Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States

René Just¹ & Michael D. Ernst¹ & Gordon Fraser²

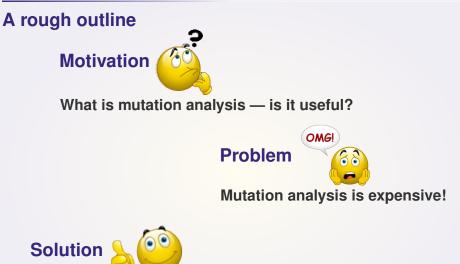
¹University of Washington, USA ²University of Sheffield, UK

July 25, 2014

A rough outline

What is mutation analysis — is it useful?

A rough outline


Motivation

What is mutation analysis — is it useful?

OMG!

Dynamic prepass analysis to make mutation practical!

Why assess test suite quality?

- Selection: Given two test suites, which is better?
- Minimization: Are there redundant tests in a test suite?
- Prioritization: Which tests of a test suite should run first?

Why assess test suite quality?

- Selection: Given two test suites, which is better?
- Minimization: Are there redundant tests in a test suite?
- Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?

A good test suite detects real faults

Why assess test suite quality?

- Selection: Given two test suites, which is better?
- Minimization: Are there redundant tests in a test suite?
- Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?

- A good test suite detects real faults
- Problem: Real faults in a program are unknown
- Solution: Seed artificial faults into the program

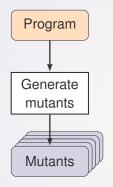
Why assess test suite quality?

- Selection: Given two test suites, which is better?
- Minimization: Are there redundant tests in a test suite?
- Prioritization: Which tests of a test suite should run first?

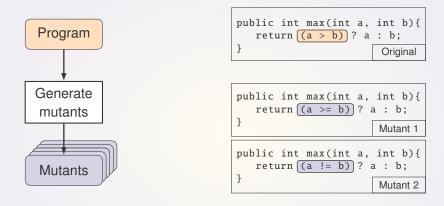
How to assess test suite quality?

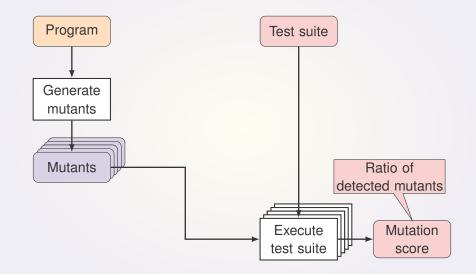
- A good test suite detects real faults
- Problem: Real faults in a program are unknown
- Solution: Seed artificial faults into the program

Mutation analysis: systematically seed artificial faults


Approach

Evaluation


Conclusion



Each mutant contains a small syntactic change

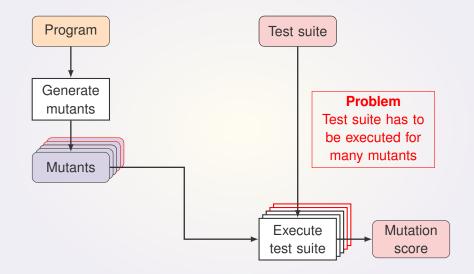
Where is the catch?

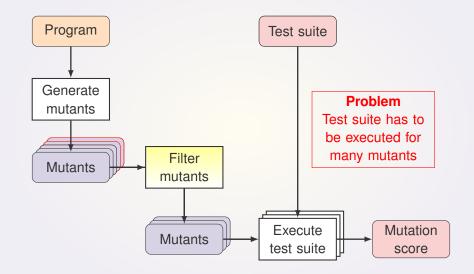
Many mutants can be generated!

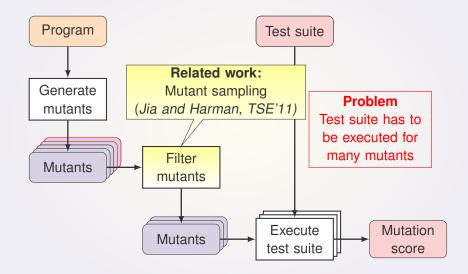
a > b ? a : b

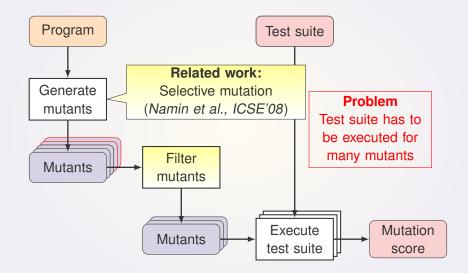
Where is the catch?

