a value which is v the �xpoint. In other

words, for any computation rule C, [[C

R

]] v �[[�]].

Proof. This corollary follows at once from theorems 34 and 37.

We could also make an argument from corollary 23 which built upon the argument in

section 3.8: given a �nite amount of time, the operational semantics can only run for a

�nite number of steps. Getting to the �xed point, however, may require
, which is greater

than any �nite number, applications of [[�]]. [[C

R

]] v �[[�]] follows by monotonicity.

Let [[�

C

]] be the semantic function corresponding to the syntactic �

C

.

[[�

C

]](g

1:::i

; g

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = I(�

C

(F

1:::i

; F

i+1:::j

)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

))(�[F

i

7! g

i

])

Note that the g's have type D

F

i

, not D

F

i

.

Let f

k

be the �xed point of the semantic function corresponding to F

k

in �

C

(F

1:::i

; F

i+1:::j

).

f

k

= �

l

k

[[�]] where l

k

is the subscript of F

k

; in other words, this is the semantical meaning

of F

k

.

De�nition 39. A safe computation rule C is one for which, for any recursive program

scheme R and any term u = �

C

(F

1:::i

; F

i+1:::j

)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) in the computation se-

quence of C

R

on

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

, [[�

C

]](
;
) = [[�

C

]](
; f

i+1:::j

).

35

In other words, if the occurrences F

K

of function variables chosen by C at this step

were not replaced by some expansion of their bodies but were instead replaced by (the

syntactic analog of)
, then it would not matter how little (
) or how much (f

k

) informa-

tion was known about the nonsubstituted functions. We would get the same result if the

function variables not substituted at this step were replaced by the least function, by their

(respective) �xed points, or by anything in between.

Let us consider the operational meaning of the term u of de�nition 39, immediately

above. [[u]]

op

is either a base constant (the computation terminates) or ? (it does not).

If the computation terminates even though none of the functions substituted at this step

do, then it is clear that those particular terms do not matter. The computation returns the

same value regardless of their value, because
 v g for any g : D

F

i

(in particular,
 v f

k

for

any k), so [[�]](
;
) v [[�]](
; f

i+1:::j

) by monotonicity. However, there is no value which is

strictly more de�ned than a base value in D, so

[[�]](
;
)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = d v [[�]](
; g

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

)

implies [[�]](
; g

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = d

The monotonicity argument holds for any subset of the F's in a term, so in the case that

[[�

c

]](
;
)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) = d, it does not matter which F's are substituted. This is

obvious since the substituted and non-substituted functions are treated alike in [[�]](
;
).

Since [[�

C

]](
;
)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = [[u]]

op

= d and u is fully simpli�ed (because it is a

member of a computation sequence); u =

b

d.

If, on the other hand, the computation does not terminate given that the substi-

tuted instances do not terminate, then it does not matter how much is known about

the non-substituted instances. That [[�]](
;
)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = ? simply means that

�(F

1:::i

; F

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) does not simplify to a base constant; the use of any

substitution rule in evaluation guarantees that the term means ? since no substituted func-

tion terminates. Although [[�]](
; g) = [[�]](
;
) =
, [[�]](g;
) may be better-de�ned than

[[�]](
;
).

A simpler way to think of this is to use the following lemma:

Lemma 40. For any ordered set G of functions of type D

F

k

and for any term u =

�(F

1:::i

; F

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) in the computation path of safe computation rule C,

[[�]](
; G)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = [[�]](
;
)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = [[u]]

op

:

Proof. The proof follows the reasoning of the previous paragraph.

Another way to think of this is via \expressions of interest." An expressions of interest

is, intuitively, one that matters with respect to the value of the computation: if it were

changed, then the value of the computation could. For now, the expressions of interest of

u are the expressions that [[u]]

op

is strict in. A rule that expands no expressions of interest

is nonsafe. [I do not think that this will be quite true after parallel-or | think about

consequences.] The de�nition of expression of interest will not change, but we will see that

the strictness reformulation is not quite right.

It is easy to see that the only subexpressions of interest will be those resulting from

an expansion of an expression of interest: the expansion of a noninteresting expression is

36

noninteresting, and so are all of its subterms. [reword] This means that we can't expand

a noninteresting term and get an interesting term which we might spend all of our time

evaluating.

A related fact will be shown by claim 42.

