
Panel: Perspectives on Software Engineering

David Notkin (chair),1 Marc Donner,2 Michael D. Ernst,3 Michael Gorlick,4 E. James Whitehead, Jr.5

1Department of Computer
Science & Engineering

University of Washington
Box 352350

Seattle WA 99195-2350
notkin@cs.washington.edu

2Morgan Stanley
750 Seventh Avenue

34th Floor
New York, NY 10019
donner@panix.com

3MIT Laboratory for
Computer Science

545 Technology Square
Cambridge MA 02139
mernst@lcs.mit.edu

4Endeavors Technology, Inc.
19700 Fairchild, Suite 200

Irvine CA 92612
mgorlick@endtech.com

5Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz CA 95064
ejw@cse.ucsc.edu

Abstract

This panel gives a non-standard view of the
future of software engineering. Two of the
speakers are recent Ph.D. graduates in
computer science, with expertise in software
engineering, who have taken academic
positions; as people who will educate the next
generation of software engineering practitioners
and researchers, they provide a key vision of the
future. The other two speakers are senior,
having moved from the research community into
a world in which they face the problems of
engineering software on a daily basis.
Collectively, along with interactions from the
audience, these two often underrepresented
perspectives provide a sense of the key
directions in which software engineering—
practice, research, and education — should and
must go.

1. Introduction

Alan Kay is famous for his observation that “the best
way to predict the future is to invent it.” As attractive as
this notion is, it seems that there are numerous pressures
on software engineering that make it difficult to control

our own destiny. As perhaps the most obvious example,
the broad changes that have accompanied the introduction
of the World Wide Web — perhaps an excellent instance
of Kay’s philosophy — have introduced a set of software
engineering problems (such as Internet-time development
cycles) that we must understand and address.

The intent of this panel is to introduce and discuss a
range of problems and ideas that software engineering
practitioners, researchers, and educators may need to
appreciate and pursue in the forthcoming years. The
panelists represent groups that are often underrepresented
at panels like these; because of this, the hope is that they
can and will broaden the set of problems and ideas on our
community’s table.

The panelists have been chosen to represent two
distinct but complementary groups. The first group
comprises two recent Ph.D.s in computer science who
have recently entered academia: as members of the third
generation of researchers in software engineering, they
provide an important perspective because they have been
educated in a world of software significantly different
from the earlier generations; furthermore, they will be
educating and mentoring the next generations and will
thus have enormous influence on the future. The second
group comprises a pair of senior people who have
established research careers and have moved into the
commercial world in which their ability to engineer
software is of critical importance to their companies. The
combination of research experience with an understanding
of the pressures of the commercial world give them a

0-7695-1050-7/01 $10.00 © 2001 IEEE
699

perspective on software engineering research and practice
that is unusual and of tremendous value.

This brief report contains the position statements of the
panelists, as well as their biographical information.

2. Gorlick: Geek Chic and the Future of
Space Systems

Pervasive computing embraces a vision of information
that is situated, continuous, and registered. Situated
information is appropriate to the current context and the
state of the environment — in other words, it is
information that may be sensitive to any and all of your
personal preferences (who you are), your immediate
associates (who you are with), your activity (what you are
doing), the time of day (when it is done), the locale
(where it is done), and the action (how it is done).
Continuous information is always available irrespective of
location or circumstances. Registered information
overlays the virtual atop the physical, allowing the virtual
world to inform physical objects, events, and persons, and
the physical world to act as anchor points or structure for
virtual representations. Wearable computing is the
intimate apparel of pervasive computing — body-worn
sensors, devices, computing engines, and software that
interlink personal and public space.

What does this have to do with space systems? The
answer — everything. Hidden away in automobile air
bags, Game Boys, and cell phones are the technologies
that will revolutionize the design, construction,
deployment, and management of space systems. By
systematically exploiting three basic principles:

• Replace physical structure with information
• Build small and think big
• Transport energy and information, not mass

and repeating the mantra of pervasive and wearable
computing — tune in (situated information), turn on
(continuous information), drop out (registered
information) — we can create space systems of
extraordinary grace, beauty, and utility that look, behave,
and operate like nothing on earth.

