
Efficient Mutation Analysis by Propagating
and Partitioning Infected Execution States

René Just1 & Michael D. Ernst1 & Gordon Fraser2

1University of Washington, USA
2University of Sheffield, UK

July 25, 2014

Introduction Approach Evaluation Conclusion

A rough outline

Motivation

What is mutation analysis — is it useful?

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 1/17

Introduction Approach Evaluation Conclusion

A rough outline

Motivation

What is mutation analysis — is it useful?

Problem

Mutation analysis is expensive!

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 1/17

Introduction Approach Evaluation Conclusion

A rough outline

Motivation

What is mutation analysis — is it useful?

Problem

Mutation analysis is expensive!

Solution

Dynamic prepass analysis to make mutation practical!

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 1/17

Introduction Approach Evaluation Conclusion

Test suite quality

Why assess test suite quality?
I Selection: Given two test suites, which is better?
I Minimization: Are there redundant tests in a test suite?
I Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?
I A good test suite detects real faults
I Problem: Real faults in a program are unknown
I Solution: Seed artificial faults into the program

Mutation analysis: systematically seed artificial faults

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 2/17

Introduction Approach Evaluation Conclusion

Test suite quality

Why assess test suite quality?
I Selection: Given two test suites, which is better?
I Minimization: Are there redundant tests in a test suite?
I Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?
I A good test suite detects real faults

I Problem: Real faults in a program are unknown
I Solution: Seed artificial faults into the program

Mutation analysis: systematically seed artificial faults

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 2/17

Introduction Approach Evaluation Conclusion

Test suite quality

Why assess test suite quality?
I Selection: Given two test suites, which is better?
I Minimization: Are there redundant tests in a test suite?
I Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?
I A good test suite detects real faults
I Problem: Real faults in a program are unknown
I Solution: Seed artificial faults into the program

Mutation analysis: systematically seed artificial faults

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 2/17

Introduction Approach Evaluation Conclusion

Test suite quality

Why assess test suite quality?
I Selection: Given two test suites, which is better?
I Minimization: Are there redundant tests in a test suite?
I Prioritization: Which tests of a test suite should run first?

How to assess test suite quality?
I A good test suite detects real faults
I Problem: Real faults in a program are unknown
I Solution: Seed artificial faults into the program

Mutation analysis: systematically seed artificial faults

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 2/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suite

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 3/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suite

Generate
mutants

Mutants

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 3/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program

Generate
mutants

Mutants

Each mutant contains a small syntactic change

public int max(int a, int b){
return (a > b) ? a : b;

} Original

public int max(int a, int b){
return (a >= b) ? a : b;

}
Mutant 1

public int max(int a, int b){
return (a != b) ? a : b;

}
Mutant 2

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 3/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Ratio of
detected mutants

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 3/17

Introduction Approach Evaluation Conclusion

Where is the catch?

Many mutants can be generated!

a > b ? a : b

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 4/17

Introduction Approach Evaluation Conclusion

Where is the catch?

Many mutants can be generated!

a > b ? a : b

a >= b ? a : b

a < b ? a : b

a <= b ? a : b

a != b ? a : b

a == b ? a : b

!(a > b) ? a : b

true ? a : b

false ? a : b

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 4/17

Introduction Approach Evaluation Conclusion

Where is the catch?

Many mutants can be generated!

a > b ? a : b

a >= b ? a : b

a < b ? a : b

a <= b ? a : b

a != b ? a : b

a == b ? a : b

!(a > b) ? a : b

true ? a : b

false ? a : b

0 > b ? a : b

a > 0 ? a : b

a > b ? 0 : b

a > b ? a : 0

0

b > a ? a : b

a > b ? b : a

-a > b ? a : b

a >-b ? a : b

a > b ? -a : b

a > b ? a :-b

a > b ? a :-b

-(a > b ? a : b)

a

b

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 4/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Related work:
Mutant sampling

(Jia and Harman, TSE’11)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Related work:
Selective mutation

(Namin et al., ICSE’08)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Related work:
Code coverage analysis

(Major, Javalanche, PIT, ...)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Related work:
Test suite prioritization
(Just et al., ISSRE’12

Zhang et al., ISSTA’13)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Our solution
Filter mutants with
a dynamic analysis

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 5/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

Identical code surrounding mutation

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

, ?