De�nition 41. A substitution for F

1:::i

is a safe substitution if, for a fully simpli�ed term

u = �(F

1:::i

; F

i+1:::j

)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

),

[[�]](
; f

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = ?

Note that safety on computation rules and safety on substitutions are two di�erent

properties, though they are strongly linked. We will show that a computation rule which

uses safe substitutions is safe.

Claim 42. A safe substitution on a term u = f(y

1

; y

2

; : : : ; y

ar(f)

) is a safe substitution on

at least one y

k

.

Proof. Suppose the computation rule C with associated substitution rule S

C;R

is used on

f(y

1

; y

2

; : : : ; y

ar(f)

). S

C

0

;R

(y

k

) will denote the term resulting from substitutions performed

on y

k

when S

C;R

is applied to u, which are not necessarily the same substitutions as would

be performed on y

k

if S

C;R

were directly applied to y

k

. For instance, if the leftmost (call-

by-name) computation rule L is used on the term f(F

1

(

b

d

1

);F

2

(F

3

(

b

d

2

))), then S

L

0

;R

for

y

2

= F

2

(F

3

(

b

d

2

)) does no substitutions, though F

1

is substituted for in y

1

= F

1

(

b

d

1

); were

S

L;R

applied to y

2

directly, then F

2

would be substituted for.

Let

u = �

C

(F

1:::i

; F

i+1:::j

)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) ;

y

k

= �

C

0

(F

1:::i

0

; F

i

0

+1:::j

0

)(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) :

If the substitution is safe, then [[�

C

]](
; f

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = ?; i.e., [[u]]

op

= ?.

If for all k, [[�

C

0

]](
; f

i

0

+1:::j

0

)(d

00

1

; d

00

2

; : : : ; d

00

ar(f)

) = d

0

k

, then the substitution S

C

0

;R

was

not safe on any y

k

; in this case, [[u]]

op

= f(d

0

1

; d

0

2

; : : : ; d

0

ar(f)

) = d since all of its arguments

are fully evaluated and thus S

C;R

was not safe on u.

If for some k, [[�

C

0

]](
; f

i

0

+1:::j

0

)(d

00

1

; d

00

2

; : : : ; d

00

ar(f)

) = ?, then S

C

0

;R

was safe on y

k

and

[[u]]

op

= ? since f is strict in its arguments. These two alternatives are exhaustive.

[Is this clear?]

Claim 42 is quite intuitive; this paragraph is a highly informal description of one case

that might be disturbing. The only subtlety is that if y

k

= : : :F

i

(: : :F

j

: : :) : : :, then S

C

0

;R

might expand the F

j

instead of the F

i

. If S

C;R

is safe and the computation of F

j

does not

halt, then neither will F

i

since S

C

0

;R

will never get around to expanding F

i

(it will never

�nish evaluating F

j

). If F

j

does halt, then (since we know that F

i

must not be substituted

for lest the evaluation of y

k

halt) some F

l

in F

i

which does not halt must be substituted

for; i.e., F

j

was the wrong y

0

in y

k

to be considering, if y

k

is the correct (nonterminating

subterm of u to be considering. If no such y

0

exists then F

i

may be expanded if there are

no other function symbols in y

k

, so S

C

0

;R

is not safe on y

k

.

37

Theorem 43. Any computation rule which performs only safe substitutions is safe.

Proof. This follows from lemma 40 and the de�nitions of safety for computation rules and

for substitutions.

Lemma 44. A safe computation rule uses only safe substitutions.

Proof. Suppose that C is a safe computation rule which at some step makes a nonsafe

substitution for u

k

= �

C

(F

1:::i

; F

i+1:::j

)(d

1

; d

2

; : : : ; d

ar(F

m

)

). Then for some d,

[[�

C

]](
; f

i+1:::j

p

)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = d :

Lemma 40 implies that

[[�

C

]](
;
)(d

1

; d

2

; : : : ; d

ar(F

m

)

) = ? :

[[�

C

]](
; f

i+1:::j

p

) 6= [[�

C

]](
;
) contradicts the assumption that C is a safe computation rule.

4.2 Safety implies �xpoint computation

Theorem 45. Any safe computation rule is a �xpoint computation rule.

Proof. We will prove this theorem by considering some safe computation rule C and the

full-substitution computation rule FS and showing that they compute the same values.