In this context I will offer selected grand challenge
problems whose solutions will profoundly impact both
earthbound and spaceborne systems.

3. Donner: How to Succeed in Software?

Software development methodologies are effective but
somehow unsatisfying. Our intuition about how we
program and how really good programmers program is at
odds with widely recognized best practices. This
dissonance is disturbing and results in a failure to accept
the validity of software engineering methods on one hand

and to consider alternative models and techniques on the
other. I will discuss my observations over the past fifteen
or twenty years of the software development community,
with some particular opinions about the ways in which
financially successful software is developed.

4. Ernst: Static and Dynamic Analysis as
Complementary Approaches

Dynamic detection and static verification are two
essential and complementary techniques for program
analysis, in particular for manipulating program
invariants: dynamic detection can propose likely
invariants based on program executions, but the resulting
properties are not guaranteed to be true over all possible
executions. Static verification can check that properties
are always true, but it can be difficult for people or
programs to select a goal and to annotate programs for
input to a static checker. Combining these techniques
overcomes the weaknesses of each: dynamically detected
invariants can annotate a program or provide goals for
static verification, and static verification can confirm
properties proposed by a dynamic tool.

Integrating a tool (such as Daikon1) for dynamically
detecting likely program invariants with tools (such as
ESC/Java2) for statically verifying program properties is
promising. Use of a static verifier to augment dynamic
invariant detection overcomes a potential objection about
possibly unsound output, classifies the output to permit
programmers to use it more effectively, permits proven
invariants to be used in contexts that demand sound input,
and may improve the performance or precision of
dynamic invariant detection. Use of dynamically detected
invariants to bootstrap static verification, by providing
goals or intermediate assertions or by annotating
programs, lessens the burden of using static checkers
(both for novices and experienced users) and indicates
properties programmers might otherwise have overlooked.

The direct result of this integration will be increased,
and more effective, use of both static and dynamic tools,
leading to fewer bugs (by enabling programmers to
introduce fewer and detect more), lowered costs (due to
fewer errors and by detecting errors earlier in the software
development process), better documentation, less time
spent on program understanding (and more time left for
performing other tasks), better test suites, more effective
validation of program changes, and more efficient
programs. The indirect effect will be the production of
more robust, reliable, and correct computer systems.
Another indirect effect is leading more working
programmers to think about program invariants and

1 http://sdg.lcs.mit.edu/~mernst/daikon/
2 http://research.compaq.com/SRC/esc/

700

formal specification by introducing them to tools that
operate in terms of those abstractions.

5. Whitehead: Co-opting the Advantages of
the Open Source Development Model

The strength of the Open Source movement derives
from its ability to leverage the Internet. The Open Source
development model uses the Internet as a technology to
support remote software development by loosely
coordinated development teams, rapid-fire releases of
software to quickly field new features and bug fixes, and
integration of technically sophisticated end-users into the
development process by submitting bugs, creating plug-
ins, or contributing their experience and perspective to the
main code release. The challenge for Software
Engineering is to leverage the qualities of Open Source
software in more traditional development contexts.

Rapid product delivery. Open Source projects can be
extremely flexible, employing a process of continual
product releases on timeframes of 2-4 weeks (or less).
This is a significant departure from longer traditional
release processes, and therefore raises several research
challenges. Software architectures need to easily
accommodate the addition of new product features
without major architectural rework. Those changes that do
require significant architectural change will need to be
phased-in over several releases, or developed
independently, and then re-integrated with the rest of the
product. Automated regression testing will be increasingly
important for detecting errors prior to release, and the test
suite needs to accommodate rapid change.
Documentation, too, will need to be rapidly synchronized.
Tool support is a necessity for rapid product cycles, with
important areas being software configuration
management, and explicit representation of dependencies
between artifacts, so the full extent of changes can rapidly
be identified.