Optimizations:
I Infection

I Propagation
I Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

Optimizations:
I Infection
I Propagation

I Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

public TriangleType classify
(int a, int b, int c) {

...

if (a - b <= c) {
return Invalid;

}
...

} Mutant 2

Optimizations:
I Infection
I Propagation

I Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if (a + b <= c) {
return Invalid;

}
...

} Original

public TriangleType classify
(int a, int b, int c) {

...

if (a * b <= c) {
return Invalid;

}
...

} Mutant 1

public TriangleType classify
(int a, int b, int c) {

...

if (a - b <= c) {
return Invalid;

}
...

} Mutant 2

= ?

Optimizations:
I Infection
I Propagation
I Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 6/17

Introduction Approach Evaluation Conclusion

The big picture

Set of
mutants

Execute test
suite on 100%

of mutants

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 7/17

Introduction Approach Evaluation Conclusion

The big picture

Set of
mutants

Execute test
suite on 100%

of mutants

Undetectable
mutants

Detectable
mutants

Mutation score: 56%

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 7/17

Introduction Approach Evaluation Conclusion

The big picture

Set of
mutants

Execute test
suite on 90%

of mutants

Infection

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 7/17

Introduction Approach Evaluation Conclusion

The big picture

Set of
mutants

Execute test
suite on 84%

of mutants

Infection

Propagation

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 7/17

Introduction Approach Evaluation Conclusion

The big picture

Set of
mutants

Execute test
suite on 70%

of mutants

Infection

Propagation
Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 7/17

Introduction Approach Evaluation Conclusion

Dynamic analysis to filter mutants

Program Test suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Mutants

Execute test suite
only once on an
instrumented

program version
Infection

Propagation
Partitioning

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 8/17

Introduction Approach Evaluation Conclusion

Infection

A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 9/17

Introduction Approach Evaluation Conclusion

Infection

A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

if (a + b > c)

I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 9/17

Introduction Approach Evaluation Conclusion

Infection

A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

if (a + b > c)

a * b a / b a % b a - b

I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 9/17

Introduction Approach Evaluation Conclusion

Infection

A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

if (a + b > c)
4

a * b

4

a / b

1

a % b

0

a - b

0

Optimization
I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 9/17

Introduction Approach Evaluation Conclusion

Infection

A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

if (a + b > c)
4

a * b

4

a / b

1

a % b

0

a - b

0

Optimization
I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 9/17

Introduction Approach Evaluation Conclusion

Propagation

An infected execution state propagates if it leads to an
infected execution state of a lexically enclosing expression.

Example: a=2, b=2, c=0

if (a + b > c)
4

a * b

4

a / b

1

a % b

0

a - b

0

I Propagate infected execution states in composed expressions
I Filter mutants whose infected state does not propagate

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 10/17

Introduction Approach Evaluation Conclusion

Propagation

An infected execution state propagates if it leads to an
infected execution state of a lexically enclosing expression.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b

1

a % b

0

a - b

0

I Propagate infected execution states in composed expressions
I Filter mutants whose infected state does not propagate

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 10/17

Introduction Approach Evaluation Conclusion

Propagation

An infected execution state propagates if it leads to an
infected execution state of a lexically enclosing expression.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b

1

> c

true

a % b > c

false

a - b > c

false

Optimization
I Propagate infected execution states in composed expressions
I Filter mutants whose infected state does not propagate

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 10/17

Introduction Approach Evaluation Conclusion

Propagation

An infected execution state propagates if it leads to an
infected execution state of a lexically enclosing expression.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b > c

true

a % b > c

false

a - b > c

false

Optimization
I Propagate infected execution states in composed expressions
I Filter mutants whose infected state does not propagate

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 10/17

Introduction Approach Evaluation Conclusion

Partitioning

Build partition of identically infected execution states.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b > c

true

a % b > c

false

a - b > c

false

I Partition mutants based on their expression values
I Only execute a test for one mutant per partition cell

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 11/17

Introduction Approach Evaluation Conclusion

Partitioning

Build partition of identically infected execution states.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b > c

true

a % b > c

false

a - b > c

false

Optimization
I Partition mutants based on their expression values
I Only execute a test for one mutant per partition cell

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 11/17

Introduction Approach Evaluation Conclusion

Partitioning

Build partition of identically infected execution states.

