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Mutation analysis overview

Program

Generate
mutants

Mutants

Each mutant contains a small syntactic change

public int max(int a, int b){
return (a > b) ? a : b;

} Original

public int max(int a, int b){
return (a >= b) ? a : b;

}
Mutant 1

public int max(int a, int b){
return (a != b) ? a : b;

}
Mutant 2
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a >= b ? a : b

a < b ? a : b

a <= b ? a : b

a != b ? a : b
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!(a > b) ? a : b

true ? a : b

false ? a : b

0 > b ? a : b

a > 0 ? a : b

a > b ? 0 : b

a > b ? a : 0

0

b > a ? a : b

a > b ? b : a

-a > b ? a : b

a >-b ? a : b
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a > b ? a :-b
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a

b
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Mutants

Filter
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(Jia and Harman, TSE’11)
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Mutation analysis overview

Program Test suiteTest suite

Generate
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Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
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Mutants

Filter
mutants
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(Just et al., ISSRE’12
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Mutation analysis overview

Program Test suiteTest suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Problem
Test suite has to
be executed for
many mutants

Mutants

Filter
mutants

Our solution
Filter mutants with
a dynamic analysis
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Wasted effort in mutation analysis

Example: testing triangle classification

public TriangleType classify
(int a, int b, int c) {

...

if ( a + b <= c ) {
return Invalid;

}
...

} Original
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Dynamic analysis to filter mutants

Program Test suite

Generate
mutants

Mutants

Execute
test suite

Mutation
score

Mutants

Execute test suite
only once on an
instrumented

program version
Infection

Propagation
Partitioning
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A test infects the execution state of a mutant if the expression
values of the mutation and the original version differ.

Example: a=2, b=2, c=0

I Execute mutations and monitor infected execution states
I Filter mutants whose execution state is not infected
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Implemented in Major
I Compact instrumentation
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14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17



Introduction Approach Evaluation Conclusion

Experimental setup

14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17



Introduction Approach Evaluation Conclusion

Experimental setup

14 subject programs
I Open-source programs from different application domains
I 670,000 lines of code
I 540,000 generated mutants

4 test suites for each program
I 1 developer-written test suite (released with program)
I 3 generated test suites (EvoSuite)

I Weak-mutation
I Branch coverage
I Random

Coverage optimization is baseline

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 13/17



Introduction Approach Evaluation Conclusion

Ratio of analyzed mutants
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I Only 70% of covered mutants need to be analyzed
I Similar ratio for Propagation and Partitioning
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I Lower ratio for weaker test suites (e.g., Random)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 14/17



Introduction Approach Evaluation Conclusion

Ratio of analyzed mutants

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
I Only 70% of covered mutants need to be analyzed
I Similar ratio for Propagation and Partitioning
I Partitioning is (most) effective after Propagation
I Lower ratio for weaker test suites (e.g., Random)

René Just, UW CSE Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States 14/17



Introduction Approach Evaluation Conclusion

Ratio of total runtime

Infect Infect+Prop Infect+Part Infect+Prop+Part
0

20

40

60

80

100

R
at

io
in

%
manual weak-mut. branch random

Findings
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I Partitioning is (most) effective after Propagation
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Future work

Equivalent mutant detection
I Can propagation predict equivalent mutants?
I Solve constraints necessary to achieve propagation

Test generation
I Generate tests that achieve propagation
I Improve mutation-driven test generation

(Zhang et al., ICSM’10, Fraser and Zeller, TSE’12)
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Contributions

Dynamic prepass analysis
I Three new optimizations that

significantly improve efficiency
I Filter mutants with single test

execution on instrumented program

Infection

Propagation
Partitioning

Empirical evaluation
I 14 programs and 540,000 mutants
I Total run time reduced by 40%
I Propagation and Partitioning

should be combined Infect Infect+Prop Infect+Part Infect+Prop+Part
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http://www.mutation-testing.org
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