Integration of end users. Open mailing lists, bug report
forms, and searchable bug report databases allow Open
Source projects to provide end users with direct,
immediate feedback. Additionally, open code and
interfaces allows third-party developers, and technically
sophisticated end users to contribute directly to the code.
In all, it fosters a more immediate and direct interaction
between end users and the development team, resulting in
much higher user satisfaction. However, it is unclear how
this model can be scaled up for applications with large
numbers of users. The research challenge is how to reduce
the gap between end users closer and the development
team, without this causing loss of productivity and focus.

Support for geographically dispersed development
teams. Open Source projects have been very successful

at using the Web, email, and CVS for coordinating
software development among geographically dispersed
and organizationally heterogeneous teams. Sites such as
SourceForge (www.sourceforge.net) now require only a
few minutes of form filling before a complete project site
is ready. There is a clear trend towards centralized,
Internet-accessible source code repositories, and Web-
based access to many classes of tools in the development
environment. One research challenge is to determine what
kinds of software environment tools can reasonably be
Web-based. For example, text editors will likely not be
Web-based, but regression test suites and code analysis
engines seem like good candidates for Web hosting.
Another challenge is to make changes to the Web’s
infrastructure so it can better support software
development. One example here is the DeltaV project
(www.webdav.org/deltav/), which is adding configuration
management support to the HTTP protocol.

6. Panelist Biographies

David Notkin is the Boeing Professor and Associate
Chair of Computer Science & Engineering at the
University of Washington. Before joining the faculty in
1984, he received his Ph.D. degree at Carnegie Mellon
University in 1984 and his Sc.B. degree at Brown
University in 1977.

Notkin received the National Science Foundation
Presidential Young Investigator Award in 1988; served as
the program chair of the First ACM SIGSOFT
Symposium on the Foundations of Software Engineering;
served as program co-chair of the 17th International
Conference on Software Engineering; chaired the Steering
committee of the International Conference on Software
Engineering (1994-1996); served as charter associate
editor of both ACM Transactions on Software
Engineering and Methodology and the Journal of
Programming Languages; served as an Associate Editor
of the IEEE Transactions on Software Engineering; was
named as an ACM Fellow in 1998; serves as the chair of
ACM SIGSOFT; and received the 2000 University of
Washington Distinguished Graduate Mentor Award. His
research interests are in software engineering in general
and in software evolution in particular. Notkin is a senior
member of the IEEE.

Marc Donner is a Principal in the EBusiness
Technology area at Morgan Stanley Dean Witter. He
spearheads a number of strategic efforts aimed at helping
the Institutional Securities businesses move aggressively
into the Internet era. He joined Morgan Stanley in 1992
and has led a number of efforts, all centered around
Internet, and UNIX technologies. He formed the EOffice
group that built the Morgan Stanley Intranet in 1993-
1994, at a time when the term wasn't known. The success

701

of this work helped Donner mobilize support in the
business areas for the establishment of the Morgan
Stanley Internet web site, the first Web presence from a
bulge bracket Wall Street firm. In addition to his Internet
and Intranet ventures, Donner has managed hemispheric
infrastructure operations for a major bank and led the
planning effort for a project to reengineer the back office
systems for MSDW's Institutional Securities businesses.

Before moving to Wall Street in 1992, Donner was a
basic researcher, earning a Ph.D. in Computer Science
from Carnegie-Mellon University with a dissertation on
robot walking. After that he developed a juggling robot,
used to explore issues of high-performance real time
systems programming, at IBM's T. J. Watson Research
Center in Yorktown Heights. In addition to his research
activities at IBM, Marc introduced UNIX and TCP/IP to
IBM, smuggling Sun Microsystems workstations into the
research lab in the mid-1980s and ultimately establishing
a network of UNIX workstations that numbered more than
100. This led to the establishment of the Agora project at
IBM, intended to develop large-scale distributed system
management technology and provide high-end workstation
services to the Research community. Earlier in his career
he worked at the Jet Propulsion Lab in Pasadena,
California where he worked on projects for the Digital
Telecommunications Research Section, helping gather
data from planetary radar experiments. Donner holds a
BS in Electrical Engineering from Caltech and a PhD in
Computer Science from Carnegie-Mellon University. He
is reported to be a reformed practical joker.