The main idea of this proof is that any rule eventually (by step m) does as much work as

the full-substitution rule did by step n. That part of the proof is by contradiction: if they

do not compute the same values, then C is not safe. We know from theorem 37 that FS

computes the least �xed point, so it will follow that C also computes the least �xed point

and so is a �xpoint computation rule.

Suppose C 6= FS, so for some recursive program scheme R there is a vector of base (non-

bottom) constants

~

d

ar(F

m

)

= d

1

; d

2

; : : : ; d

ar(F

m

)

such that [[C

R

]](

~

d

ar(F

m

)

) 6= [[FS

R

]](

~

d

ar(F

m

)

).

By theorem 34, [[C

R

]] v [[FS

R

]]. Therefore, [[C

R

]](

~

d

ar(F

m

)

) = ? and [[FS

R

]](

~

d

ar(F

m

)

) = d for

some nonbottom d. Since [[C

R

]](

~

d

ar(F

m

)

) = ?, there are two possibilities for the computa-

tion sequence of C on (

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

): some term in it means ?, or it is in�nite. (The

input vector had to be composed of nonbottom elements so that we could speak of the

computation sequence on (

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

).) Each of these alternatives is inconsistent.

If some term means ?, the contradiction is derived immediately. Consider replacing

each term in the sequence by the appropriate application of [[�

C

]](f

1:::i

; f

i+1:::j

), where f

k

is

the �xed point of F

k

as de�ned on page 35. Each term is now equivalent to its predecessor

in the sequence, while the �rst term means F

m

(

~

d

ar(F

m

)

) = [[C

R

]](

~

d

ar(F

m

)

) and the last means

?. This contradicts the assumption that C is safe.

The remaining case is that the computation sequence of C is in�nite.

Let the level of an instance of F be its level or depth of its nesting with applications

of �

i

; for instance, in �

i

[F

1

; �

j

[�

k

[F

1

; F

2

]; F

2

]] the F's have level 1, 3, 3, and 2, respectively.

Whenever �

i

[F

1:::n

] is substituted for a F

i

of level n, the resulting occurrences of F are all

38

of level n+1. This view of a term does not say anything about its syntactic structure, only

its logical structure.

Let x be the number such that FS

x

R

computes the �xed point of R; that is, for any input

vector

~

d

ar(F

m

)

, f

R

(

~

d

ar(F

m

)

) = d i� FS

x

R

(F

m

(

~

b

d

ar(F

m

)

)) =

b

d. We will show that for some y,

FS

x

R

v C

y

R

. There are only �nitely many instances of F of depth � n in C

k

R

(F

m

(

~

b

d

ar(F

m

)

)).

Let y be the smallest k such that at step k, no instances of F of depth � x are substituted

for. In other words, in C

y

R

(F

m

(

~

b

d

ar(F

m

)

)) = �

C

(F

1:::i

; F

i+1:::j

)(

~

b

d

ar(F

m

)

), each of F

1:::i

is of

depth > x. Now consider the �

C

computed for the initial term of the computation sequence,

F

m

(

~

b

d

ar(F

m

)

). The term �

C

(F

; �

x

l

i+1:::j

[F

1:::n

])(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

) has no instances of F

of

depth � x, so

�

x

[F

1:::n

] v �(F

; �

x

l

i+1:::j

[F

1:::n

]) :

This implies that

[[�

x

]][F

1:::n

] v [[�

C

]](
; �

x

l

i+1:::j

[F

1:::n

]) v [[�

C

]](
; f

i+1:::j

) v f

m

:

Since [[�

x

l

i

]][F

1:::n

] v f

i

and � is monotonic with respect to all of its arguments,

[[�

C

]](
; [[�

x

l

i+1:::j

]][F

1:::n

]) v �

C

(
; f

i+1:::j

) :

This implies by transitivity that

[[�

x

]][F

1:::n

] v [[�

C

]](
; f

i+1:::j

) :

But [[�

x

m

]][F

1:::n

] 6=
, so [[�

C

]](
; f

i+1:::j

) 6=
. This contradicts the assumption that C is a

safe computation rule.

While safety is a su�cient condition for a computation rule to be a �xpoint computation

rule, it is not a necessary condition. Consider a computation rule that alternates at each

step between safe and unsafe substitutions. This rule is a �xpoint computation rule, for

it will eventually compute the correct answer. If a safe computation rule which used only

the safe substitutions took x steps to complete, then this unsafe rule will take less than 2n

steps to complete.

