
Michael Ernst, page 1

The Future of Software
Engineering: Tools

Michael Ernst

MIT Lab for Computer Science

http://sdg.lcs.mit.edu/~mernst/

Michael Ernst, page 2

Tools matter

The most productive people are the most

effective tool users

Tools are a change agent

Michael Ernst, page 3

Reproducibility

Replication is key to the scientific method

Papers may gloss over details

Insist on published systems

Permits additional evaluation

Stop accepting papers without supporting data

and implementations

Central repository for such information

Need support for infrastructure-building

Michael Ernst, page 4

Counterargument to
publication

Responsibility to have commercial impact

Can have commercial impact without IP

If it's a good idea, it will be adopted

Secrecy is antithetical to science & education

Michael Ernst, page 5

Evaluation of implementation

Tools should work

• for users other than implementers

• when run on production systems

Correct the impression that software engineers

do not build real systems

Michael Ernst, page 6

Evaluation of tools

Humans complicate systems

Theorems much easier to understand!

Case studies, not experiments

Devise rewards for reproducing experiments

Special publication venues?

Do not raise the bar for new ideas

Industry can assist academia

Michael Ernst, page 7

Ignore the average
programmer

Practitioner/researcher gap

What is the job of researchers?

Researchers must assume best practices, in

order to have long-term impact

Michael Ernst, page 8

Static and dynamic analysis

How to obtain information:

• Programmer-supplied

• Static analysis: examine the program text

• properties are guaranteed to be true

• pointers are intractable in practice

• Dynamic analysis: run the program

• efficient, precise

• complementary to static techniques

Michael Ernst, page 9

Combining techniques

Use static to help dynamic and vice versa

Transfer from one domain to the other

Example: Purify and LCLint

Combine in a principled way

Select the desired efficiency/soundness

Michael Ernst, page 10

Lightweight tools

No need to produce exact results

Useful results that people can check

Michael Ernst, page 11

The return of formal
specifications

Full formal specifications do not work

Partial formal specifications:

• Specify only certain aspects of behavior

• Generated automatically

Other examples from languages and compilers

Example: functional programming

Michael Ernst, page 12

Summary

Tools are key

Publication must include tools

Case studies

Assume best practices

Static and dynamic analysis

Lightweight tools