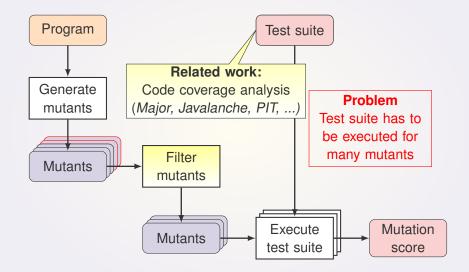
Many mutants can be generated!

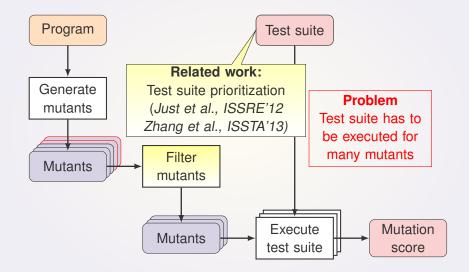

a > b ? a : b

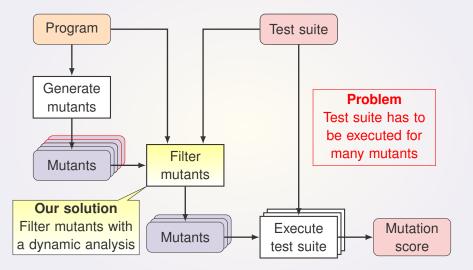

a >= b ? a : b
a < b ? a : b
a <= b ? a : b
a != b ? a : b
a == b ? a : b
!(a > b) ? a : b
true ? a : b
false ? a : b

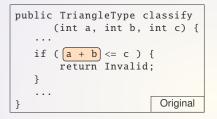

V

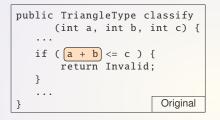

b b b -b -b b)

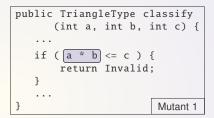

Where is the catch	?	OMGI
Many mutants can	68	
	a > b ? a : b	
a >= b ? a : b	0 > b ? a : b	-a>b? a:
a < b ? a : b	a > 0 ? a : b	a>-b? a:
a <= b ? a : b	a > b ? 0 : b	a > b ? -a :
a != b ? a : b	a > b ? a : 0	a > b ? a :
a == b ? a : b	0	a > b ? a :
!(a > b) ? a : b	b > a ? a : b	-(a > b ? a :
true ? a : b	a > b ? b : a	a
false? a : b		b





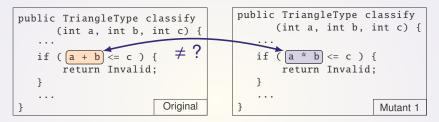



Example: testing triangle classification


```
public TriangleType classify
        (int a, int b, int c) {
        ...
        if ( a + b <= c ) {
            return Invalid;
        }
        ...
    }
        Original</pre>
```

Example: testing triangle classification

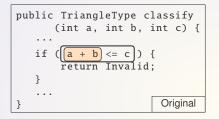
Example: testing triangle classification

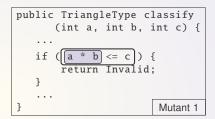


Example: testing triangle classification

<pre>public TriangleType classify (int a, int b, int c) { </pre>	<pre>public TriangleType classify (int a, int b, int c) { </pre>
if $(a + b <= c)$ {	if (a * b) <= c) {
return Invalid;	return Invalid;
}	}
} Original	} Mutant 1

Identical code surrounding mutation

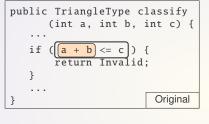

Example: testing triangle classification



Optimizations:

Infection

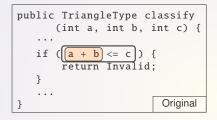
Example: testing triangle classification



Optimizations:

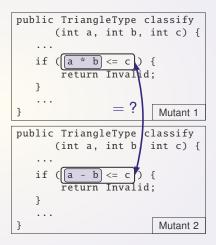
- Infection
- Propagation

Example: testing triangle classification

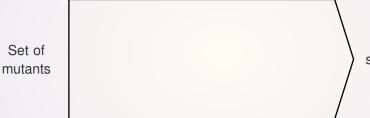


Optimizations:

- Infection
- Propagation

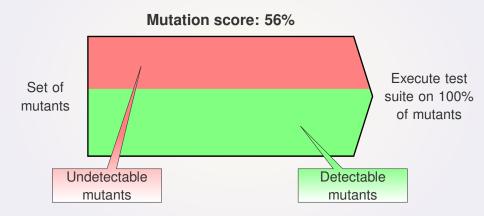


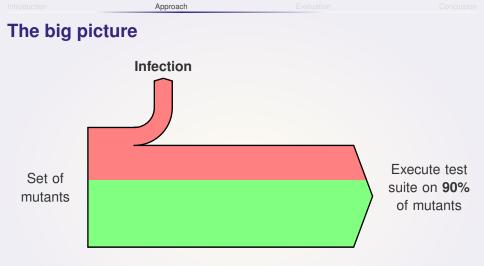
Example: testing triangle classification


Optimizations:

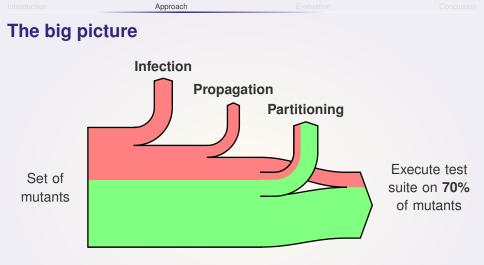
- Infection
- Propagation
- Partitioning

Evaluation

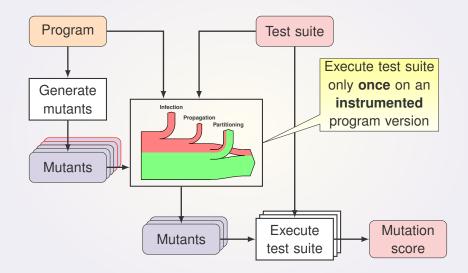

The big picture



Execute test suite on 100% of mutants


Evaluation

The big picture



	Approach	
The big p	icture	
	Infection Propagation	
Set of mutants		Execute test suite on 84% of mutants

Dynamic analysis to filter mutants

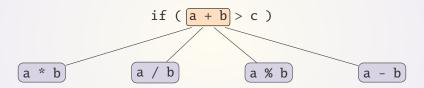
Infection

A test infects the execution state of a mutant if the expression values of the mutation and the original version differ.

Infection

A test infects the execution state of a mutant if the expression values of the mutation and the original version differ.

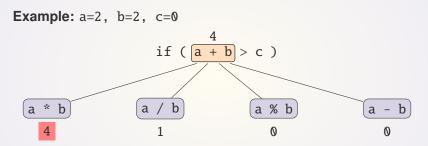
Example: a=2, b=2, c=0


if (a + b > c)

Evaluation

Infection

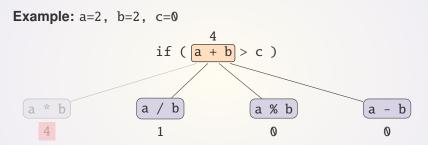
A test infects the execution state of a mutant if the expression values of the mutation and the original version differ.


Example: a=2, b=2, c=0

Evaluation

Infection

A test infects the execution state of a mutant if the expression values of the mutation and the original version differ.

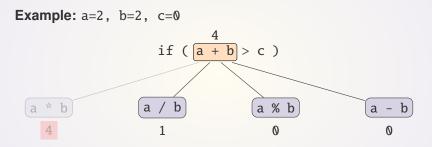

Optimization

- Execute mutations and monitor infected execution states
- Filter mutants whose execution state is not infected

Evaluation

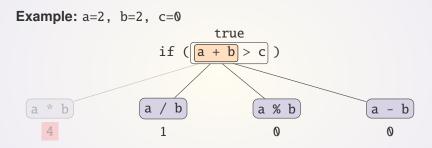
Infection

A test infects the execution state of a mutant if the expression values of the mutation and the original version differ.



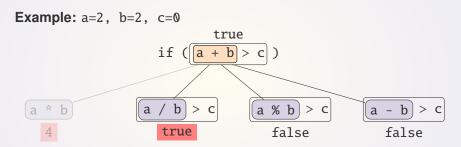
Optimization

- Execute mutations and monitor infected execution states
- Filter mutants whose execution state is not infected


Propagation

An infected execution state propagates if it leads to an infected execution state of a lexically enclosing expression.

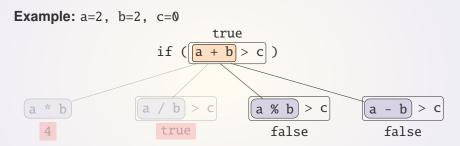
Propagation


An infected execution state propagates if it leads to an infected execution state of a lexically enclosing expression.