Example: a=2, b=2, c=0

if (a + b > c)

true

a * b

4

a / b > c

true

a % b > c

false

a - b > c

false

Optimization
I Partition mutants based on their expression values
I Only execute a test for one mutant per partition cell

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 11/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

eval(5, eval(3, a, b), c)

mapping

instrumentation

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

1m: a - b > c
2m: a * b > c
3m: a + b >= c
4m: a + b == c

eval(5, eval(3, a, b), c)

mapping

instrumentation

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues3e: a + b = 4
1m: a - b = 0
2m: a * b = 4

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

1m: 0

3e: a + b = 4
1m: a - b = 0

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

1m: 0

5e: 4 > c = true
3m: 4 >= c = true
4m: 4 == c = false

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

1m: 0

5e: 4 > c = true
3m: 4 >= c = true
4m: 4 == c = false
1m: 0 > c = false

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

4m: false
1m: false

5e: 4 > c = true

4m: 4 == c = false
1m: 0 > c = false

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

4m: false
1m: false

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Implementation details

a + b > c
1e 2e 4e

3e

5e
Expressions

3e 7→ +, 1e, 2e

5e 7→ >, 3e, 4e

Mutations

1m 7→ 3e, -
2m 7→ 3e, *
3m 7→ 5e, >=
4m 7→ 5e, ==

eval(5, eval(3, a, b), c) Example: a=2, b=2, c=1

mapping

instrumentation

InfectedValues

4m: false
1m: false

Implemented in Major
I Compact instrumentation
I Soundly handles side effects

and short-circuit operators

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 12/17

Introduction Approach Evaluation Conclusion

Experimental setup

14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17

Introduction Approach Evaluation Conclusion

Experimental setup

14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17

Introduction Approach Evaluation Conclusion

Experimental setup

14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17

Introduction Approach Evaluation Conclusion

Ratio of analyzed mutants

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
I Only 70% of covered mutants need to be analyzed
I Similar ratio for Propagation and Partitioning
I Partitioning is (most) effective after Propagation
I Lower ratio for weaker test suites (e.g., Random)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 14/17

Introduction Approach Evaluation Conclusion

Ratio of analyzed mutants

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
I Only 70% of covered mutants need to be analyzed
I Similar ratio for Propagation and Partitioning
I Partitioning is (most) effective after Propagation
I Lower ratio for weaker test suites (e.g., Random)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 14/17

Introduction Approach Evaluation Conclusion

Ratio of total runtime

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
I Total run time reduced by 40%
I Filtering costs are almost negligible
I Partitioning is (most) effective after Propagation
I Run-time improvements similar for all test suites

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 15/17

Introduction Approach Evaluation Conclusion

Ratio of total runtime

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
I Total run time reduced by 40%
I Filtering costs are almost negligible
I Partitioning is (most) effective after Propagation
I Run-time improvements similar for all test suites

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 15/17

Introduction Approach Evaluation Conclusion

Future work

Equivalent mutant detection
I Can propagation predict equivalent mutants?
I Solve constraints necessary to achieve propagation

Test generation
I Generate tests that achieve propagation
I Improve mutation-driven test generation

(Zhang et al., ICSM’10, Fraser and Zeller, TSE’12)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 16/17

Introduction Approach Evaluation Conclusion

Future work

Equivalent mutant detection
I Can propagation predict equivalent mutants?
I Solve constraints necessary to achieve propagation

Test generation
I Generate tests that achieve propagation
I Improve mutation-driven test generation

(Zhang et al., ICSM’10, Fraser and Zeller, TSE’12)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 16/17

Introduction Approach Evaluation Conclusion

Contributions

Dynamic prepass analysis
I Three new optimizations that

significantly improve efficiency
I Filter mutants with single test

execution on instrumented program

Infection

Propagation
Partitioning

Empirical evaluation
I 14 programs and 540,000 mutants
I Total run time reduced by 40%
I Propagation and Partitioning

should be combined Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

manual weak-mut. branch random

http://www.mutation-testing.org

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 17/17

http://www.mutation-testing.org