In fact, we know that every computation which halts does so in some �nite number

of steps; further, there is an upper limit on the number of steps a safe computation rule

can take in determining the value of a particular term. If we could guarantee that that

a computation rule made at least that number of safe substitutions, then we would know

that the computation rule computed the �xed point. This limit is �nite for any term but

unbounded in general.

Claim 46. A computation rule is a �xpoint computation rule i� it makes safe substitutions

in�nitely often.

Proof. (() Above.

()) For any �nite number x there is a term such that FS takes x steps to compute its

value. Any other computation rule will take at least as many steps to determine its value.

If a computation rule does not make safe substitutions in�nitely often, then there is some

39

�nite y such that it does not make that many safe substitutions on any term. Then the

computation rule does not compute the correct value of the term and so is not a �xpoint

computation rule.

The de�nition we really wanted for safety on computation rules, then is the weaker def-

inition of doing safe substitutions in�nitely often rather than at every step. Unfortunately,

that de�nition is considerably harder to work with than the one that was given, so we shall

stick with the �rst formulation.

4.3 Adequacy

De�nition 47. Adequacy is a condition on models which relates the operational and de-

notational meanings of a term. In an adequate semantics, a term of base type means d i�

it evaluates computationally to the numeral

b

d; i.e.,

[[F

m

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

)]]

op

=

b

d i� [[R]]

sem

(d

1

; d

2

; : : : ; d

ar(F

m

)

) = d

where [[R]]

sem

is the denotational meaning of the program (and of F

m

).

An adequate semantics may make more distinctions than those de�nable by contexts in

the language; another condition, full abstraction, makes fewer distinctions. The de�nition

can be stated as

[[F

m

(

b

d

1

;

b

d

2

; : : : ;

b

d

ar(F

m

)

)]]

op

=

b

3 i� [[R]]

sem

(d

1

; d

2

; : : : ; d

ar(F

m

)

) = 3

for a particular base constant without loss of generality, since we only need make t

0

which

is t�

b

k for some k to extend the result to any element of our numeric base domain.

Theorem 48. The monotone model is adequate for any safe computation rule.

We have already done enough work to prove the main theorem of this thesis. Recall

that the least �xed point is the denotational meaning; then adequacy follows immediately

from theorem 45 and we see that the computational and denotational rules match up.

40

Acknowledgments

I thank Albert Meyer for his support, not only in supervising this thesis but also in intro-

ducing me to the �eld of programming language semantics. He is an inexhaustible fount

of wisdom and advice, and I have rarely met anyone who can tell me so kindly that I'm

stupid.

I also thank Bard Bloom and Jon Riecke, who were not only always willing to answer

my questions but also provided many useful comments on a draft of this thesis, correcting

errors of fact and of exposition.

41

Bibliography

[Bar81] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic. North-Holland, 1981. Revised Edition, 1984.

[End77] Herbert B. Enderton. Elements of Set Theory. Academic Press, 1977.

[LS87] Jacques Loeckx and Kurt Sieber. The Foundations of Program Veri�cation. Wiley-

Teubner Series in Computer Science. John Wiley and Sons, 1987. Second Edition.

[Man74] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[Mey88] Albert R. Meyer. Semantical paradigms: Notes for an invited lecture, with two

appendices by Stavros Cosmodakis. Technical Report MIT/LCS/TM353, MIT

Lab. for Comp. Sci., July 1988.

[Mor71] J. H. Morris. Another recursion induction principle. Communications of the ACM,

14(5), 1971.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, 5:223{257, 1977.

[RV80] Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equivalence

between recursive programs. Journal of the ACM, 27:772{796, 1980.

[Sch88] David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-

opment. Wm. C. Brown, 1988.

[Tai75] William W. Tait. A realizability interpretation of the theory of species. In

R. Parikh, editor, Logic Colloqium, '73, volume 453 of Lect. Notes in Math, pages

22{37. Springer-Verlag, 1975.

[Vel] Dan Velleman. Manuscript of Jan. 20, 1987 on the relation between monotone and

continuous models.

[Vui73] Jean Vuillemin. Proof techniques for recursive programs. note de travail, Institut

de Recherche d'Informatique et d'Automatique, Domaine de Voluceau, Rocquen-

court, 78150 { Le Chesnay, June 1973.

42