Evaluation

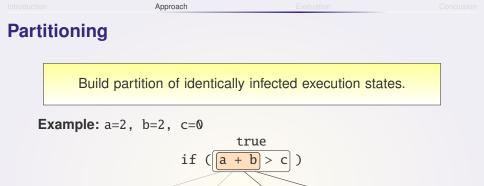
Propagation

An infected execution state propagates if it leads to an infected execution state of a lexically enclosing expression.


Optimization

- Propagate infected execution states in composed expressions
- Filter mutants whose infected state does not propagate

Evaluation

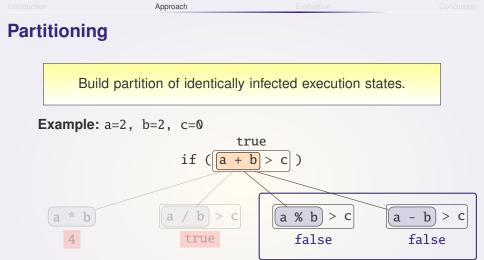

Propagation

An infected execution state propagates if it leads to an infected execution state of a lexically enclosing expression.

Optimization

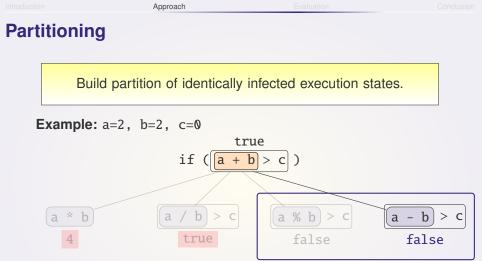
- Propagate infected execution states in composed expressions
- Filter mutants whose infected state does not propagate

a % b > c


false

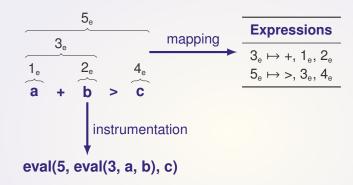
true

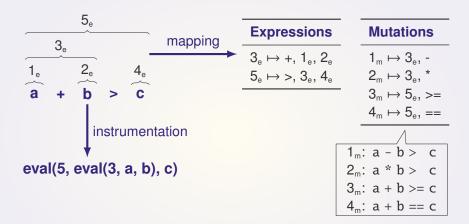
> C

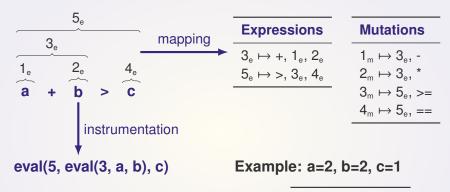

a - b

false

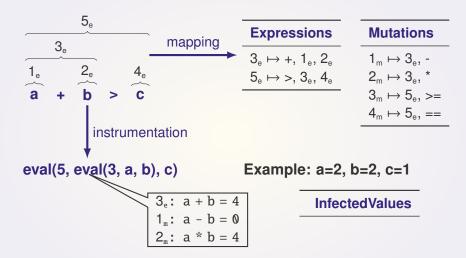
Optimization

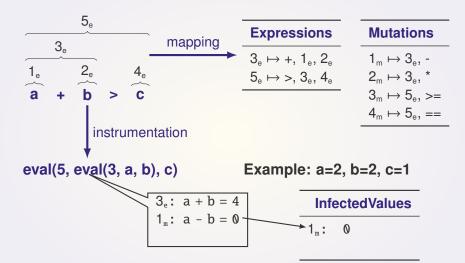

- Partition mutants based on their expression values
- Only execute a test for one mutant per partition cell

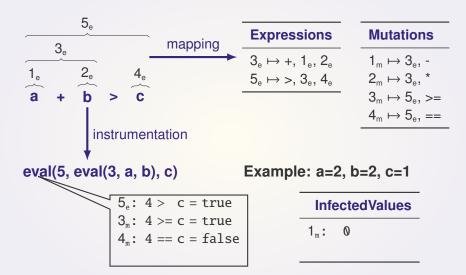


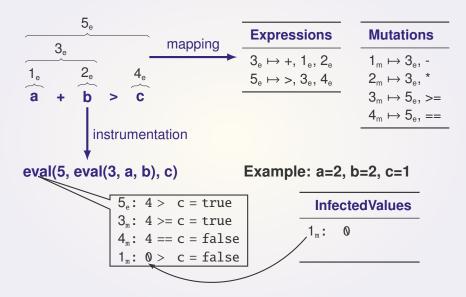

Optimization

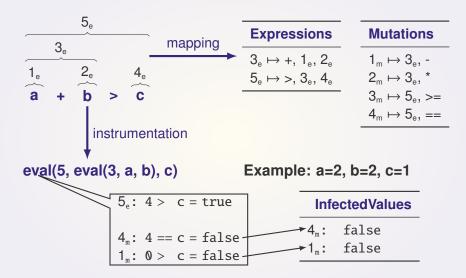
- Partition mutants based on their expression values
- Only execute a test for one mutant per partition cell