Michael D. Ernst is an assistant professor in the
Department of Electrical Engineering and Computer
Science and in the Lab for Computer Science at MIT. He
received the Ph.D. in Computer Science & Engineering
from the University of Washington, prior to which he was
a lecturer at Rice University and a researcher at Microsoft
Research. He holds the S.B. and S.M. degrees from MIT.
Ernst's primary technical interest is programmer
productivity, encompassing software engineering,
program analysis, compilation, and programming
language design. However, he has also published in
artificial intelligence, theory, and other areas of computer
science.

Michael Gorlick is Chief Software Architect for
Endeavors Technology, Inc., where he is responsible for
the design, construction, and deployment of a secure,
Internet-scale, commercial, peer-to-peer infrastructure
based upon embedded devices. Prior to joining Endeavors
in June 2000 he was a Research Scientist in the Computer
Science Laboratory of The Aerospace Corporation, where
he still consults regularly. Gorlick is also a co-investigator
for SensOS, a DARPA-sponsored investigation into novel
techniques for the construction of embedded, adaptive,
real-time operating systems undertaken in collaboration
with University of California, Irvine, the University of

Southern California, and the University of Colorado at
Boulder.

During his tenure at Aerospace Gorlick conducted
research in software engineering practices for very large-
scale systems, with an emphasis on software integration
techniques and highly adaptive architectures. He was the
principal designer of the DARPA pico-satellites — the
world record-holder for the smallest active satellites (3" x
4" x 1" at 255 grams) ever successfully launched and
deployed (February 2000). As a member of the
development team he was responsible for the pico-satellite
conceptual design, mission planning, system integration,
and flight software.

In addition, Gorlick was, from 1995 on, an active
member of an informal affiliation of Aerospace
researchers devoted to the exploitation of MEMS and
VLSI digital electronics as foundation technology for
extremely small spacecraft. He is known within the space
community for his work on operating system and flight
software for MEMS-based spacecraft.

Prior to joining Aerospace Gorlick spent five years at
TRW Defense & Space Systems where — as Senior Unix
Systems Programmer — he was responsible for providing
Unix time-sharing services to a campus of 18,000
engineers and support staff. Gorlick received his M.Sc.
degree in Computer Science from the University of British
Columbia. He has extensive experience in a variety of
industrial applications, including commercial operating
systems, satellite ground stations, telemetry processing,
large-scale networks, mobile computing, electronic
commerce, Internet applications, Internet appliances,
embedded operating systems, and digital consumer
electronics.

Jim Whitehead is an Assistant Professor of Computer
Science at the University of California Santa Cruz.
Additionally, Whitehead is the founder and Chair of the
WebDAV working group of the Internet Engineering Task
Force, and led the development of the WebDAV standard
for remote collaborative authoring on the Web. This
standard is supported in shipping products from such
companies as Microsoft, Adobe, Oracle, Apple, Novell,
and many others.

In 2000, Whitehead received his Ph.D. in Information
and Computer Science from the University of California,
Irvine, with a dissertation titled, "An Analysis of the
Hypertext Versioning Domain” under the supervision of
Richard N. Taylor. Other degrees include a MS in
Information in Computer Science from UC Irvine in 1994,
and a BS Electrical Engineering from the Rensselaer
Polytechnic Institute in 1989. His research interests
include configuration management, hypertext versioning,
Web protocols, remote collaborative authoring, open
hypertext, and the open source development model.

702