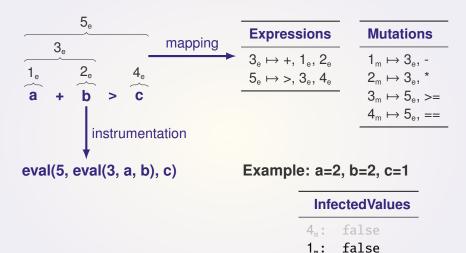

a + b > c

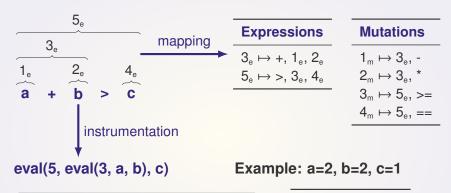







InfectedValues





Implemented in Major

- Compact instrumentation
- Soundly handles side effects and short-circuit operators

InfectedValues

Experimental setup

14 subject programs

- Open-source programs from different application domains
- 670,000 lines of code
- 540,000 generated mutants

Experimental setup

14 subject programs

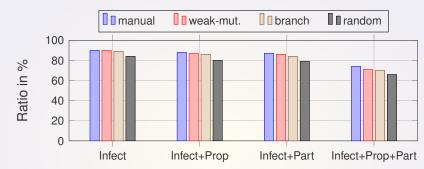
- Open-source programs from different application domains
- 670,000 lines of code
- 540,000 generated mutants

4 test suites for each program

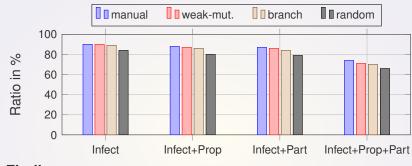
- 1 developer-written test suite (released with program)
- 3 generated test suites (EvoSuite)
 - Weak-mutation
 - Branch coverage
 - Random

Experimental setup

14 subject programs

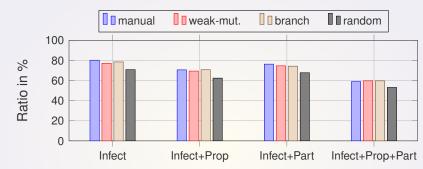

- Open-source programs from different application domains
- 670,000 lines of code
- 540,000 generated mutants

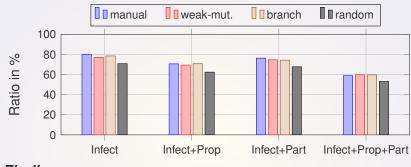
4 test suites for each program


- 1 developer-written test suite (released with program)
- 3 generated test suites (EvoSuite)
 - Weak-mutation
 - Branch coverage
 - Random

Coverage optimization is baseline

Ratio of analyzed mutants


Ratio of analyzed mutants


Findings

- Only 70% of covered mutants need to be analyzed
- Similar ratio for Propagation and Partitioning
- Partitioning is (most) effective after Propagation
- Lower ratio for weaker test suites (e.g., Random)

Ratio of total runtime

Ratio of total runtime

Findings

- Total run time reduced by 40%
- Filtering costs are almost negligible
- Partitioning is (most) effective after Propagation
- Run-time improvements similar for all test suites

Future work

Equivalent mutant detection

- Can propagation predict equivalent mutants?
- Solve constraints necessary to achieve propagation

Future work

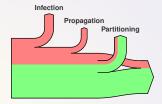
Equivalent mutant detection

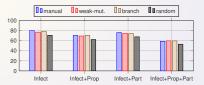
- Can propagation predict equivalent mutants?
- Solve constraints necessary to achieve propagation

Test generation

- Generate tests that achieve propagation
- Improve mutation-driven test generation (Zhang et al., ICSM'10, Fraser and Zeller, TSE'12)

Evaluation


Contributions


Dynamic prepass analysis

- Three new optimizations that significantly improve efficiency
- Filter mutants with single test execution on instrumented program

Empirical evaluation

- 14 programs and 540,000 mutants
- Total run time reduced by 40%
- Propagation and Partitioning should be combined

http://www.mutation-testing.org